Table 1.
Classifier | Hyperparameters |
---|---|
Deep learning classifiers | |
LSTM_onFly | Optimizer=Adam, batch size=64, dropout rate=0, word embedding=trained on the fly, recurrent layer=single directional LSTM |
LSTM_Pre | Optimizer=Adam, batch size=64, dropout rate=0, word embedding=pretrained on the whole corpus, recurrent layer=single directional LSTM |
LSTM_Bi | Optimizer=Adam, batch size=64, dropout rate=0, word embedding=pretrained on the whole corpus, recurrent layer=bidirectional LSTM |
GRU | Optimizer=Adam, batch size=64, dropout rate=0, word embedding=pretrained on the whole corpus, recurrent layer=single directional LSTM |
Conventional classifiers | |
KNN | Number of neighbors=7 |
LR | L2 penalty parameter=10 |
NB | Smoothing parameter alpha=0 |
RF | Maximum depth of a tree=6 Minimum number of samples required to split an internal node=5 Minimum number of samples required to be at a leaf node=5 |
SVC | Kernel=linearL 2 penalty parameter=30 |
GRU: gated recurrent unit; KNN: K-nearest Neighbor; LR: logistic regression; LSTM: long short-term memory; NB: Naive Bayes; RF: random forest; SVC: Support Vector Machine for classification.