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Background: Previous studies have provided evidence that alcohol-dependent patients have abnormality in corpus
callosum (CC); however, it is unclear whether micro-structural integrity of the CC subregions is differentially affected

Methods: In this study, a total of 39 male individuals, including 19 alcohol-dependent patients and 20 age-
matched healthy controls, underwent diffusion tensor imaging (DTI). CC was reconstructed by DTl tractography and
was divided into seven subregions. Multiple diffusion metrics of each subregion were compared between two

Results: Compared to healthy controls, patients exhibited increased axial diffusivity (P=0.007), radial diffusivity
(P=0.009) and mean diffusivity (P=0.005) in the isthmus. In addition, we observed that daily alcohol intake was
correlated positively with radial diffusivity and mean diffusivity and negatively with fractional anisotropy, while
abstinence time of hospitalization was negatively correlated with mean diffusivity in the patients.

Conclusion: These findings suggest a selective micro-structural integrity impairment of the corpus callosum
subregions in alcohol dependence, characterized by axon and myelin alterations in the isthmus.

Keywords: Alcohol dependence, Corpus callosum, Diffusion tensor imaging, Tractography, Subregion

Background

Alcohol dependence is a severe psychiatric disorder
characterized by a chronic self-regulation failure in re-
gard to alcohol consumption, which results in negative
physiological, psychological and societal consequences
[1-4]. Behavioral evidence has suggested that alcoholics
have deficits in motor function [5, 6] and various cogni-
tive domains including memory, attention, execution
and social cognition [7-10]. With the development of
magnetic resonance imaging (MRI), previous studies
have found widespread brain white matter impairments
in addictive disorders [11-22] including alcohol depend-
ence [11-16, 20-22] and these micro-structural integrity
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abnormalities were usually detected by using diffusion
tensor imaging (DTI) [13-16, 20-22]. Among affected
white matter tracts, corpus callosum (CC) is the most
prominent, with primary abnormal features being re-
duced volume and disrupted micro-structural integrity
[20-27]. Since CC connects bilateral hemispheres and
relays sensory, motor and cognitive information be-
tween them [28-30], one may speculate that CC im-
pairments may contribute to the clinical features in
alcohol-dependent patients.

CC can be divided into several subdivisions based on
their anatomical landmarks or the specific brain regions
that these subdivisions connect [26, 31]. Investigating
changes of CC at the subregional level may further im-
prove our understanding of the CC role in many brain
diseases, such as post-traumatic stress disorder [32], bi-
polar disorder [33], autism [34] and schizophrenia [35].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12888-019-2079-6&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zhujiajiagraduate@163.com
mailto:cjr.yuyongqiang@vip.163.com

Wang et al. BMC Psychiatry (2019) 19:96

To our knowledge, one prior tractography-based seg-
mentation study has found that all segments of the CC
exhibited lower fractional anisotropy (FA) in alcohol
dependence and the segment connecting the bilateral
orbifrontal cortices was the most affected [26]. For DTI,
several other frequently used metrics, such as axial diffu-
sivity (AD), radial diffusivity (RD) and mean diffusivity
(MD), could provide more directionally specific and
complementary information [36, 37]. The combination
of multiple diffusion metrics may offer important in-
sights into the underlying pathological changes of white
matter in alcohol dependence.

In the current study, we aimed to systematically test
the micro-structural integrity differences of each CC
subregion between alcohol-dependent patients and
healthy controls using multiple diffusion metrics derived
from DTI data.

Methods
Participants
A total of 39 right-handed males (19 alcohol-dependent
patients and 20 healthy controls) were included in the
present study. Alcohol-dependent patients were re-
cruited from the inpatient department at Hefei Fourth
People’s Hospital with a mean age of 38.7 years (range:
21-51, SD: 7.8). Healthy controls were recruited from
the local community via advertisements with an average
age of 42.9 years (range: 24-55, SD: 11.5). Patient and con-
trol groups did not differ in age (t = 1.30, df = 37, P = 0.20).
This study was approved by the Medical Research Ethics
Committee of The First Affiliated Hospital of Anhui Med-
ical University and was performed in line with the princi-
ples of the Declaration of Helsinki. Each participant gave
written informed consent prior to all study procedures.
Patients’ diagnoses of alcohol dependence were based
on the Structured Clinical Interview for DSM-IV Axis I
Disorder, Patient Edition (SCID-P) [38]. Patients with
three or more of the following criteria at any time in the
same 12-month period were included: (1) tolerance; (2)
withdrawal; (3) alcohol use in larger amounts or over a
longer period than was intended; (4) an unsuccessful effort
or persistent desire to cut down or control alcohol use; (5)
a great deal of time being spent in activities necessary to

Table 1 Demographic and clinical characteristics
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obtain or use alcohol or recover from its effects; (6) im-
portant social, occupational or recreational activities re-
duced or given up; and (7) continuation of use despite a
persistent or recurrent physical or psychological problem.
All patients were hospitalized when they were firstly diag-
nosed to have alcohol dependence in the outpatient de-
partment. Healthy controls were excluded if they had any
current psychiatric axis I disorder or history of an addic-
tion according to the non-patient edition of the SCID
(SCID-NP). 17 alcohol-dependent patients had avail-
able data of daily alcohol intake (497.1 +132.8 ml),
dependence duration (14.6 + 7.2 years) and abstinence
time of hospitalization (34.6 + 23.6 days). The healthy
controls either had no drinking use or had a low fre-
quency of drinking use that could not be quantified.
None of the individuals reported illicit drug use. The de-
tails of demographic and clinical data of the participants
are shown in Table 1. Exclusionary criteria for all individ-
uals were significant neurological and medical diagnoses,
claustrophobia. All participants were requested to abstain
from any alcohol and caffeinated beverages at least 24 h
prior to the scans. At the day of scanning, subjects were
excluded if they had a positive alcohol breathalyzer or
urine drug screen.

Imaging data acquisition

Imaging data were obtained using a SignaHDx 3.0-T MR
system (General Electric, Milwaukee, W1, USA). Earplugs
were used to reduce scanner noise, and tight but comfort-
able foam padding was used to minimize head motion.
DTI data were acquired using a spin-echo single-shot echo
planar imaging (SE-SS-EPI) sequence with the following
parameters: repetition time (TR) = 10,000 ms; echo time
(TE) = 87 ms; flip angle (FA) =90°; field of view (FOV) =
220 mm x 220 mm; acquisition matrix = 128 x 128, recon-
structed to 256 x 256; slice thickness =3 mm; gap =0.5
mm; 36 axial slices; a voxel size of 0.9 x 0.9 x 3.5 mm?; 30
non-collinear diffusion gradients (b =1000 s/mm?) and 1
non-diffusion-weighted images (b = 0 s/mm?).

DTI data preprocessing and whole-brain fiber tracking
The software packages FMRIB Software Library (FSL,
http://www.fmrib.ox.ac.uk/fsl) [39], Diffusion Toolkit

Characteristics Alcohol-dependent patients Healthy controls Statistics P value
Number of subjects 19 20

Age (years) 38.7+78 (range: 21-51) 429+ 115 (range: 24-55) t=130 0.20°
Daily alcohol intake (ml)? 497.1+1328 -

Dependence duration (years)® 146+72 -

Abstinence time of hospitalization (days)® 346+ 236 -

The data are shown as the mean + SD
*The data are available for 17 from 19 patients
PThe P value was obtained by two-sample t-test
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(DTK, http://trackvis.org/dtk) and Pipeline for Analyzing
brain Diffusion images (PANDA, http://www.nitrc.org/
projects/panda) [40] were used for the DTI preprocessing
steps. Specifically, the diffusion-weighted images were first
registered to a reference volume (i.e., the first bO image)
by using affine transformations to minimize distortions
caused by the eddy currents and head motions. After
skull-stripping, we estimated the 6 independent compo-
nents of the diffusion tensor from which FA, AD, RD
and MD were calculated. Then a deterministic stream-
line tracking algorithm, i.e., Fiber Assignment by Con-
tinuous Tracking (FACT), was performed to obtain the
whole-brain fiber tractography [41] with the FA thresh-
old of 0.2 and the maximum curvature angle of 45°.

Fiber tracking of the corpus callosum

The seven sub-regions of CC were defined according to
a previous study [31]. The sub-regions 1-7 are rostrum
(connecting the bilateral orbital prefrontal and inferior pre-
motor areas), genu (connecting the bilateral prefrontal
areas), rostral body (connecting the bilateral premotor and
supplementary motor areas), anterior midbody (connecting
the bilateral motor regions), posterior midbody (connecting
the bilateral somaesthetic and posterior parietal regions),
isthmus (connecting the bilateral superior temporal and pos-
terior parietal areas), and splenium (connecting the bilateral
occipital and inferior temporal cortical areas) (Fig. 1a).
Two trained raters who were blind to subjects’ informa-
tion manually divided each CC into sub-regions on the
mid-sagittal section of the FA maps using TrackVis soft-
ware (www.trackvis.org) (Fig. 1b). Then the whole CC and

Page 3 of 8

7 sub-regions were tracked separately (Fig. 1c and d). The
average FA, AD, RD and MD of the 8 fibers were ex-
tracted for each subject. The intra-class correlation coeffi-
cients (ICC) of inter-rater measures ranged from 0.85 to
1, suggesting an excellent inter-rater reliability (Additional
file 1: Table S1). The mean values of the two raters’
manual measurements were calculated for subsequent
statistical analyses.

Statistical analysis

The statistical analyses were performed using SPSS 19.0
(SPSS, Inc., Chicago.IL). The inter-group differences in
FA, AD, RD and MD of seven sub-regions and the whole
CC were compared using two-sample t-tests. Associations
between diffusion metrics and clinical variables in the
patient group (including daily alcohol intake, dependence
duration and abstinence time of hospitalization) were
tested using Spearman rank order correlations. The
threshold P < 0.01 was considered significant.

Results

The differences in diffusion metrics of the 8 fibers be-
tween alcohol-dependent patients and healthy controls
are shown in Tables 2 and 3, Additional file 1: Table S2
and Fig. 2. Compared to healthy controls, patients
exhibited increased AD, RD and MD in the subregion
6 (P<0.01). When using a less stringent threshold (P <
0.05) for illustrative purpose, altered white matter integrity
was observed in the subregions 1-6 and the whole CC.
To rule out the potential effect of age, we repeated the

Fig. 1 Subregions of the corpus callosum. Segmentation scheme of the corpus callosum (a and b). A and P are the anteriormost and
posteriormost points, respectively. G, the anteriormost point on the inner convexity of the anterior callosum. A-P was used as the primary axis,
lines perpendicular to which subdivide the corpus callosum into seven subregions. Fibers crossing through each subregion on axial and sagittal

anatomical images (c and d)
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Table 2 The diffusion metrics of corpus callosum subregions
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Region FA AD RD MD
PT HC PT HC PT HC PT HC

Subregion 1 047 005 048+ 003 141 + 009 136 + 0.09 064+010 060+ 006 0.91+0.09 0.850.06
Subregion 2 054 +004 055002 140+ 0.04 137+004  055+006 052+ 004 0.83£0.05  0.80 % 0.04"
Subregion3 049+ 004 050+ 003 139+£004 135005  060+006 058+ 005 087+005 083+ 005
Subregion 4 050 £004 050+ 003 144+ 004 1.41+004  062+006 059+ 005 089 +005 087 +004
Subregion 5 049 £003 051 + 003 147 +004 143+005  0.64+006 060+0.06  092+0.05 0.88+0.05
Subregion 6 0.46 + 0.03  0.49 +0.03° 1.53+0.08 147 +0.05" 0.71+0.08 0.64+006"  098+008 092005
Subregion 7 055+002 056+ 002 157 + 0.04 155 + 005 059 +004 057 +004 092 +003 090+ 004
Whole CC 053+£002  054+002 150+ 0.03 147+004  0.60+004 057+0.03  090+0.04 0.87+0.03

** P<0.01,*0.01 <P<0.05
For illustration, all values of AD, RD and MD were multiplied by 1000

Abbreviations: CC corpus callosum, FA Fractional Anisotropy, AD axial diffusivity; RD radial diffusivity, MD Mean diffusivity, HC healthy controls, PT

alcohol-dependent patients

Entries in boldface are diffusion metrics with significant inter-group differences (P < 0.05)

comparisons controlling for age and found that the main
results were preserved (Additional file 1: Table S3).

In addition, we observed some significant correlations
between diffusion metrics and clinical variables in the pa-
tients (Fig. 3). Specifically, daily alcohol intake was posi-
tively correlated with RD of the subregion 7 (rho =0.737,
P=0.001) and the whole CC (rho=0.625, P=0.007)
and MD of the subregion 7 (rho=0.672, P=0.003),
and was negatively correlated with FA of the subregion
7 (rho = - 0.715, P =0.001) and the whole CC (rko = -
0.655, P=0.004). Abstinence time of hospitalization
was negatively correlated with MD of the subregion 5
(rho=-0.631, P=0.007). We did not detect any sig-
nificant correlation between dependence duration and
any diffusion metrics.

Discussion

In this study, we jointly used multiple diffusion metrics
to examine the micro-structural integrity alterations of
corpus callosum subregions in alcohol dependence. In
comparison to healthy controls, patients exhibited

0.03-0.07 x 10" > mm?/s increases in the isthmus AD,
RD and MD. In addition, we observed that daily alcohol
intake was correlated positively with RD and MD and nega-
tively with FA, while abstinence time of hospitalization was
negatively correlated with MD in the patients.

In previous studies, alcohol dependence-related CC ab-
normality mainly consists of reduced volume and disrupted
micro-structural integrity [15, 20-27, 42]. Pfefferbaum et al.
demonstrated the microstructural degradation of the CC in
alcohol-dependent patients and showed a lower FA in the
genu and splenium portions [15, 42]. In another study, Liu
et al. found that men with alcohol dependence showed
lower FA values (0.02 to 0.03 lower) in all segments of the
corpus callosum [26].

Sawyer et al. observed that compared to non-alcoholic
men, alcoholic men had diminished FA (0.05 lower) in
the anterior portions and body of the CC [21]. Monnig
et al. reported alcohol problem severity and more fre-
quent drinking were significant predictors of lower white
matter FA in the body of CC in heavy drinkers [20]. Pos-
sible reasons for differences between the findings of this

Table 3 Mean inter-group differences and 95% confidence intervals in diffusion metrics of corpus callosum subregions

Region FA AD RD MD

Difference  Low High Difference  Low High Difference  Low High Difference  Low High

95% CI - 95% ClI 95% CI - 95% CI 95% CI - 95% CI 95% CI 95% ClI

Subregion 1 0011 -0.019  0.041 -0.052 -0.110 0.006 —0.044 -0.102 0014 -0.062 -0.118 -0.005
Subregion 2 0.013 -0.010 0.036 -0.032 -0058 —-0006 -0.030 -0.063 0.003 -0.031 -0.058 —-0.003
Subregion 3 0.011 -0.013 0034 -0.031 -0.060 —-0003 -0.030 -0066 0.007 —-0.030 -0.062  0.002
Subregion 4 0.009 -0014  0.031 -0.031 -0058 —-0005 0026 -0063 0011 -0.028 -0.059  0.003
Subregion 5 0.016 -0.004 0.037 -0.041 -0.071 -0012 0041 -0078 -0004 —0.041 -0.074  —-0.009
Subregion 6 0.022 0.000 0.043 —-0.063 -0.110  -0017 -0.062 -0.108 -0016 —0.062 -0.105 -0.019
Subregion 7 0.009 -0.003  0.021 -0.021 —-0.051 0.010 -0,021 -0.045 0.003 -0.021 -0.045  0.003
Whole CC 0.010 -0.004 0.023 -0.028 -0053 -0004 -0026 -0050 -0002 -0027 -0.049  —-0.004

For illustration, all values of AD, RD and MD were multiplied by 1000

Abbreviations: CC corpus callosum, FA Fractional Anisotropy, AD axial diffusivity, RD radial diffusivity, MD Mean diffusivity, C/ confidence interval
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Fig. 2 Alterations in diffusion metrics of corpus callosum subregions. The horizontal line in the middle of each box indicates the median, while

the top and bottom borders mark the 75th and 25th percentiles, respectively. The whiskers above and below the box mark the maximum and
minimum values. Abbreviations: CC, corpus callosum; FA, Fractional Anisotropy; AD, axial diffusivity; RD, radial diffusivity; MD, Mean diffusivity; HC,

healthy controls; PT, alcohol-dependent patients

study and those in previous studies could be due to this
study joint use of multiple diffusion metrics and investi-
gation of the micro-structural integrity of the CC at the
subregional level.

Among the diffusion metrics derived from DTI, FA is
the most commonly used to assess white matter integ-
rity, which measures the degree of anisotropy and ranges
between O (fully isotropic diffusion) and 1 (fully aniso-
tropic diffusion) [43]. However, FA changes can be
driven by both parallel and perpendicular diffusivity, and
thus FA is a comprehensive reflection of the water diffu-
sion profile. Some other diffusion metrics may provide
more directionally specific and complementary informa-
tion [36, 37]. Specifically, AD represents the water diffu-
sivity parallel to the axonal fibers. Altered AD may reflect
axonal swelling, degeneration and deletion [44—46]. RD
represents the water diffusivity perpendicular to the
axonal fibers. Altered RD may reflect myelin disruption
[45-48]. MD is the average of AD and RD. In this study,
we found that the whole CC and its subregions of the
alcohol-dependent patients exhibited alterations mainly in

AD, RD and MD, which is consistent with previous stud-
ies showing that these three diffusion metrics are more
sensitive than FA [36]. Therefore, a combination of mul-
tiple diffusion metrics may facilitate the detection of white
matter micro-structural changes that cannot be fully cap-
tured by FA changes only. Benefitting from the advantages
of subregional analyses and a combination of multiple dif-
fusion metrics, our study may provide comprehensive in-
sights into the integrity impairments of the CC in alcohol
dependence and make a significant contribution to the
emerging literature.

Alcohol dependence is often accompanied by abuse of
other drugs or substances such as cigarette, cocaine and
cannabis. A previous study has found an effect of chronic
cigarette smoking on white matter microstructure (includ-
ing the CC) in alcohol dependence [18]. Smoking and al-
cohol use disorder are highly comorbid, yet cigarette use
has not been adequately controlled in this study because a
lack of the smoking information. However, Chumin and
colleagues found alcohol dependence is associated with
reduced white matter integrity after controlling for the
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Fig. 3 Correlations between diffusion metrics and clinical variables in the patients. Abbreviations: CC, corpus callosum; FA, Fractional Anisotropy;
AD, axial diffusivity; RD, radial diffusivity; MD, Mean diffusivity; HC, healthy controls; PT, alcohol-dependent patients

effect of cigarette smoking [49]. Further research may
be needed to clarify this issue in future study. In
addition, prior studies found that heavy cocaine use
was associated with structural damage (0.01 to 0.05
lower in FA) in CC [17, 50]. Rigucci et al. has reported
that frequent use of high-potency cannabis is associ-
ated with disturbed CC microstructural organization
(0.03 x 10 * mm?/s higher in AD) [51].

Notably, we found that the isthmus is selectively af-
fected among all subregions. It was characterized by in-
creased AD, RD and MD as well as a trend towards
decreased FA. This finding indicates that the underlying
pathology of the isthmus may involve alterations in both
axon and myelin, ie., increased AD may be caused by
axon swelling [44] and increased RD may be the result
of demyelination [47, 48]. The isthmus connects the bi-
lateral superior temporal and posterior parietal areas.
The superior temporal cortex is mainly engaged in audi-
tory processing [52], and the posterior parietal cortex
(PPC) is engaged in a variety of cognitive functions includ-
ing attention, working memory and learning [53—55]. Dis-
rupted information communication between the bilateral
hemispheres in these two areas may lead to the relevant
clinical symptoms in alcohol dependence. Boettiger et al.
found significant differences in PPC activation during de-
cision making between individuals with alcohol depend-
ence and healthy controls; activation in this region was
also positively correlated with impulsive choice [56]. A
follow-up study found that alcohol-dependent patients

exhibited significantly more impulsive delayed reward
discounting decision-making and had significant hyper-
activity in the PPC during delayed reward discounting de-
cisions [57]. In addition, the associations between daily
alcohol intake and CC diffusion metrics are in line with
prior findings indicating that drinking characteristics have
an influence on brain structural and functional damages
in alcoholism [12, 58, 59]. Moreover, the negative correl-
ation between MD of subregion 5 (posterior midbody)
and abstinence time of hospitalization implies that alcohol
abstinence might contribute to the recovery of CC damage
to some extent.

This study has several limitations. First, we did not col-
lect information regarding education, intelligence quotient
or socioeconomic status which could affect white matter
integrity. The lack of these relevant data may influence
our interpretation. Second, we only recruited male partici-
pants to avoid the confounding effects of gender. As gen-
der differences in alcohol-addictive behavior have been
reported [60], future studies with female subjects are of
interest although female alcohol-dependent patients are
scarce. Third, highly anisotropic voxels and slice gap may
influence our results. DTI data with improved quality are
needed in future to validate our findings. Fourth, DTI
tractography has limitations to reconstruct long-distance
anatomical connections, especially the inter-hemispheric
CC fibers [61-63]. This disadvantage may result in an
underestimation of the CC fiber number. Finally, the rela-
tively small sample size and a lack of correction for
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multiple comparisons mean that our findings, although
informative, remain preliminary and require replication.

Conclusions

In summary, we jointly used multiple diffusion metrics
to investigate the micro-structural integrity of the corpus
callosum at the subregional level in alcohol dependence.
We found the selectively affected subregion was the isth-
mus, where both axon and myelin alterations were
present in alcohol-dependent patients.

Additional file

Additional file 1: Table S1. Inter-rater reliability for FA, AD, RD and MD
values in corpus callosum subregions. Table S2. Inter-group differences

in diffusion metrics of corpus callosum subregions. Table S3. Inter-group
differences in diffusion metrics of corpus callosum subregions after con-

trolling age. (DOCX 28 kb)
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