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Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive

renal cyst formation and expansion. Several clinical trials show that somatostatin analogs

halt cyst growth and progression of ADPKD by inhibiting adenosine 30,50-cyclic monophos-

phate (cAMP) signaling. However, two studies suggest that the effect of the somatostatin

analog octreotide on kidney growth during the first year of treatment is reduced in the

subsequent follow-ups and the kidney enlargement resumes. We hypothesize that this

biphasic change in kidney growth during octreotide treatment may be due to changes in

somatostatin receptor 2 (SSTR2) expression. Here we analyzed the expression of renal

SSTR2 in various polycystic kidney disease (PKD) mouse models in which PKD1 gene

expression was disrupted on postnatal day 10 or 18 by tamoxifen. Using immunohisto-

chemical analysis, we showed that the distribution of SSTR2 in murine kidneys is mainly in

distal tubules and collecting ducts. In addition, in both PKD models, we observed a signif-

icant decrease in SSTR2 expression in epithelia of dilated tubules and cystic epithelia in

mice with end stage of PKD compared to wild-type mice. These findings were further

confirmed by quantitative PCR (qPCR) on mRNA levels of SSTR2. In conclusion, our data

show that SSTR2 expression levels are reduced during kidney cyst growth, which may suggest reduced efficacy in long-term

treatment with somatostatin analogs.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD)
is the most frequent hereditary disorder caused by a muta-
tion in the PKD1 or PKD2 gene.1,2 The disease is character-
ized by progressive development of numerous fluid-filled
kidney cysts accompanied by the formation of interstitial
fibrosis, leading to destruction of kidney architecture, and
ultimately kidney failure.1–3 Extra-renal complications can
occur during ADPKD, such as cysts in the liver and pan-
creas, hypertension, and cerebral aneurysms.3 Although
tolvaptan has recently become available for selected

ADPKD patients to slow the progression of ADPKD,
there is currently no cure.4–6 In order to meet the urgent
needs of patients, considerable effort has been made to
explore the mechanisms that are essential for the develop-
ment of ADPKD, allowing identification of several poten-
tial targets for therapeutic interventions.7

Renal cyst formation and expansion during ADPKD are
the results of excessive epithelial cell proliferation, contin-
uous luminal fluid secretion as well as extracellular matrix
remodeling.4,8 Previous studies implicate that one of the
mechanisms associated with these processes is enhanced
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intracellular cAMP signaling.5,9,10 Therefore, the molecules
that mediate cAMP signaling may be potential therapeutic
targets for treating ADPKD. Indeed, activation of the
vasopressin-2 receptor (V2R) induces the generation of
cAMP, while targeting V2R with its antagonist tolvaptan
reduces cAMP levels in kidney epithelial cells and limits
cystogenesis in several PKD models.11–14 Furthermore, sev-
eral completed or currently active clinical studies under the
TEMPO program indicate that tolvaptan shows a treatment
effect in reducing total kidney volume.6,15,16 In addition,
somatostatin (SST), a cyclic 14 amino acid peptide hor-
mone, exerts inhibitory effects on cAMP signaling through
binding to its G-protein-coupled receptors (SSTR1-5).17

SST has been proven to inhibit vasopressin-induced
cAMP formation in Madin-Darby Canine Kidney
(MDCK) cells and diminishes cAMP concentrations in rat
cortical and medullary collecting tubules.18,19 Targeting
SSTRs with SST analogs inhibits cell proliferation, cAMP
levels and hepato-renal cystogenesis in rodent models of
polycystic kidney and liver disease.11,20–22 In consistence
with these observations, a few completed clinical trials
with the primary focus of inhibiting cAMP using SST ana-
logs (octreotide or lanreotide) have indicated potential clin-
ical benefit in patients with ADPKD.23–27

The administration of octreotide for periods of 6–12
months effectively inhibits the increase in total kidney
volume.25,26 This has been confirmed in a six-month clinical
trial which demonstrated that lanreotide decreases total
kidney volume in 43 ADPKD patients.27 Interestingly, two
relative small studies suggest that the efficacy of SSTanalog
treatment appears to reduce with longer follow-ups.23,24

Long-acting octreotide halts kidney growth during the
first year of treatment, but with ongoing treatment, toler-
ance develops and the effect is reduced during year 2. In the
future, more information on efficacy and tolerance of pro-
longed somatostatin treatment will come from an ongoing
clinical trial with a period of 120 weeks.28 Because of this
biphasic change in kidney growth during SSTanalogs treat-
ment, we propose that SSTRs might be progressively down-
regulated with ADPKD development, leading curtailed
long-term efficacy. Since both octreotide and lanreotide
have the highest affinity for SSTR2,29 we examined expres-
sion of this receptor in various PKD mouse models at dif-
ferent time points after disruption of the PKD1 gene.

Materials and methods

Cell culture

SV40 large T-antigen immortalized murine wild type (WT)
proximal tubular epithelial cells (PTEC) were derived from
a Pkd1lox,lox mouse and cultured as previously described.30

Briefly, PTEC cells were maintained at 37�C and 5% CO2

in DMEM/F12 with GlutaMAX (Gibco, Fisher Scientific)
supplemented with 100 U/mL penicillin/streptomycin
(Gibco, Waltham, MA), 2% Ultroser G (Pall BioSepra,
France), 1� insulin-transferrin-selenium-ethanolamine,
25 ng/L prostaglandin E1 (Sigma–Aldrich, Netherlands),
and 30 ng/L hydrocortisone (Sigma–Aldrich,
Netherlands). Murine collecting duct mIMCD-3 cells

(American Type Culture Collection, ATCC, UK) weremain-
tained in DMEM/F12 with GlutaMAX (Gibco) supple-
mented with 10% fetal calf serum and 100 U/mL
penicillin/streptomycin (Gibco).

Animal models of polycystic kidney disease

The tamoxifen-inducible kidney-specific Pkd1-deletion
(tam-KspCad-CreERT2;Pkd1lox2–11;lox2–11 or in short iKsp-
Pkd1del) mice and oral tamoxifen administration have
been described previously.31,32 The mice received 150
mg/kg tamoxifen at postnatal day PN18–PN19 (PN18
model) or 15 mg/kg tamoxifen at PN10–PN11 (PN10
model). PN18 mice were sacrificed at 4 or 12 (n¼ 6)
weeks after tamoxifen administration and PN10 mice
were sacrificed at 1 or 3 weeks (n¼ 5) after tamoxifen
administration. Mice were bred at the animal care facility
of the Leiden University Medical Center (LUMC).
All experiments were approved by the local animal exper-
imental committee of the LUMC and the Commission
Biotechnology in Animals of the Dutch Ministry of
Agriculture.

Quantitative PCR

Total RNA was isolated from cultured cells or kidney
tissues with TRI Reagent (Sigma–Aldrich) following the
manufacturer’s protocol. cDNA synthesis was done with
the Transcriptor First Strand cDNA Synthesis Kit (Roche,
Basel) according to the manufacturer’s protocol.
Quantitative PCR (qPCR) was done in duplicate on the
LightCycler 480 II (Roche) using 2� FastStart SYBR-Green
Master (Roche) according to the manufacturer’s protocol.
The following primers were used: hypoxanthine guanine
phosphoribosyltransferase (HPRT): forward 50-
GGCTATAAGT TCTTTGCTGACCTG-30 and reverse
50-AACTTTTATGTCCCCCGTTGA-30; SSTR2: forward 50-
TCCTCCGCTATGCC AAGAT-30 and reverse 50-
CAATGGCCAGGTTAAGGATG-30; SSTR5: forward
50-GCAAGGTCTTGGCCTTTATG-30 and reverse 50-
CAGTCTTCACCATGCGTCTG-30. Data were analyzed
with LightCycler 480 Software, version 1.5 (Roche). Gene
expression was calculated using the LinRegPCR method as
described previously33 and normalized to HPRT expres-
sion, giving the relative gene expression. Mean gene
expressions and standard deviations of the different
groups were calculated.

(Immuno)histochemistry

Kidney tissues were fixed in formalin, embedded in paraf-
fin, and 4-lm-thick slides were subsequently stained with
hematoxylin and eosin according to routine procedures.
Segment marker staining was performed with sequential
renal sections (4 mm), using rabbit polyclonal anti-megalin
(Pathology LUMC), goat polyclonal anti-Tamm-Horsfall
protein (uromodulin; Organon Teknika-Cappel), and
rabbit polyclonal anti-aquaporin-2 (Calbiochem,
Germany) as previously described.34 SSTR2 staining was
performed with a rabbit monoclonal anti-SSTR2 antibody
(Abcam, ab134152). A horseradish peroxidase (HRP)-
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conjugated polymer detection system was applied for visu-
alization using rabbit envision HRP (Agilent Dako,
Amstelveen) or rabbit anti-goat HRP (Dako) as the second-
ary antibody. Immune reactions were revealed using dia-
minobenzidine and counterstained with hematoxylin.

cAMP assay

Levels of cAMP were measured in mice control and PN10
cystic kidneys (n¼ 2 for each experimental condition).
cAMP levels were determined by the cAMP enzyme immu-
noassay kit (Sigma–Aldrich Chemie N.V.).

Statistical analysis

Statistical comparisons between groups were performed
using an unpaired t-test. p values less than 0.05 were con-
sidered significant.

Results

The expression pattern of SSTR2 in normal
mouse kidneys

We investigated the expression pattern of SSTR2 in
paraffin-embedded kidney sections of adult WT mice.
Proximal tubules, distal tubules, and collecting ducts
were identified by staining for their specific markers mega-
lin, Tamm-Horsfall protein, and aquaporin-2, respectively
(Figure 1(a)). SSTR2 was mainly detected in a large propor-
tion of distal tubules and collecting ducts. In contrast,
SSTR2 staining was almost absent in proximal tubules. To

verify this observation, we subsequently examined the
mRNA levels of SSTR2 and SSTR5 in PTEC and mIMCD-
3 cells that derived from proximal tubules and collecting
ducts, respectively (Figure 1(b)). The mRNA level of
SSTR2 was higher in the collecting ducts than in the prox-
imal tubules, confirming the results of the SSTR2
immunostaining.

SSTR2 expression decreased during cyst growth in two
PKD mouse models

We next examined the SSTR2 expression in the Pkd1del

models during different phases of disease. Deletion of the
Pkd1 gene in mice of different age results in distinct PKD
phenotypes.35,36 Previous studies have indicated that
inactivation of Pkd1 at prenatal day 10 results in rapid
cyst formation within three weeks, and cysts are primarily
from distal tubules and collecting ducts.36 In contrast, the
PN18 model has a much slower progression of PKD and
develops polycystic kidneys within three months, with
cysts derived from all tubular segments36 (Figure 2).

At the early stage of PKD in the PN18 model
(PN18þ 4weeks), SSTR2 expression was still observed in
most of the dilated tubules originating from distal tubules
and collecting ducts. At 12 weeks after tamoxifen adminis-
tration, PN18 mice developed massive cystic kidneys and
showed a clear loss of SSTR2 expression in almost all cysts
compared with PN18 mice at four weeks (Figure 3(a) and
also compare Figure 3(a) and (b) to Figure 1(a)). Similarly,
PN10 model also showed reduction in SSTR2 levels along

Figure 1. SSTR2 expression pattern in WT adult mouse kidney. (a) Representative segment markers and SSTR2 antibody-stained sections. Asterisks indicate the

same area on sequential sections with THP (in enlarged picture 1) and SSTR2 staining (in enlarged picture 2). Also, arrowheads indicate the same area on sequential

sections with AQP2 (in enlarged picture 3) and SSTR2 staining (in enlarged picture 2). (b) SSTR2 and SSTR5 mRNA levels in PTEC andmIMCD3 cells were assessed by

real-time reverse transcriptase PCR. Data are expressed relative to the housekeeping gene HPRT (n¼ 3). MEG: megalin; THP: Tamm-Horsfall; AQP2: Aquaporin-2

(A color version of this figure is available in the online journal.)
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Figure 2. Kidneys from P10 and P18 models after PKD1 gene disruption. (a) Hematoxylin and eosin-stained sections of kidneys harvested from PN10 and PN18 mice

at different time points after PKD1 gene disruption. (A color version of this figure is available in the online journal.)

Figure 3. SSTR2 expression decreases during cyst growth in both P10 and P18 mice with ADPKD. (a) Image of the renal section from PN18 mice at late stage

(PN18þ 12 wks) of PKD that was immunostained using antibodies specific for SSTR2. The black frame indicates the area where non-dilated tubules with positive for

SSTR2 staining. (b and c) Images of renal sections from PN18 and PN10 mice were immunostained using SSTR2 antibodies. Enlargements of SSTR2 images are

shown in the lower panel. Arrowheads indicate dilated tubules or cysts with positive SSTR2 staining and asterisks indicate dilated tubules or cysts which show virtually

negative SSTR2 staining. (d) and (e) SSTR2 and SSTR5 mRNA levels in PN18 and PN10 mice kidney tissue at different time points after PKD1 gene disruption were

assessed by real-time reverse transcriptase PCR. Data are expressed relative to the housekeeping gene HPRT. The comparison is between kidneys fromWT and end

stage of diseases, n¼ 5–7, *p< 0.05 (t test). (A color version of this figure is available in the online journal.)
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the disease progression compared with WT mice. SSTR2
expression was decreased in cystic epithelia at mild stage
(PN10þ 1weeks) of PKD and was lost in the majority of
cysts at the end stage of the disease (compare Figure 3(c)
to Figure 1(a)). To verify this finding, we also analyzed the
mRNA levels of SSTR2 in the animal kidney lysates, using
SSTR5 as a comparison. The mRNA levels of SSTR2 from
PN18þ 12 weeks mice were significantly lower compared
to WT mice, whereas this reduction was not detected in
PN10 mice (Figure 3(d) and (e)).

Discussion

ADPKD is a heterogenetic disorder caused by mutations
in the PKD1 or PKD2 gene, but additional factors are
also involved.1,2,8,36 There is compelling evidence that
aberrant cAMP signaling plays a critical role in renal and
liver cystogenesis.5 Several animal models for cystic kidney
disease (including ours) demonstrate elevated cAMP con-
tent in kidneys (Figure S1) and show that reduced cAMP
increase, by targeting SSTRs, limits disease progres-
sion.5,11,20–22 Based on these findings and the fact that
SSTRs are expressed in human kidneys,37 SST analogs
have been tested in several clinical trials for treating
ADPKD. Although somatostatin analogs significantly halt
cyst growth and progression of ADPKD during the first
year of treatment, the effect then reduces, as observed for
octreotide.23–28

The reduced long-term treatment effect of SST analogs
may be partially explained by the data described in this
study. Here, we show that renal SSTR2 expression is down-
regulated during cyst growth in mice with ADPKD. In two
PKDmouse models, expression of SSTR2 declined progres-
sively in dilated distal tubules and collecting ducts and was
completely lost in almost all cystic epithelia at the end stage
of the disease. The findings in immunohistochemistry were
supported by data on corresponding mRNA expression of
SSTR2 in PN18 mice, but not in PN10 mice. This may be
due to the fact that PN10 mice were still in developmental
stage and the proliferation indices varied between animals,
so that the mRNA expression could not correctly reflect
protein expression.

We also studied the SSTR2 expression in humanmaterial
in order to correlate our findings with human disease. In
immunohistochemical analysis, we observed that SSTR2 is
mildly expressed in all kidney segments, while high
expression was mainly observed in proximal tubules.
Importantly, cystic lesions of ADPKD patients also
showed decreased expression of SSTR2 in epithelia of
dilated tubules and cystic epithelia compared with healthy
controls (Figure S2(a)). Using antibodies generated against
the same immunizing peptide ETQRTLLNGDLQTSI,
corresponding to residues 335–369 of human SSTR2,
other investigators detected renal SSTR2 expression in the
same pattern as we observed in immunohistochemical
experiments.38–41 However, the results from
immunohistochemical analysis are not in line with our
qPCR analysis, which showed more SSTR2 expression in
cells derived from human collecting ducts than proximal
tubules, similar as observed in mice (Figure S2(b)).

Therefore, we are not fully confident with the immunohis-
tochemistry results from the human tissue. Further
research to confirm SSTR2 expression pattern in human
kidney using another experimental method is required.

Our findings, showing decreased SSTR2 expression in
kidney cysts, are in line with the previous study reporting
diminished expression of SSTR1 and SSTR2 in cystic chol-
angiocytes of animal models and PKD patients.21 The
mechanism by which SSTR2 expression is downregulated
during cyst growth remains elusive. However, it has been
shown that treatment with SST analogs, octreotide, and
pasireotide, increases immunoreactivity of SSTR2 in cystic
cholangiocytes.21 Furthermore, it has been suggested that
SST has the ability to upregulate SSTR2 at cell membrane.42

Thus, it is tempting to speculate that the decrease in SSTR2
expression may be due to defective epithelial differentia-
tion, which could be partially restored by SSTanalogs treat-
ment during the progression of cystic kidney disease.

Several issues should be taken into consideration when
interpreting our data. First, although our Pkd1del models are
well-established models to study ADPKD, they do not
completely mimic the progression of cystic disease in
patients with ADPKD. For example, the Pkd1del model
has relatively synchronized cyst formation, since deletions
in the Pkd1 gene can happen at the same time in much
larger numbers of cells than in human ADPKD.8

Therefore, our descriptive data obtained in animal models
cannot fully represent the human situation. Second,
although octreotide, lanreotide and pasireotide mainly
target SSTR2, SSTR5 also shows relatively high affinity for
SST analogs29 and its expression should be investigated in
normal and cystic kidneys. However, the commercially
available antibody that is frequently used to detect SSTR5
in murine tissue failed to produce consistent and reproduc-
ible data43 (data not shown), which may be explained by
the fact that it is only rat specific. Finally, our data sug-
gested that the SSTR2 expression pattern may be different
between human andmurine kidneys, which should be kept
in mind when targeting SSTR2 with SST analogs.

In conclusion, we present the distribution of SSTR2 in
murine kidneys, and irrespective of the potential clinical
relevance, our data suggest that the expression of SSTR2
decreases during the development of ADPKD. Reduced
target expression may also be taken into account when tar-
geting other trans-membrane receptors for treat-
ing ADPKD.
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