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Abstract

Chronic kidney disease (CKD) is prevalent across the world, and kidney function is well defined 

by an estimated glomerular filtration rate (eGFR). The progression of kidney disease can be 

predicted if the future eGFR can be accurately estimated using predictive analytics. In this study, 

we developed and validated a prediction model of eGFR by data extracted from a regional health 

system. This dataset includes demographic, clinical and laboratory information from primary care 

clinics. The model was built using Random Forest regression and evaluated using Goodness-of-fit 

statistics and discrimination metrics. After data preprocessing, the patient cohort for model 

development and validation contained 61740 patients. The final model included eGFR, age, 

gender, body mass index (BMI), obesity, hypertension, and diabetes, which achieved a mean 

coefficient of determination of 0.95. The estimated eGFRs were used to classify patients into CKD 

stages with high macro-averaged and micro-averaged metrics. In conclusion, a model using real-

world electronic medical records (EMR) data can accurately predict future kidney functions and 

provide clinical decision support.

INTRODUCTION

The increasing incidence of chronic kidney disease (CKD) in the United States and around 

the world lays an enormous burden on healthcare [1, 2]. By December 2015, there were 

703,243 prevalent patients with End Stage Renal Disease (ESRD), with the unadjusted 

incident rate of 378 per million population [3]. In 2017, there were approximately 500,000 

patients on different dialysis modalities (91% are on hemodialysis), 20,000 received 

transplants [3]. Treatments that are effective in patients with advanced CKD also increase 

health care costs and lead to adverse effects [4]. Thus it is essential to identify earlier stage 

CKD and prevent its progression to ESRD [5]. However, the biggest challenge is that most 
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people do not have any signs or symptoms in the early stages of CKD and go undetected 

until an advanced stage [6].

Early identification and targeted intervention of CKD have attracted considerable attention 

from clinicians and researchers since both have the potential to reduce the number of 

patients progressing to ESRD and lower the mortality rate related to CKD and associated 

healthcare costs [7]. With the growing availability of Electronic Medication Record (EMR) 

data, various computational predictive models for disease progression have been developed 

to facilitate the decision-making process of health care providers [4, 8, 9]. Choi et al. have 

classified disease progression models into two categories based on the extent of targeted 

diseases: models focusing on a specific disease and those focusing on a broader range of 

conditions [10]. Among those disease-specific progression models, some are validating 

specific hypotheses of disease progression based on experts’ knowledge [4, 11, 12], while 

others are driven by application of advanced statistical methods [13–15]. Approaches that 

can be generalized to model the progression of multiple diseases have been proposed, where 

statistical methods and machine learning techniques are widely used [16–18]. For kidney 

disease, different models have been developed in predicting CKD stages to ESRD over time 

and in predict variations of GFR in patients [7, 9, 19–22].

The application of statistical models and machine learning techniques have been rapidly-

growing in estimating health and disease outcomes [23]. Cerqueira et al. developed a model 

using the Cox proportional hazard regression in predicting the risks that pre-dialysis 

pediatric patients progress to ESRD from CKD [9]. Decruyenaere et al. compared the 

performances of machine learning methods with logistic regression in predicting the 

occurrence of delayed renal graft in renal transplant patients [24]. Their results showed that 

linear support vector machine outperformed logistic regression in sensitivity. Kumar 

compared six machine learning classifiers (Random Forest, Sequential Minimal 

Optimization, NaiveBayes, Radial Basis Function, Multilayer Perceptron Classifier, and 

SimpleLogistic) in CKD classification and identified that Random forest outperformed the 

other classifiers [25].

Estimated glomerular filtration rates (eGFRs) have been implemented in primary care to 

assist the early detection and staging of CKD [26, 27]. The eGFR formula [28] is

eGFR = 141 × min SCr /K, 1 α × max SCr /K, 1 −1.209 × 0.993age × 1.018[i f f emale] ×
1.159[i f A f rican American]

(Equation 1)

Where eGFR (estimated glomerular filtration rate) = mL/min/1.73 m2; SCr (standardized 

serum creatinine) = mg/dL, κ = 0.7 (females) or 0.9 (males), α = −0.329 (females) or 

−0.411 (males), min = indicates the minimum of SCr/κ or 1, max = indicates the maximum 

of SCr/κ or 1, and age = years. Although routine reporting eGFR had positive effects in 

clinical practice, including prevention of CKD progression and reduction of CKD related 
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complications, there are still concerns in its negative effects caused by over-diagnosis [26]. 

Other than reporting eGFR, studies have begun using an alternative measurement, such as 

eGFR decline derived from eGFR to evaluate and predict CKD progression [29, 30]. Studies 

have investigated the association between eGFR change and ESRD risk and mortality risk 

respectively, where age and gender factors have been taken into account [29, 31, 32]. Higher 

eGFR decline levels were proved to be associated with greater hazard ratios of ESRD in 

several clinical trials [33–35]. However, a smaller percentage of eGFR change, which is a 

reflection of the shortterm treatment effect of kidney disease, is underexamined [29].

The future renal function of a CKD patient can be predicted if their GFR variations can be 

predicted since GFR is the best test in measuring the level of kidney function [3, 7, 36]. 

Consequently, the time to reach GFR thresholds corresponding to stages of CKD can be 

anticipated. An integrated intelligent fuzzy expert system has been used in predicting future 

GFR based on selected clinical variables and demonstrated reliable accuracy [7]. However, 

there is still a lack of efficient methods for predicting the individual level timeframe of CKD 

progression [37]. Specifically, Random Forest Regression, featured with a reduction in 

overfitting and less variance, has not been used to predict the progression of renal function 

yet. This study predicted future eGFR values using Random Forest regression based on real-

world EMR data representing the general population in the upper Midwest. The main aim of 

this study is to propose an efficient and reliable clinical tool that allows us to identify at an 

earlier stage and preemptively suggest the preventive strategies that can attenuate the 

development of this challenging disease in patients that reside in our agricultural 

communities.

METHODS

Data acquisition

The dataset used in this study comes from real-world clinical data. We built up a cohort 

consisting of 120,495 patients aged from 20 to 80 in Sioux Falls, SD, region that receiving 

primary care from Sanford Health. By consulting with the nephrologist, we pulled out data 

elements influencing GFR variations for this cohort from the comprehensive Sanford EMR 

database for years 2009–2017. None of the identifiable information was extracted to protect 

patients’ privacy. We are focusing on the progression of CKD, so only the “clinical” 

encounter data was included. Those data elements contain patients’ eGFR records for years 

2009–2017, the ICD-10 codes [38] for CKD, Hypertension, Diabetes, and Obesity, and their 

demographic information comprising Age, Gender, Race. A detailed description of the data 

elements is given in Table 1.

Data pre-processing

The extracted data were formatted into three separate tables: (1) eGFR table with rows 

representing patients and columns containing eGFR for multiple years; (2) Demographic 

table consisting of demographic information; and (3) Disease table composed of diagnosis 

status of hypertension, diabetes, and obesity. The processing of these data tables is 

illustrated in Figure 1 and described below.
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• The eGFR table has 120,495 unique patients and 10 columns, each of which 

representing eGFR records in years 2009–2018. First, the non-numeric eGFR 

records (e.g. “>90”)) were considered as missing data and marked as “NA.” For 

patients with more than one eGFR values in a specific year, the median of these 

values was calculated and kept for that year in the table. The following table 

shows the numbers and percentages of missing records for each column.

• As shown in Table 2, more than 95% eGFR records are missing in 2009 and 

2010, so data from these two years were omitted. Since the data in 2018 was not 

complete when the data was extracted, we also excluded the records in this year. 

Patient lines were removed from the data if they have no more than three 

available records from 2011 to 2017. The final eGFR table has 61740 unique 

patients and 7 years eGFR data for each patient with at least three eGFR values.

• Next, the different CKD stages were determined by eGFR values in the physical 

laboratory. Therefore, the CKD stages true labels were created using eGFR. The 

minimum eGFR value in each of the years between 2011 and 2017 was evaluated 

first, and then the CKD stages labels were produced based on the following 

equation:

Practical CKD stage =

1, i f  min2011 2017 eGFR ≥ 90
2, i f  60 ≤ min2011 2017 eGFR < 90
3, i f  30 ≤ min2011 2017 eGFR < 60
4, i f  15 < min2011 2017 eGFR < 30

5, i f  min2011 2017 eGFR ≤ 15

(Equation 2)

The true labels were also merged into eGFR matrix based on their index (patient ID).

• The current eGFR matrix includes 61740 unique patients, and each patient has 7 

years eGFR values from 2011 to 2017 and labels for the CKD stage from 1 to 5. 

The final data table was created by merging the eGFR table with the 

demographic table and the disease table by matching their patient IDs.

Data summary

A total of 61740 patients with different CKD stages were included in the data analysis. 

Summary statistics of the final data table were given in Table 3. The demographic 

characteristics and the disease diagnoses represented the patients’ status at the time the data 

was extracted from the EMR system. Mean and standard deviation were calculated for 

continuous variables, and count and proportion were given for discrete variables. Of those 

61740 patients, there are only 6 patients have CKD-1 which indicated that the data lines for 

patients without CKD or with CKD-1 were removed in the data preprocessing steps. 78.7% 

and 19% of the cohort have CKD-2 and CKD-3 respectively, and patients with CKD-4 and 

CKD-5 were only 2.36%. We ignored the group of CKD-1 in the following description of 

this cohort since there were too few patients to draw a conclusion from. The mean age was 
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57 (SD=12.77) for the whole cohort with variations among various CKD groups. There were 

more female patients than male patients in CKD 1–4 while there were more CKD-5 cases in 

male patients. The majority of this cohort were white patients (99.9%). The rates of 

hypertension and diabetes increased as the kidney disease was getting worse. The obesity 

rate was relatively consistent among those CKD groups.

Overall this patient cohort represented the patient population with kidney damages instead of 

representing the population from primary care; thus we used it to develop a predictive model 

in estimating the patient’s future eGFR value.

Construction of Random Forest Regression model

The longitudinal design of this study enables the estimation the future eGFR value from the 

past eGFR values adjusted by clinical covariates. We selected Random Forest regression as 

the primary model because of its efficiency and accuracy to predict 1 year, 2 years and 3 

years eGFRs from the historical eGFR records between years 2011 −2014.

Baseline covariates and predictors: The variables included in the analysis were 

baseline eGFR, age, gender, ethnicity, body mass index (BMI), hypertension, diabetes, 

obesity.

Outcome: eGFR values in the year 2015, 2016, and 2017 were considered as the outcome 

variable. This is based on the consensus that GFR is the best measure of kidney function 

[36].

Model development: the inputs of this model are the attributes of the ith patient denoted 

by a vector Xi = (xi1,…, xin) which includes eGFR values from multiple years and other 

covariates listed in Table 1. The output is the future eGFR for the ith patient denoted by Gij 
where j indicating a future year.

In the computational experiment, we used the processed dataset with 61740 unique patients. 

For building the model in predicting eGFR of 2015, the patient must have recorded eGFR in 

2015, and at least two recorded eGFR between 2011 to 2014. Similar requirements were 

used in predicting eGFR of 2016 and 2017. Other years’ eGFR values were imputed and 

filled by the median eGFR value of each patient. All models were built using scikit-learn 

package [39]. The parameters of Random Forest Regressor were determined using the grid-

search method. Only two parameters, number of estimators and maximum number of 

features, were tuned because they can determine numbers of trees in forest and how the tree 

will split and grow. We also randomly split the dataset and repeat the training process five 

times with different sets to avoid over-fitting for our models.

Assessment of model performance

Goodness-of-fit—The model fit of the proposed Random Forest Regression was 

measured using the coefficient of determination R2 to show how well the fitted eGFR value 

approximates the real eGFR value. R2 is a measure used to represent the percent of variation 

explained,i.e., the proportion of variance in the dependent variable that can directly be 

attributed to variance in the independent variables. An R2 of 1 would indicate all changes we 
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see in the dependent variable are caused by changing our independent variables, whereas an 

R2 of 0 means no such direct impact. We also checked the residual plot since randomly 

distributed residuals indicate the model fits the data well.

Discrimination—The estimated eGFR values were used to classify patients into different 

CKD stages based on Equation 1. Both micro-average and macro-average were generated to 

illustrate the classification accuracy of the Random Forest model.

RESULTS

eGFR prediction with Random Forest regression

In Random Forest regression analysis, the predicting accuracy was enhanced by optimizing 

the values of hyperparameters, where the default values and the optimized values of the 

hyperparameters were shown in Table 4. The predicted versus observed eGFR values in 

years 1–3 were plotted for both the default and optimized hyperparameters in Figure 2. The 

R2 was increased from default to optimized hyperparameters in each of the three years. The 

Root of Mean Squared Error (RMSE) in Figure 2 illustrated that the optimized 

hyperparameters provided a more accurate prediction that the default values. It is also worse 

noticing that the prediction accuracy decreased over time. With the optimal parameters, we 

further examined the importance of the features included in the analysis whose results were 

given in Figure 3. It is not surprising that previous eGFR records played essential roles than 

other features since eGFR is decreasing continuously over time. Although the information of 

age and BMI are considered in estimating GFR using the eGFR formula [28], predictions 

based solely on the previous eGFR are not sufficient. Age and BMI, as illustrated in Figure 

3, still contribute to 4.7%~9% to the future three years of eGFR respectively (Supplement 

Table S1). All the other features, including Race, Gender, Obesity, Hypertension, and 

Diabetes, accounted for a total of 2.7%~3.9% of the variances (Supplement Table S1).

Performances of the predicted eGFR in disease classification

The predicted CKD stage labels were generated from the estimated eGFR values using 

Equation 1. Then the confusion matrix of a tabular summary of the actual CKD status versus 

the predicted CKD status was created for each of the future three years and was shown in 

Table S2 of the supplementary file. The confusion matrices were further assessed by both 

per class metrics and metrics for multi-class classification to demonstrate the classification 

accuracy of the Random Forest prediction model. In per class metrics, Precision, Recall, and 

F1 were taken into account to assess the performance respecting each class [40]. Macro-

averaged and micro-averaged metrics were adopted to evaluate the multi-way classification. 

In Table 5, we showcased these metrics for all three years. In Year 1, CKD-2 and CKD-3 

were accurately classified using the estimated eGFR with all three metrics greater than 0.9, 

while the classification accuracy of CKD-4 and CKD-5 decreased to around 0.8. In Year 2 

and 3, the per class metrics demonstrated similar patterns as in Year 1. The multi-class 

classifications performed well in all three years. Besides, there was no apparent temporal 

pattern of the prediction accuracy.
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DISCUSSION

In this study, we proposed a model in predicting future eGFR values, which is based on 

Random Forest regression that can efficiently learn from the real world EMR data and 

accurately predict future patient outcomes. We validated this model on an EMR dataset 

extracted from a health system located in the Great Plains. The computational experiment 

achieved an average R2 of 0.95 over three years with small variation. And an 88% Macro 

Recall and a 96% Macro Precision by averaging over three years were obtained by dividing 

patients into different CKD stages using estimated eGFRs. Besides, we identified the crucial 

features that contribute to the variation of future eGFRs, which include recent eGFR records, 

Age and BMI. Therefore, our proposed predictive model of eGFR has excellent potential to 

be developed into a clinical decision support tool to assist doctors in providing preventive 

advice to patients.

One of the limitations of this work is that only patients with numeric eGFR records were 

included, which exclude those patients without CKD symptoms in the study period. 

However, those excluded patients can serve as a control group whose clinical information 

can be incorporated into the predictive model to adjust the parameter estimations. Also, the 

current study only contained historical eGFRs, demographic characteristics, and relevant 

disease diagnoses. Studies have shown that an individual’s genetic and phenotypic 

characteristics both affect their risk in developing kidney disease, including genetic 

mutations, a family history, gender, ethnicity, age, obesity, socioeconomic status, smoking, 

nephrotoxins, acute kidney injury, diabetes mellitus, and hypertension [41]. Thus we are 

planning to address those issues in future studies to improve the practicability of the 

predictive model of eGFR in support of patient care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Future kidney function can be predicted from Electronic Medical Records

• Historical estimated glomerular filtration rate, demographic features, and 

relative disease contribute to the prediction of kidney function

• Predicted estimated glomerular filtration rate accurately classify patients into 

chronic kidney disease stages
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Figure 1: 
Workflow of the data preprocessing, including initial eGFR data, demographic and disease 

information, and data merging and filtering. This process resulted in 61740 samples with 15 

variables each.
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Figure 2: 
Goodness of fit based on R2of the Random Forest Regression model in predicting eGFR in 

year 1 to year 3 for the default and optimized models. RMSE comparison for each year is 

also provided for the default and optimized models.
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Figure 3: 
Feature importance in predicting eGFR values in years 1–3 using optimized parameter 

values in Random Forest Regression. eGFR values from the prior year are the most 

impactful feature on the future prediction, as expected. Age and BMI also contribute 

significantly to the future prediction, while other demographic and disease information was 

much less impactful.
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Table 1.

Predictor and covariate data type breakdown.

Feature Data elements

Predictor

eGFR All clinical encounter eGFR data with testing dates were pulled out for each patient

Covariates

Age Continuous

Gender Categorical

Race/Ethnicity Categorical

BMI Continuous

Hypertension Flagged for each patient (ICD-10: I10, I11, I12, I13, I15, I16)

Diabetes Flagged for each patient (ICD-10: E08, E09, E10, E11, E13)

Obesity Flagged for each patient (ICD-10: E66.9)
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Table 2.

Percentages of missing eGFR records for years from 2009 to 2018.

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Missing
Data

1204
91

1148
02

8119
0

7056
5

6891
8

6207
9

6113
4

6078
1

6058
7

8265
4

Missing
Data
Percent
age

99.99
%

95.28
%

67.38
%

58.56
%

57.20
%

51.52
%

50.74
%

50.44
%

50.28
%

68.60
%
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Table 3.

Descriptive statistics of the patient cohort with a breakdown of counts and percentages falling within each 

stage of chronic kidney disease.

Total CKD-1 CKD-2 CKD-3 CKD-4 CKD-5

Number 61740 6
(<0.01%)

48568
(78.7%)

11769
(19%)

909
(1.47%)

488
(0.79%)

Age (Years) 57.27
±12.77

50.66
±6.8

55.34
±12.5

64.62
±11

64.44
±12.6

58.38
±13.1

Gender, M 26843
(43.5%)

4
(66.7%)

21708
(44.7%)

4466
(37.9%)

409
(45%)

256
(52.4%)

Gender, F 34897
(56.5%)

2
(33.3%)

26860
(55.3%)

7303
(62.1%)

500
(55%)

232
(47.6%)

Race, white 61685
(99.9%)

6
(100%)

48535
(99.9%)

11751
(99.8%)

906
(99.7%)

487
(99.8%)

Race, non-white 55
(0.01%)

0
(0%)

33
(0.01%)

18
(0.2%)

3
(0.3%)

1
(0.02%)

Hypertension 32086
(52%)

4
(66.7%)

22675
(46.7%)

8241
(70%)

742
(81.6%)

424
(86.9%)

Diabetes 12763
(20.7%)

0
(0%)

8232
(16.9%)

3744
(31.8%)

485
(53.4%)

302
(61.9%)

Obesity 12654
(20.5%)

1
(16.7%)

9754
(20.1%)

2583
(21.9%)

217
(23.9%)

99
(20.3%)
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Table 4:

Hyperparameters used in the Random Forest Regression for the default and optimized models.

Default Optimized

# of trees 10 100

Max depth None None

Max sample split 2 2

Min samples leaf 1 1

Max features 11 8

Bootstrap True True
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Table 5:

Evaluation metrics of CKD classifications based on predicted eGFR. Precision, Recall, and F1-score for each 

class for each year was used to show performance. Additionally, macro- and micro-averaged metrics were 

used for each year to show overall performance, regardless of the categorization. CKD-1 was left out due to no 

methods predicting a CKD-1 result for any year for any patients.

Per-class accuracy Macro-averaged metrics Micro-averaged
metrics

Precisio
n

Reca
ll

F1 Macro
precision

Macro
recall

MacroF
1

 Year 1

CKD-
2

0.980 1.000 0.99
0

0.966 0.876 0.917 0.979

CKD-
3

0.983 0.918 0.95
0

CKD-
4

0.901 0.787 0.84
0

CKD-
5

1.000 0.801 0.88
9

 Year 2

CKD-
2

0.978 1.000 0.98
9

0.969 0.882 0.922 0.979

CKD-
3

0.983 0.923 0.95
2

CKD-
4

0.913 0.770 0.83
5

CKD-
5

1.000 0.835 0.91
0

 Year 3

CKD-
2

0.980 1.000 0.99
0

0.964 0.882 0.919 0.980

CKD-
3

0.985 0.933 0.95
9

CKD-
4

0.892 0.814 0.85
1

CKD-
5

1.000 0.782 0.87
8
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