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Abstract

Background: Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition
have revolutionised cancer care for this disease. However, an un-met clinical need remains in B-Raf inhibitor resistant
patients where first-generation B-Raf inhibitors provide only short-term disease control. In these cases, B-Raf inhibition
leads to paradoxical activation of the C-Raf — MEK — ERK signalling pathway, followed by metastasis. PDESA has been
shown to directly interact with and modulate the cAMP microdomain in the vicinity of C-Raf. This interaction promotes
C-Raf activation by attenuating the PKA-mediated inhibitory phosphorylation of the kinase.

Methods: We have used a novel cell-penetrating peptide agent (PPL-008) that inhibits the PDE8A — C-Raf complex in a
human malignant MM415 melanoma cell line and MM415 melanoma xenograft mouse model to investigate ERK MAP

kinase signalling.

resistant melanoma.

Results: \We have demonstrated that the PDESA — C-Raf complex disruptor PPL-008 increased inhibitory C-Raf-5259
phosphorylation and significantly reduced phospho-ERK signalling. We have also discovered that the ability of PPL-008
to dampen ERK signalling can be used to counter B-Raf inhibitor-driven paradoxical activation of phospho-ERK in
MM415 cells treated with PLX4032 (Vemurafenib). PPL-008 treatment also significantly retarded the growth of
these cells. When applied to a MM415 melanoma xenograft mouse model, PPL-008C penetrated tumour tissue
and significantly reduced phospho-ERK signalling in that domain.

Conclusion: Our data suggests that the PDESA-C-Raf complex is a promising therapeutic treatment for B-Raf inhibitor
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Background

Malignant melanoma, an aggressive and lethal form of
skin cancer, leaves metastatic patients with a 15-20%
chance of surviving 5years with the disease [1]. Over
50% of melanoma patients carry a mutation in their
BRAF gene, with the V60OE (valine to glutamic acid)
missense mutation being responsible for 80-90% of
BRAF mutations [2—4]. B-Raf is a serine/threonine pro-
tein kinase that is part of the RAS — RAF — MEK — ERK
signalling axis, involved in regulating many cellular pro-
cesses including: differentiation, proliferation, survival
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and apoptosis [5]. This signalling pathway is believed to
be crucial to melanoma progression, with the V600E
mutation resulting in B-Raf protein conformational
changes that constitutively activate B-Raf and down-
stream MEK — ERK signalling [5]. As a result, B-Raf-
specific small molecule inhibitors (and eventually MEK
inhibitors) were developed and found to dramatically
improve patient prognosis, survival rate and lead to
tumour regression through suppression of downstream
ERK signalling [6—9]. Unexpectedly, B-Raf inhibitor re-
sistance was developed in many patients through para-
doxical activation of ERK; allowing the cancer to persist
[10-14]. Pathway reactivation is believed to occur as a
result of oncogenic mutations in a number of genes, in-
cluding NRAS (20% of cases; Q61K/R/L most frequent)
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and KRAS (2% of cases) gain-of-function mutations [15]
http://www.sanger.ac.uk/genetics/CGP/cosmic/ [16, 17].
As B-Raf preferentially heterodimerises to C-Raf (vs.
other A, B or C-Raf homo/heterodimers), B-Raf inhib-
ition results in a negative feedback mechanism that
switches from B-Raf to C-Raf activation by Ras and sub-
sequent tumour invasion and metastasis [18, 19]. In light
of this, C-Raf has become a key therapeutic target for
the development of new treatments able to suppress
RAS-mediated tumour progression in B-Raf inhibitor
resistant melanoma.

Previously, we demonstrated an important role for the
cAMP degrading enzyme, PDE8A, in protecting C-Raf
from PKA-mediated inhibition [20] (reviewed [21]).
PDES8A, believed to be responsible for regulating basal
cAMP fluctuations, was found to directly interact with
C-Raf. The association of C-Raf with a PDE markedly
inhibited the ability of local PKA pools to phosphorylate
and inhibit the kinase, increasing the likelihood of C-Raf
activation. Peptide mapping of the PDE8A-C-Raf inter-
face allowed for the rational development of a cell pene-
trating peptide disrupter based on the C-Raf binding site
on PDESA [22, 23]. This disrupter was found to inhibit
the PDESA - C-Raf protein-protein interaction (PPI)
and significantly increase C-Raf-S259 phosphorylation
while concomitantly supressing phospho-ERK signalling.
This concept was verified at an organismal level in both
PDESA knock out mice and a drosophila model, where
basal ERK activation was attenuated compared to wild
type [20].

Further verification of the PDESA — C-Raf PPI inhibi-
tor concept has been supplied by a recent study, which
demonstrated that the disrupter was able to attenuate
T-effector cell adhesion and migration in an auto-im-
mune multiple sclerosis mouse model. The inhibition of
T-effector cell function was a direct result of increased
levels of inhibitory C-Raf-S259 phosphorylation and sub-
sequent suppression of ERK activation [24]. The dis-
rupter produced a more potent effect than highly-
selective PDE8 enzyme inhibitors and highlighted a
novel approach to targeting T-effector cells in inflamma-
tory disorders. These observations convincingly demon-
strate the disrupter’s ability to attenuate ERK activation
through PDESA — C-Raf disruption.

Further development of the PDE8A-C-Raf disrupter
has allowed us to conjugate the peptide to the patented
Cell Porter® (Portage Pharmaceuticals Limited), a cell
penetrating peptide based on the human HOXD12 pro-
tein. The Cell Porter® platform has successfully driven
PPL-003, an NF-kB inhibitor designed to treat inflam-
matory disorders including dry eye syndrome, to pre-
clinical success [25-27]. We report data from the testing
of our novel PDESA — C-Raf disrupter/HOXD12 conju-
gate (from here on, named PPL-008) in MM415, a B-Raf
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inhibitor resistant malignant melanoma cell line (MM415;
BRAF wt, KRAS wt, NRAS Q61L) and in an MM415 mel-
anoma murine xenograft model. PPL-008 was efficacious
in the attenuation of ERK signalling in both cases and sug-
gests that the PDESA — C-Raf complex is a promising
therapeutic target for B-Raf inhibitor resistant melanoma.

Methods
All antibodies and chemical treatments are collated in
Additional file 1: Table S1.

Animals

Generation of the MM415 melanoma murine xenograft
model, and in vivo treatment was carried out by MI
Bioresearch (Michigan, USA). All protocols involving an-
imals used were approved by the Institutional Animal
Care and Use Committee of the University of Washington
in accordance with the National Institutes of Health. In
vivo 5-6 week old female NSG — immunodeficient mice
(Jackson Laboratory) were subcutaneously injected with
3.3e+ 8 MM415 malignant melanoma cells, at the SC —
axilla (high), and tumours were allowed to grow for 30
days (~200 — 400mm?®). Mice were intraperitoneally
injected at the site of tumour with PPL-008 peptide drug
dissolved in a 5% dextrose — water solution at either 25
mg/kg or 100 mg/kg. Mice were euthanised via CO, inhal-
ation (MI Bioresearch — AALAC accredited laboratory)
and the tumours were harvested at varying time points
post-treatment: 30 min, 1h, 2h, 4h, 8, 12h. Tumours
were frozen down at - 80°C and sent to Baillie lab for
preparation into lysates for follow-up western blot
analyses.

MM415 cell culture and drug treatments

Both cell lines used in this study, A375 and MM415,
were purchased from Sigma-Aldrich. A375 (BRAF
V600E) and MM415 (BRAF wild-type, KRAS wild-type,
NRAS Q61L) are human malignant melanoma epithelial
skin cell lines. Cells were cultured with RPMI 1640
medium, supplemented with 10% fetal bovine serum
(EBS, v/v), 1% L-glutamine (v/v), 1% penicillin-strepto-
mycin (v/v) (all Sigma-Aldrich) and incubated at 37 °C,
5% CO, and 95% humidity. Cells were split at ~ 80%
confluency, using 0.05% trypsin-EDTA, 1:5. Cells were
tested regularly for mycoplasma contamination.

The original PDESA — C-Raf disrupter, and its scram-
bled isoform, were synthesised with a C-terminal stearic
acid group [CH3(CH2)16COOH] (GenScript) [20]. PPL-
008 (i.e. PDESA — C-Raf disrupter, without stearic acid)
was synthesised with Cell Porter® conjugated to the C or
N-terminus via either thioester or disulphide bonds. All
peptides were dissolved to the appropriate concentration
in DMSO for in vitro experimentation. PLX4032
(Vemurafenib) was dissolved in DMSO to a final
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concentration of 1uM (Sellekchem). Peptides were
added to cells for 2 h, and PLX for 1h, before cells were
harvested. In cases where co-treatments were adminis-
tered, cells were first treated with peptides for 2h,
followed by 1 h PLX.

Western blotting

MM415 and A375 cells harvested from in vitro experi-
ments were lysed in 3 T3 lysis buffer, whilst MM415
melanoma murine xenograft tissue was homogenised
and lysed in 1X RIPA buffer (both supplemented with
protease cocktail inhibitor tablets (Roche)). Soluble frac-
tion of lysate was resolved via SDS/PAGE using 4-12%
Bis-Tris gels (NuPAGE). Proteins were transferred at 30
V for 1h onto 045pm nitrocellulose membrane
(Protran) and blocked for 1h in 5% non-fat dry milk so-
lution (Marvel, w/v) in 1x TBS-T (20 mM Tris-Cl pH
7.6, 150 mM NaCl, 0.1% Tween-20). Blocked membranes
were incubated in primary antibody (diluted in 1x
TBS-T, 1% marvel) overnight at 4 °C. Membranes were
washed three times in 1x TBS-T before membranes were
incubated in secondary antibody (diluted in 1x TBS-T,
1% marvel) for 1h at room temperature. Membranes
were washed a final three times in 1x TBS-T and fluores-
cent intensity of Li-Cor secondary antibody was mea-
sured using a Li-Cor Odyssey scanner.

xCELLigence: Measuring cell proliferation

Real-Time cellular growth analyses of MM415 cells,
using the xCELLigence platform (Roche Applied Sci-
ence), allowed for the label-free measurement of cell
proliferation. 96 well E-plates, containing gold micro-
electrode sensors on the bottom of the plate, were used
to measure cellular impedance inside each well as per
manufacturer’s instructions. Cellular impedance mea-
surements were translated into ‘cell index; an arbitrary
measurement that increases as MM415 cells adhere and
spread-out/grow (and vice versa), giving quantitative in-
formation on cell proliferation and viability that were
analysed using RTCA software (Roche). All protocols
carried out using the xCELLigence platform were based
on previous Baillie lab publications [20, 28—32]. Follow-
ing MM415 cell adhesion, cells were treated with one of
the peptide disrupters for 2 h, followed by PLX (1 pM).
The slope (i.e. rate of cell proliferation/growth) was
measured based on the normalised cell index from the
point in which treatments were administered, until the
response had plateaued appropriately.

Statistical analyses

Results from western blot analyses are represented as
mean + SEM (n =3). Results from xCELLigence cell
proliferation assay are represented as mean = STDEV
(n 23). P <0.05 indicates data are significant, with
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significance determined via unpaired t-test using Graph-
Pad Prism software.

Results

PPL-008 attenuates paradoxical activation of pERK signalling
and MM415 cell proliferation

Successful inhibition of the Raf — MEK — ERK signalling
axis has previously been shown, using a PDESA — C-Raf
peptide disrupter based on the C-Raf binding site on
PDESA [20]. Here, we conjugated the Cell Porter® onto
the C or N-terminal of the disrupter via either thioester
(C or N giving PPL-008C or PPL-008 N) or disulphide
bonds (CSS or NSS giving PPL-008CSS or PPL-
008NSS). We used the peptide conjugates to treat the
B-Raf inhibitor resistant MM415 (human malignant
melanoma, BRAF wt, KRAS wt, NRAS Q61L) cell line.
To determine if PPL-008 conjugates (10 uM) could sup-
press phospho-ERK signalling in MM415 cells, pERK
levels were determined via western blot (pERK expres-
sion normalised to GAPDH, mean + SEM, n =4, Fig. 1).
MM415 B-Raf inhibitor treatment (PLX4032, 1pM)
clearly induced a paradoxical activation of ERK and this
was significantly reduced following treatment with all
the analogues (PPL-008 N, PPL-008C, PPL-008NSS and
PPL-008CSS) (** P< 0.01 or * P< 0.05 Fig. 1a, lanes 7—
10 inclusive). As expected, pERK was significantly re-
duced in the human A375 malignant melanoma cell
line (BRAF V600E) following PLX treatment (1 uM)
(Fig. 1b, lanes 2,3,4) with PPL-008 analogues provid-
ing no ERK inhibition as a mono-treatment (Fig. 1b,
lanes 11-14 inclusive) or further ERK inhibition as a
co-treatment with PLX (Fig. 1b, lanes 7-10 inclu-
sive). This data reinforces how effective B-Raf inhib-
ition can be in treating BRAF V600E mutant
melanoma [6, 7]. As B-Raf inhibition sufficiently
suppressed pERK expression in A375 cells, and as
MM415 cells were resistant to PLX (resembling the
clinical phenotype of interest)) MM415 cells were
used for the remainder of the study.

To assess the ability of PPL-008 conjugates to inhibit
cell growth, real-time measurements of MM415 cellular
impedance was recorded on the xCELLigence platform
as an indicator of cellular proliferation (slope (1/h),
mean £ STD, n = 3). All PPL-008-conjugates (10 uM) sig-
nificantly slowed cell proliferation in PLX treated
MMA415 cells (* P< 0.05, Fig. 1c, lanes 7-14 inclusive).
Our data suggests treatment (10 uM) with each of the
PPL-008 analogues suppressed both pERK and cell
growth compared with DMSO treated control (Fig. la
and c), indicating PPL-008 has potential as an effective
therapy in this context. Surprisingly, PPL-008C and
PPL-008CSS mono-treatments significantly attenuated
A375 growth (Additional file 2: Figure S1) without af-
fecting the phospho-ERK profile (Fig. 1b, lanes 11-14
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Fig. 1 Effects of PPLO08 conjugates on pERK levels and rate of cell proliferation. Normalised phospho-ERK (mean + SEM) following treatment with
DMSO (lane 1), PLX4032 B-Raf inhibitor (lane 2), PPLO08 conjugates (lanes 11-14) or PLX co-treatments with PDESA — C-Raf peptide disrupters
(original stearylated ‘disrupter’ lane 3, or scrambled control, lane 4) or PPL-008 conjugates (lanes 7-10) in: a MM415 (NRAS Q61L) and (b)
A375 (BRAF V600E) human malignant melanoma cell lines. Respective pERK and GAPDH immunoblot examples shown below (N =3, * P
<0.05 ** P<0.07). ¢ Real-time cell analyses (xCELLigence platform) of MM415 cell proliferation following treatments described above. Treatments
occurred at 21 h and the slope of normalised cell index (mean + STDEV) was measured between 21 and 39 h, with (ii) representing DMSO vs. peptide
disrupter treatments only (10 uM) and (i) representing PLX (1 uM) vs. co-treatments of peptide disrupters and PLX4032 (n = 3, *** P < 0001). D, stearylated
disrupter; S, stearylated scrambled; N, PPL-008 N; C, PPL-008C; NSS, PPL-O08NSS; CSS, PPL-008CSS

inclusive). It is noteworthy that, the original stearylated
PDE8A — C-Raf disrupter caused no significant reduc-
tion in pERK signalling (D; Fig. la, lane 5) or cell
proliferation (D; Fig. 1c, lane 5) in MM415, similar
to its scrambled control (‘S; Fig. la, lane 6 and Fig. 1c,
lane 6), suggesting the stearic acid group was

insufficient in facilitating cell-penetration in MM415
cells. As all PPL-008 conjugates attenuated both
pERK expression and cell proliferation, this indicates
that Cell Porter® greatly improves intracellular delivery
of PPL-008 conjugates compared with the original
disrupter’s stearate group.
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(See figure on previous page.)

Fig. 2 PPLO08-C/N dose response in MM415 (NRAS Q61L) human malignant melanoma cell line. a & b: Normalised pERK expression (mean + SEM)
in MM415 cells following dose response co-treatment with PLX4032 (1 uM) and PPL-008 N or PPL-008C (1 nM — 10 uM). Respective pERK and GAPDH
immunoblot examples shown below. (N =3, * P <0.05 ** P <0.01, ** P < 0.001), DMSO vs. PPLO08 only, PLX vs. PLX + PPL008). ¢ & d (i) Real-time cell
analyses (xCELLigence platform) of MM415 cell proliferation following dose response co-treatments with PPL-008 N or PPL-008C (1 nM - 10 uM) and
PLX4032 (1 uM). Treatments occurred at 32 h and the slope of normalised cell index (mean + STDEV) was measured between 32 and 48h (n =3,

% P <0.001). ¢ & d (i) Representative traces of normalised cell index of each treatment shown below. N, PPL-008 N; C, PPL-008C

PPL-008C / N inhibits pERK expression and MM415 cell
proliferation over multiple doses

MM415 cells were co-treated with PLX (1 uM), follow-
ing pre-treatment with a dose range of PPL-008C or
PPL-008 N (1 nM — 10 uM). The levels of pERK and cell
proliferation rates determined as before (Fig. 2). The
levels of pERK triggered by PLX (Fig. 2a and b, lane 1 vs
lane 2) were reduced at all concentrations following
PPL-008 N treatment, with the higher [10uM] dose
causing the most significant reduction (*** P< 0.001,
Fig. 2a). This effect was recapitulated in the xCELLigence
cell proliferation assay, where PPL-008 N reduced the rate
of cell proliferation at all concentrations; most signifi-
cantly at 10uM (*** P< 0.001, Fig. 2c¢ (i and ii)). In
addition, PPL-008C-conjugate reduced MM415 pERK
levels and rate of cell proliferation at all concentrations,

with [10 uM] producing the most significant inhibition
(*** P< 0.001, Fig. 2b and d (i and ii)).

In vivo PPL-008C suppression of pERK in an MM415
melanoma murine xenograft model

Preliminary in vivo investigation of the effects of PPL-
008C were carried out in an immuno-deficient NSG —
MM415 melanoma murine xenograft model. PPL-008C
was chosen as the lead peptide disrupter due to its
consistency in attenuating pERK signalling and cell prolif-
eration as both a single treatment and co-treatment with
PLX (Figs. 2, 3 and 4). PPL-008C was administered
subcutaneously at the site of the tumour as a single treat-
ment. Tumours were removed at varying time points
post-treatment and pERK expression was assessed via
western blot (N = 3, Fig. 3).
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Fig. 3 In vivo suppression of phospho-ERK signalling in an MM415 murine xenograft model. a Normalised total pERK1/2, b pERK1 (1202, 44 kDa)
and (c) pERK2 (Y204, 42 kDa) levels (mean + SEM) in MM415 (Q61L) tumour xenografts from NSG immuno-deficient mice following PPL-008C
treatment, at multiple time points, with either 25 mg/kg or 100 mg/kg doses (control N =3, treated N =4, * P < 0.05). Control mice were treated
with a 5% dextrose in dH,O solution and PPL-008C was administered via subcutaneous injection at the site of tumour. Representative pERK1/2
and GAPDH immunoblot examples shown below (a)
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Fig. 4 Dual inhibition of B-Raf and C-Raf inhibits melanoma tumour progression. a B-Raf inhibition leads to the Ras negative feedback mechanism
switching to C-Raf driven tumourigenesis via potentiation of the Raf/MEK/ERK signalling axis. b PPL-008 (PDESA — C-Raf disrupter peptide) binds to
C-Raf, preventing PDE8A localisation within the C-Raf cAMP microdomain and exposing serine 259 — C-Raf to inhibitory phosphorylation by PKA.
Co-treatment with B-Raf inhibitor and PPL-008 blocks onco-Ras driven tumour progression via inhibition of the Raf/MEK/ERK axis

PPL-008C significantly suppressed pERK1, pERK2 and
total pERK levels over all time-points in the time course
and at both doses (25 mg/kg and 100 mg/kg), excluding
the 25 mg/kg — 12Hr treatment (* P < 0.05, Fig. 3). This
shows that a single PPL-008C treatment can attenuate
Raf — MEK - ERK signalling relatively quickly (within
30 min) and can maintain this inhibition for at least 12 h
at higher concentrations (100 mg/kg, Fig. 3). Maximal
pERK inhibition occurred 2h post-treatment with 100
mg/kg PPL-008C.

Discussion
Melanoma is the most aggressive form of skin cancer,
with a wide range of treatments currently available and

many more at pre-clinical and clinical phases [8, 22, 23].
First line B-Raf inhibitors are capable of managing the
majority of melanoma patients that express the BRAF
V600E mutation [23]. However, in patients expressing
wildtype BRAF and NRAS or KRAS gain-of-function
mutations, B-Raf inhibitors become ineffective and
tumours persist — warranting the development of novel
effective treatments [10-15] http://www.sanger.ac.uk/
genetics/CGP/cosmic/ [16, 17] (Fig. 4). We have identi-
fied the PDE8A — C-Raf complex as a point of cross-talk
between the MAP kinase signalling and cAMP signalling
systems, that can be manipulated by a disrupter peptide
to promote the inhibition of C-Raf via increased S259
phosphorylation [20, 21, 24] (Fig. 4). This action can
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counteract C-Raf driven paradoxical activation of ERK
in B-Raf inhibitor resistant melanoma cell lines resulting
in a retardation of cell proliferation (Figs. 1 and 2). Our
specific approach of inhibiting C-Raf by targeting its
binding to anchoring proteins rather than kinase activity
is, to our knowledge, novel for this kinase and we aim to
displace only a small percentage of total C-Raf that is in
complex with PDE8A. Protein-protein interactions
(PPIs) are increasingly being regarded as tractable mo-
lecular targets for the development of therapeutics, and
peptides that mimic docking sites with protein com-
plexes are often the ideal scaffold starting point for such
agents [33].

The concept of developing protein-protein interaction
inhibitors to treat melanoma, however, has previously
been investigated with small molecule PPI inhibitors of
the complex between bromodomain-containing protein
4 (BRD4) and acetylated histone having been developed
[34]. Chromatin immunoprecipitation (ChIP) analysis
highlighted the ability of these compounds to antagonise
the interaction between BRD4 and chromatin at the
MYC promoter in melanoma cells to effect the down
regulation of oncogenic c-myc. This approach also dem-
onstrated potent anti-proliferative in vivo activity in
A375 xenografts. Another PPI inhibitor that targets mel-
anoma growth, via the dual targeting of tumour and
endothelial cells, is C4 [35]. This molecule targets the
C-terminus of Focal Adhesion Kinases (FAK) to interdict
the kinase’s interaction with VEGF-receptor 3 and subse-
quently reduce vascularisation of B-RAF V600E xeno-
graft tumour tissue to limit blood flow [36]. The
inhibition of PPIs by small molecules as a therapeutic
strategy is also being evaluated for other cancers. High
content compound screening has identified Androgen
receptor — Transcription Intermediary Factor 2 (TIF2)
disrupters for prostate cancer [37], menin-mixed lineage
leukemia 1 (MLL1) disrupters for leukemia [38, 39],
B-cell lymphoma 6 (BCL6) — BCL6 corepressor (BCOR)
disrupters for treatment of diffuse large B-cell lymph-
omas [40], Rictor — mTOR blockers for glioblastoma
[41] and P53 — MDM2 inhibitors for a range of treat-
ment resistant cancer types [42, 43].

However, although the above cases relate to small mol-
ecule inhibitors, instances of peptide PPI inhibitors as
novel anti-cancer agents are also beginning to emerge.
Recently, for example, cell permeable peptides have been
developed against the NEMO - IkB kinase complex for
the treatment of cisplatin-resistant ovarian cancer [44],
stapled peptide disrupters that unhook B-Catenin from
transcription factors have been produced as novel colon
cancer agents [45] and colon cancer has also been the
target of adenomatous polyposis coli (APC) — Asef dis-
rupters [46] that inhibit the migration and invasion of
colon cancer cell lines.

Page 8 of 10

Cell delivery of therapeutic peptides in the cancer
sphere has been undertaken by a variety of different
routes involving liposomes [47], nanoparticles [48] and
short cell-penetrating sequences (reviewed [49]). Our
peptide is conjugated to Cell Porter® (Portage Pharma-
ceuticals Limited), a patented cell penetrating peptide
based on the human HOXDI12 protein [25-27]. Previ-
ously we have utilised stearate groups to good effect to
deliver PPI inhibitor peptides into cellular [50, 51] and
animal models of disease [52], however on this occasion
the stearylated peptides had little effect on the levels of
phospho-ERK in MM415 cells (Fig. 1a and c). Evidently,
the effectiveness of peptide delivery systems is context
specific and our data shows that CellPorter® has directed
intracellular delivery of a novel C-Raf — PDE8A peptide
disrupter leading to significant suppression of paradox-
ical ERK activation in a clinically relevant B-Raf inhibitor
resistant human melanoma cell line and an apt xenograft
model of the disease.

Conclusion

PPL-008 conjugates represent potential starting points
for the development of co-therapies for resistant melan-
oma to be administered with an appropriate B-Raf in-
hibitor in order to overcome B-Raf inhibitor resistance
and attenuate ERK activation in melanocytes.

Additional files

Additional file 1: Table S1. Chemicals and Antibodies used in study.
(DOCX 67 kb)

Additional file 2: A375 growth data. Single-treatment of 10 uM PPL-008C
and PPL-008CSS significantly attenuated A375 cell (V700E malignant
melanoma cell line) growth although pERK levels are unaffected by
these treatments (see Fig. 1.). (PPTX 118 kb)
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