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Abstract

We introduce a deceptively simple behavioral task that robustly identifies two qualitatively 

different groups within the general population. When presented with an isochronous train of 

random syllables, some listeners are compelled to align their own concurrent syllable production 

with the perceived rate, while others remain impervious to the external rhythm. Using both 

neurophysiological and structural imaging approaches, we show group differences with clear 

consequences for speech processing and language learning. When listening passively to speech, 

high synchronizers show increased brain-to-stimulus synchronization over frontal areas and this 

localized pattern correlates with precise microstructural differences in the white matter pathway 

connecting frontal to auditory regions. Finally, the data expose a mechanism that underpins 

performance on an ecologically relevant word-learning task. We suggest that this task will helps to 

better understand and characterize individual performance in speech processing and language 

learning.
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INTRODUCTION

The ability to synchronize a motor output to an auditory input – i.e. tapping or dancing to 

music with a groove – is a basic trait present in humans from birth1, with important 

cognitive implications2,3. From a phylogenetic perspective, spontaneous synchronization 

(i.e. without explicit training) to an external rhythm is argued to be a unique characteristic of 

vocal learning species, including humans4. The study of this distinctive attribute has 

typically focused on how body movements are entrained by non-speech signals - e.g. music5 

or a beat6. One foundational question, in this context, however, has not been systematically 

investigated: Do humans spontaneously align their speech motor output to auditory speech 

input? Resolving the role of audio-motor synchronization7–9 in the context of speech 

processing is a critical step for the characterization of the complex functional and structural 

neural architecture of language.

To address these questions, we designed a simple behavioral protocol to explore the 

spontaneous synchronization of speech (SSS-test). The results show, contrary to the previous 

literature, that a substantial part of the population does not show speech-to-speech 
synchronization. Thus, we further explored the functional and structural brain correlates 

associated with the absence of synchrony. Finally, we turn to the key issue of whether the 

behavioral findings on audio-motor synchronization and their neural substrate extend to 

tasks that address more typical questions of speech processing and language learning.

RESULTS

Spontaneous speech synchronization reveals a bimodal distribution

Participants (N = 84) completed two behavioral blocks of listening to a rhythmic train of 

syllables – at 4.5 syllables-per-second, the characteristic speech rate across languages10,11 – 

lasting one minute each, while concurrently whispering the syllable “tah” (Fig. 1A). At the 

end of each block, participants indicated whether a given target syllable was presented. 

Crucially, participants were instructed to correctly recall the syllables; there was no explicit 

instruction to synchronize the utterances to the external rate. We first examined the degree of 

synchronization between the produced utterances and the input signal by computing the 

phase locking value (PLV) between their envelopes around the given syllable rate (4.5 Hz, 

Fig. 1A). Surprisingly, participants’ PLVs yield a bimodal distribution (Fig. 1B), suggesting 

a segregation of our cohort into distinct populations of high and low synchronizers (Nhigh = 

43 and Nlow = 41). No difference was found between groups in terms of language 

background, age, or gender. However, the high synchronizers showed, overall, more years of 

musical training than the lows (Mann-Whitney-Wilcoxon test, two-sided p =0.0033; Fig. 

S1). Still, musical experience by its own did not segregate the population into two groups 

(Fig S1F).

Next, we analyzed the distribution of the phase differences between perceived and produced 

syllables for the high synchronizers. We found a non-uniform distribution (Nhigh = 43, 

Rayleigh Test, two-sided p < 0.001; Fig 1C) with the phase lags concentrated around zero 

(95% CI [−0.21 0.26]): the highs adjusted their production to be in phase with the perceived 

syllables. The average spectra of the produced speech envelopes also exhibited striking 
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group differences. The high synchronizers showed a pronounced peak at the given syllable 

rate, indicating high stability in maintaining the rhythm. The low synchrony group was less 

stable, exhibiting a broader peak (Fig. 1D). Two additional experiments were conducted to 

further assess empirically whether the synchrony of the produced utterances was indeed 

driven by an interaction between perceived and produced speech rhythms (rather than related 

to the ability to maintain a tempo). First, a subset of the participants (Nhigh = 13, Nlow = 12) 

completed an additional block of whispering “tah” while listening to white noise (no-rhythm 

condition). Speech rhythmicity was strongly reduced in high synchronizers during the no-

rhythm condition, relative to the rhythmic one, and stayed unchanged in low synchronizers 

(Fig. 1E). Second, a new cohort of participants completed a modified version of the SSS-test 

in which the rate of the perceived syllables was gradually increased (see Methods). 

Crucially, the distribution also displayed two peaks under this condition (N = 55, Fig. S2). 

High synchronizers adjusted their speech output to (multiple) changes in the tempo of the 

perceived speech (see Fig. S2B, top panel). This result provides additional compelling 

evidence that a subgroup of the population adapted the produced rhythm to the perceived 

one. Furthermore, in most cases, participants were not aware of the rate’s shift (Fig S2C), 

highlighting the unconscious and automatic nature of the phenomenon. These combined 

findings support the conjecture that participants exhibited two qualitatively different 

behaviors: whereas the speech output of high synchronizers was entrained by the external 

auditory speech rate, low synchronizers showed no interaction between the produced and the 

perceived speech rhythm.

We next determined that subjects’ degree of audio-motor synchrony is stable over time, 

suggesting that synchronization-type is a consistent individual trait. This is demonstrated by 

the highly correlated PLV scores, both across blocks within session (N=84, Spearman 

correlation coefficient r = 0.86, p < 0.001; Fig. 1F) as well as across sessions distant in time 

(34 participants repeated the test one month later; Spearman correlation coefficient r = 0.78, 

p < 0.001; Fig. 1G). This stability over time proves the SSS-test’s reliability in clustering 

participants into high and low synchrony groups via a straightforward measure of their phase 

locking to a regular pacing signal.

To further verify that the phenomenon is robust and replicable, we developed and conducted 

an online version of the SSS-test both for the stable and the accelerated syllable rate using 

the Amazon Mechanical Turk platform. These two additional replications (N = 144 for the 

stable, N = 60 for the accelerated version) underscore the reliability of the bimodal 

distribution under less controlled conditions (Fig. S3A for stable rate and S4A for 

accelerated) and also allowed us to explore differences between groups in their perception/

production abilities. From the perceptual standpoint, the high synchronizers who completed 

the online version of the stable SSS-test (N=144), were marginally better than the lows 

(Mann-Whitney-Wilcoxon test, two-sided p = 0.093; Fig. S3B). From the production one, 

the low synchronizers were marginally less accurate (not corrected for multiple 

comparisons) in keeping a precise syllable rate (4.5 syll. per sec) without feedback (on white 

noise): they tended to produce lower syllable rates (Fig. S3C). While these results imply that 

the two populations - identified by our one-minute test relying on speech audio-motor 

interactions - also differ, however modestly, at other levels of perception/production abilities, 
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further work is needed to delineate the extent of the predictive power of our test with regard 

to other capabilities.

In light of the reliability of our findings, we next pursued the following question: Does the 

clear grouping based on the straightforward behavioral paradigm reflect neural properties 

and behavioral consequences that have broader significance? These behavioral data invite 

the hypothesis that functional and/or structural brain differences underlie the high versus low 

segregation. To address this question, we next acquired both neurophysiological and 

structural data from a subgroup from the original cohort (Nhigh = 18, Nlow = 19; Fig. 1E).

Neural distinction between groups: neurophysiological data

In a magnetoencephalography (MEG) experiment, participants listened to rhythmic trains of 

syllables (4.5 syllables per second), now passively (i.e., no whispering). They were 

instructed to listen attentively to the syllables and to indicate after each stream whether a 

given set of syllables had been presented. Subjects’ attention on the syllables could be 

verified, since they performed the task above chance level (N=37, Wilcoxon Signed-Rank 

test, two-sided p = 0.011; Fig. S5), although there was no significant difference in the 

performance between groups (Nhigh = 18, Nlow = 19, Mann-Whitney-Wilcoxon, two-sided p 

= 0.96). Caution is required in interpreting this behavioral result since syllable recognition is 

rather poor for the entire participant cohort. This derives from the fact that we designed an 

extremely difficult task (12 synthesized syllables, coarticulated for 2 minutes) to maximize 

participants’ attention during the two minutes of the Syllable Perception Task. We then 

computed the PLV between elicited brain activity and the envelope of the auditory stimuli 

(i.e. brain-to-stimulus synchrony; Fig. 2A) in the frequency band corresponding to the 

perceived syllable rate (4.5 +/− 0.5 Hz). Given that the group segregation relies on a speech 

audio-motor task, we centered our analyses in bilateral frontal as well as temporal regions 

implicated in speech production and perception, respectively. A first comparison between 

groups restricted to frontal regions-of-interest (ROIs) revealed that high synchronizers 

showed enhanced brain-to-stimulus synchrony in left inferior and middle frontal gyri, more 

precisely in left Brodmann Areas 44, 45, 46 and 9 (Nhigh = 18, Nlow = 19, Mann-Whitney-

Wilcoxon test, two-sided p < 0.05, FDR-corrected; Fig S6A and Fig. 2B). Interestingly, 

previous data show that, during overt speech production, the control of temporal speech 

patterns is likely governed by these regions12,13. Thus, our results suggest that areas related 

to speech timing during production are also implicated during speech perception to track the 

perceived syllable rate (note that no motor production occurred during the MEG session).

In contrast, the same analysis performed on temporal ROIs yielded no significant differences 

between the groups (Fig. S6). However, the asymmetry of the entrainment in early auditory 

regions was significantly different between groups (see Methods and Fig. S7).

Structural distinction between groups: anatomic connectivity data

Having observed neurophysiological group differences, we then acquired diffusion weighted 

MRI data (DW-MRI) from the same cohort to quantify potential differences in the white 

matter pathways connecting the frontal and auditory regions that distinguished the groups in 

terms of brain-to-stimulus synchrony. Excitingly, high synchronizers showed enhanced 
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microstructural properties in the white matter neighboring the auditory cortex (Fig. 3A). 

Specifically, we found a distinct lateralization pattern in a white matter cluster (Nhigh = 18, 

Nlow = 18, FWE-corrected at the peak voxel, two-sided p = 0.024; Fig. 3B) likely part of the 

arcuate fasciculus14–16 that differentiated between groups, with high synchronizers showing 

significantly greater left lateralization. Note that no significant clusters were obtained in 

ventral white matter pathways connecting frontal and temporo-occipital regions (see 

Methods). Crucially, this structural difference relates to both the auditory (Fig. S7B) and 

frontal (Fig. 3C) neurophysiological results: increased leftward lateralization in the white 

matter was related to higher brain-to-stimulus synchrony in left frontal regions (Fig. 3C) and 

to more symmetrical auditory entrainment (Fig. S7C). Virtual dissections (i.e., tractography) 

further showed that the volume of the left arcuate (but not of the left inferior longitudinal or 

inferior fronto-occipital fasciculi, which were also dissected as a control) not only 

differentiated between groups, but was also related to left frontal neurophysiological brain-

to-stimulus synchrony (see Methods and Fig. S8).

Spontaneous Speech Synchronization test predicts word learning

Previous research documents that the early stages of word learning capitalize on the 

interaction between auditory and frontal regions and the white matter pathways connecting 

them15. To test for a principled link between these observations and our simple behavioral 

test, a new sample of participants (N = 44) was recruited to complete the SSS-test as well as 

a word-form learning task. More precisely, since we expected that speech synchronization 

should most clearly benefit segmentation abilities, a classical statistical learning paradigm 

was chosen17,18. In this paradigm, participants listened for two minutes to a continuous 

repetition of four tri-syllabic pseudo-words, which were randomly concatenated without 

silence gaps between them. Next, they completed a testing phase to assess whether they 

correctly segmented the pseudo-words. The histogram of the PLVs, obtained with the SSS-

test for this smaller group, also displayed two peaks, replicating the bimodal distribution 

shown by the original cohort (Fig. 4A). By splitting this new population into high and low 

synchronizers (using the median PLV of the first cohort, Fig. 4A), we find that high 

synchronizers have a significant learning advantage in the phonological word-learning task 

(Nhigh =24, Nlow=20; r = 0.4, Rank-Biserial Correlation; Mann-Whitney-Wilcoxon test, two-

sided p=0.024; Fig. 4B). This learning benefit was also replicated in the additional cohort of 

participants who completed an online version of the word learning task in addition to the 

online and accelerated version of the test (Nhigh =25, Nlow=35; r = 0.37, Rank-Biserial 

Correlation; Mann-Whitney-Wilcoxon test, two-sided p=0.015; see Fig. S4B). We 

hypothesize that: (i) in line with previous work8,19, the increment of synchronization in the 

frontal region, enhanced in the high synchronizers, facilitates the parsing of the syllables by 

aligning attention to their onsets; (ii) better parsing improves the extraction of the statistical 

relations between the syllables; (iii) likewise, the prediction of one syllable following the 

other helps to create a better phonological trace of the whole word. In conclusion, enhanced 

audio-motor interaction as measured with our approach (the SSS-test) is not only reflected in 

functional and structural properties of frontal and temporal areas but has compelling 

consequences for language learning.
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DISCUSSION

The combined behavioral, neurophysiological, and neuroanatomic results reveal a 

fundamental phenomenon: whereas some individuals are compelled to spontaneously align 

their speech output to the speech input, others remained impervious to the external rhythm 

(see Fig. S9 for a depiction of the joint bimodal distribution of all our experiments using the 

SSS-test). We speculate that such distinct populations of high and low synchronizers emerge 

from the spontaneous nature of the synchrony induced by the SSS-test (the goal of the task 

being orthogonal to the synchronization). This contrasts with previous research showing 

more homogenous entrainment patterns when synchronization to an external auditory signal 

is explicitly requested2,20. The behavioral pattern we have discovered correlates with 

neurophysiological and structural features within key elements of the speech brain 

network21–23: production areas (IFG), perception areas (early auditory cortex), and the white 

matter connecting them (see tractography analysis in Fig S8)24. Excitingly, the fact that our 

results scale up to an ecologically relevant task18, word learning in the context of speech 

segmentation, has theoretical and practical consequences for how we understand and study 

individual differences in cognition and learning25,26.

Our ability to speak relies on a widely distributed and highly interconnected audio-motor 

network27,28. We hypothesize that an interplay between structural and physiological 

predispositions (roughly, nature) and experience-dependent tuning (roughly, nurture) can 

generate moderate modifications to the components of the speech audio-motor network that, 

due to its coarse connection29, result in large consequences at the functional and behavioral 

level. Specifically, a subtle enhancement in the structure of the white matter connecting 

auditory and motor regions could improve the synchronization (flow of information30) 

between temporal and frontal areas, in turn eliciting the effects observed in these 

experiments. Previous research shows that white matter located in the same region as the 

cluster highlighted by our study undergoes microstructural changes through musical 

training9,31. In line with these studies, we found that the high synchronizers have, overall, 

more years of musical training than the lows. However, in our work, musical training on its 

own does not follow a bimodal distribution, suggesting that musical experience is one of 

many factors defining group membership to high or low synchronizers.

In summary, we show a deceptively simple behavioral task (the SSS-test) capitalizing on 

individual differences that turn out to be predictive of audio-motor synchronization, 

neurophysiological function, brain anatomy, and performance on an ecologically relevant 

word-learning task. The use of such a test can help to better characterize individual 

performance, leading to new discoveries related to speech processing and language learning 

that could have been masked by pooling together populations with substantially different 

neural and behavioral attributes.

ONLINE METHODS

Participants

A first cohort of 84 participants initially completed the SSS-test (32 males; mean age, 28; 

age range, 19 to 55). From this, a subgroup of 37 subjects (right handed; 18 males; mean 
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age, 30; age range, 21 to 55) also underwent the MEG and DW-MRI protocols. The original 

subgroup comprised four additional participants, but these had to be removed due to 

artifactual MEG (3 participants) or DW-MRI data (1 participant). The MEG session took 

place at least 4 days after the DW-MRI session. Both protocols were completed within one 

month after the SSS-test.

A second cohort of 44 individuals (11 males; mean age, 21; age range, 19 to 31) completed 

the SSS-test and the word-learning task.

A third cohort of 62 participants completed the accelerated version of the SSS-test. Seven 

participants were removed, because they spoke loudly instead of whispering or they stopped 

whispering for time periods longer than 4 sec. The data from 55 participants (19 males; 

mean age, 23; age range, 18 to 36) were analyzed.

Two extra cohorts, one of 200 and one of 100 participants, completed the online version of 

the regular and the accelerated SSS-test, respectively. 56 participants from the regular group, 

and 40 from the accelerated were removed for non-optimal conditions in their recordings 

(noisy recording, participant did not use headphones, participant spoke loudly instead of 

whispering, or stopped whispering for time periods longer than 4 sec). The final number of 

participants submitted to the analyses were: 144 (80 males; mean age, 34; age range, 19 to 

55) for the regular SSS-test; and 60 (37 males; mean age, 35; age range, 19 to 51) for the 

accelerated SSS-test.

All participants were native English speakers with self-reported normal hearing and no 

neurological deficits. They were paid for taking part in the study and provided written 

informed consent. All protocols were approved by the local Institutional Review Board 

(New York University’s Committee on Activities Involving Human Subjects).

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those reported in previous publications7,15,17.

Statistical Analyses

Data distribution was not formally tested. Instead, we used non-parametric Mann-Whitney-

Wilcoxon and Wilcoxon signed-rank tests were used for between and within subject 

comparisons, respectively. Multiple comparisons were controlled using a False-Discovery 

Rate correction (the only exception is the tract-based spatial statistics white matter analyses 

which use a FWE correction based on threshold-free cluster enhancement and a 

nonparametric permutation test). Non-parametric Spearman’s rank correlations were used to 

assess the relationship between variables. In addition, we used the Robust Correlation 

Toolbox32 to ensure the robustness of the relationship between the structural and 

neurophysiological data. In particular, we used Spearman skipped correlations33,34 with 

percentile bootstrap 95% confidence intervals (CIs; calculated by resampling pairs of 

observations) for each correlation. Skipped correlations involve multivariate outlier detection 

and provide a more robust measure of correlation35. Bootstrap confidence intervals provide 

an additional way to test whether two variables are truly correlated, as if the CIs include 0, 

the null hypothesis cannot be rejected32.
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Effect sizes were calculated using Rank-Biserial correlations which can be read as a 

Spearman’s correlation coefficient36, or as the difference between the proportion of 

favorable and unfavorable evidence37. In our study, all effect sizes are above r = 0.36. An r-
value of 0.36 means that the favorable evidence outweighs the unfavorable 68% to 32%.

Data collection and analysis were performed blind to the conditions of the experiments for 

the behavioral tests but not for the MEG and structural analyses, as subjects had already 

been divided into high and low synchronizers.

Stimulus presentations order was randomized for all experiments with more than one 

stimulus.

Phase locking value

Throughout the study, the synchronization between two signals was measured by the phase 

locking value (PLV) between them. The PLV was computed using the following formula:

PLV = 1
T ∑

t = 1

T
e
i θ1 t − θ2 t

where t is the discretized time, T is the total number of time points and θ1 and θ2 the phase 

of the first and the second signals, respectively.

Stimuli

Five sets of syllables (G1 to G5) were created to be used in the MEG task. Each set 

consisted of 12 distinct syllables (unique consonant-vowel combinations) handpicked to 

maximize variability within and between sets. Additionally, G5 was used in the SSS-test and 

the remaining four sets (G1 to G4) were used to create the stimuli (word streams, words and 

part-words) for the word-learning task.

Random syllable streams were created by randomly combining the syllables of a set, with no 

gap between them and with the sole constraint that the same syllable was not to be repeated 

consecutively. The total duration of the random syllable streams was of 60 seconds for the 

SSS-test (G5) and of 120 seconds for the MEG task (G1 to G5).

For the word-learning task, we created four tri-syllabic pseudowords (henceforth, words) per 

set (G1 to G4) by the unique combination of all of its comprising syllables. This resulted in 

four ‘languages’ (henceforth, languages; L1 to L4), each comprising four words. To improve 

learnability, we consulted the Irvine Phonotactic Online Dictionary (IPhOD version 2.0; 

www.IPhOD.com) for minimum word-average biphoneme and positional probabilities. For 

the exposure phase, the four words of a language were randomly combined to form a two-

minute long stream for each language with no gaps between them, thus ensuring an equal 

number of non-consecutive repetitions per word. For the test phase, in addition to the words, 

we also created for each language all possible part-words by the combination of the final 

syllable of a word with the first two syllables of the remaining words (12 part-words per 

language). Written renderings and cross-ratings of all words and part-words were provided 
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by five independent American English native speakers. The written forms with the highest 

convergence were selected for the visual presentation concurrent with the audio in the test of 

the word learning task.

Random syllable streams, word streams, words and part-words were all converted to .wav 

files for auditory playback using the MBROLA text-to-speech synthesizer with the 

American Male Voice diphone database (US2) at 16kHz38. All phonemes were equal in 

pitch (200Hz), pitch rise and fall (with the maximum at 50% of the phoneme), and duration, 

which was set to 111 ms to satisfy a presentation rate of 4.5 syllables per second throughout 

the entire study.

All auditory stimuli were presented binaurally at a mean 75 dB sound pressure, via 

tubephones (E-A-RTONE 3A 50Ω, Etymotic Research) attached to E-A-RLINK foam plugs 

inserted into the ear canal.

SSS-test

Participants (for the in-lab experiment in a sound isolation booth, seated in front of a PC 

with a microphone placed close to their mouth) completed three experimental steps:

i. Volume adjustment: Subjects listened to the train of random syllables played 

backwards while whispering “tah”, and increased the audio volume until they 

could not perceive their own voice.

ii. Steady repetition example: An audio with a continuous repetition of the syllable 

“tah” (recorded by a female speaker, manipulated to last 222ms and concatenated 

to produce a rate of 4.5 syllables per second) was delivered through the earplug 

tubephones for 10 seconds. Subsequently, participants were instructed to whisper 

“tah” at the same pace during 10 seconds. We primed the participants at the 

desired frequency, since previous research showed that synchronization to an 

external stimulation occurs when there is a close match between internal and 

external frequencies39,40.

iii. Syllable perception task: Participants attended to the rhythmic syllable stream 

while steadily whispering “tah”. After the presentation, they had to indicate 

whether a given set of target syllables were presented. For each run, four target 

syllables were randomly selected from a pool of eight (half of them were part of 

the stream). Importantly, participants were not explicitly instructed to 

synchronize to the external audio. According to the instructions, the assignment 

was to recall correctly the syllables and the “tah” articulation was intended just 

to increase the difficulty of the task. By this, we encouraged attention to the 

audio while the goal of the task remained orthogonal to the synchronization 

(implicit synchronization). A subset of participants, randomly selected from the 

pool, completed an extra step at the end of the syllable perception task (Nhigh = 

13, Nlow = 12). During this step, they steadily whispered “tah” during one minute 

while listening to a white noise (no-rhythm condition).

After the last step, participants filled a questionnaire indicating age, handedness, gender, 

musical experience and spoken languages. Subsequently, they repeated steps (ii) and (iii). In 
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this way, each participant completed two runs of the (iii) Syllable perception task, which we 

named blocks one and two, respectively.

A subgroup of participants, randomly selected from the original cohort, completed the whole 

experiment again one month after the first session (N = 34).

SSS-test, accelerated version—The protocol for the accelerated version was the same 

as in the regular SSS-test, but we modified the auditory stimulus as follows: we 

progressively increased the syllable rate from 4.3 to 4.7 syllables per second, using steps of 

0.1 sylls/sec; each rate was kept constant for 60 syllables with the exception of the last one 

that remained constant until the end of the audio, which in this case was set to 70 seconds 

(see red trace in Fig. S2B). As in the regular version of the test, each participant completed 2 

blocks. Once they finished, they indicated if they perceived an increment, decrement or no 

change in the rate of the presented syllables of each block. As for the stable rate version of 

the SSS-test, we computed the PLV between the envelopes of the produced utterances and 

the input signal.

Online version—An online version of the SSST-test (for both normal and accelerated 

versions of the paradigm) was developed using oTree, a Python-based framework for the 

development of controlled experiments on online platforms41. The online version mainly 

followed the same structure as the in-lab one (Volume adjustment, Steady repetition, 

Syllable perception), but with some changes: i) a microphone test phase was included before 

the volume adjustment phase; ii) several restrictions were placed to ensure that the 

participants actually did the task (e.g., during Steady repetition, a participant could not 

continue to the next page until she/he had heard the whole 10 second-long recording and had 

recorded himself/herself for another 10 seconds). All recordings were manually checked for 

errors (e.g., not using headphones, speaking loud instead of whispering, etc.). Instructions 

were exactly the same as those for the in-lab version.

Half of participants who completed the online version of the stable rate SSS-test, also 

completed a rhythm perception test, while the other half undertook a rhythm production 

assessment. The perception task is the one described by Huss and colleagues42 Participants 

were presented with pairs of tunes (36 pairs, 18 equal and 18 different) and had to make a 

same/different judgment. In the different pairs, there is a mismatch in the duration of the 

accented note. For the production task, participants repeated the Steady repetition example 

step (see Methods), and they were instructed to keep whispering “tah” at the same pace for 

one minute while listening to a white noise. The difference between this task and the no-

rhythm condition (see Methods) is that all participants were primed again, before the one 

minute of whispering under noise, and explicitly instructed to keep the tempo. These tasks 

were always performed after the SSS-test and were also programmed using oTree.

Tasks developed with oTree can be deployed into Amazon Mechanical Turk (AMT), a 

crowdsourcing platform which allows for the acquisition of large datasets in a rapid, 

affordable, anonymous, and easily replicable manner. Note that recent research has 

replicated a number of tasks from experimental psychology (e.g., Stroop, Flanker, 

subliminal priming and category learning among others) by using AMT43. The online SSST-
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task was presented to AMT participants as an HTML webpage that ran in each participant’s 

web browser. AMT participants were first presented with a summary of the task and then 

with an informed consent page. Upon acceptance, instructions for the task were presented.

Synchrony measurement—The degree of synchronization was measured by the phase 

locking value (PLV) between the envelope of the produced speech and the cochlear envelope 

of the rhythmic syllable stream. The envelope was estimated as the absolute value of the 

Hilbert transform of the signal. The spectrograms of the auditory stimuli were computed 

using the NSL (Neural Systems Laboratory) Auditory Model Matlab toolbox44. This toolbox 

filters the signal in a specific set of frequency bands, emulating the auditory filters applied 

by the cochlea (yielding what we call auditory channels), and computes their envelopes. The 

stimulus cochlear envelopes were calculated by adding the auditory channels between 180 

and 7246 Hz. Envelopes were resampled at 100 Hz, filtered between 3.5 and 5.5 Hz and 

their phases were extracted by means of the Hilbert transform. The PLV was computed for 

windows of 5 seconds length with an overlap of 2 seconds. The results for all time windows 

were averaged within each stimulus presentation, providing one PLV per block.

We computed the within and across session PLV Spearman rank’s correlation. For the within 

session blocks, the correlation was computed between the PLV of block 1 and the one of 

block 2. For the across session computation, the mean PLV across blocks for the first session 

was correlated with the one obtained for the session completed one month later.

Definition of high and low synchronizers—We applied a k-mean clustering 

algorithm45 on the PLV values averaged across blocks, using a squared Euclidean distance 

metric and 2 clusters. For each cluster (the lower and the higher one) we fitted a normal 

distribution (mean -μ- and standard deviation -σ-). Next, we defined a low and a high 
threshold (T) as: Tlow=μlower+ σlower and Thigh=μhigher - σhigher. The groups of low and high 

synchronizers, which underwent the MEG and DW-MRI sessions, were randomly selected 

from the set of participants whose mean PLV across blocks was below Tlow and above Thigh, 

respectively.

Spectral analysis—We computed the Discrete Fourier Transform (DTF) for the envelope 

of the produced speech for each block without any windowing. We focused our analysis 

between 1 and 10 Hz. Thus, we just kept the power values within this frequency window and 

they were normalized to sum 1. Spectra across blocks belonging to the same condition (no-

rhythm/rhythm) were averaged.

In order to assess differences between conditions (no-rhythm/rhythm), within each group 

(high/low synchronizers), non-parametric paired Wilcoxon Signed-Rank test were calculated 

for the power values at every frequency. Results are reported at a FDR-corrected p < 0.05 

value.

Neurophysiological study

Task—Once in the MEG system, participants completed five runs of the Syllable 
Perception Task. Importantly, however, and in contrast to the SSS-test, participants passively 

listened to the syllable streams in silence (i.e. without whispering). Each run involved a 
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different random syllable stream corresponding to syllable sets G1 to G5. Their order of 

presentation was counterbalanced across participants. Random syllable streams for the MEG 

experiment were of 120 seconds duration. Experimental runs were always preceded by 20 

seconds of silence. Participants were instructed to listen attentively to the syllables and to 

indicate in the test phase after each stream was heard whether a given set of syllables had 

been presented. As in the SSS-test, each test phase consisted of eight trials. In each, a 

syllable from a pool of eight (four presented and four foils) was randomly selected and 

presented visually. Participants were to indicate their decision via a button press with their 

right hand (index finger: yes, the syllable was present; middle finger: no, the syllable was 

not present). The following trial started between 900 and 1100 ms after the response, for 

which there were no time constraints.

Data acquisition and processing—Neuromagnetic responses were recorded with a 

1000 Hz sampling rate using a 157-channel whole-head axial gradiometer system (KIT, 

Kanazawa Institute of Technology, Japan) in a magnetically shielded room. Five 

electromagnetic coils were attached to the subject’s head to monitor head position during 

MEG recordings. The coils were localized to the MEG sensors at the beginning of the 

experiment and before the last two blocks of the main experiment. The position of the coils 

with respect to three anatomical landmarks: the nasion, and left and right tragus were 

determined using 3D digitizer software (Source Signal Imaging, Inc.) and digitizing 

hardware (Polhemus, Inc.). This measurement allowed a coregistration of subjects’ 

anatomical magnetic resonance image (MRI) with the MEG data. An online bandpass filter 

between 1 and 200 Hz and a notch filter at 60 Hz were applied to the MEG recordings.

Data processing and analyses were conducted using custom MATLAB code and the 

FieldTrip toolbox46. For each participant’s dataset, noisy channels were visually rejected. 

Two procedures were applied to the continuous MEG recordings. First, a least squares 

projection was fitted to the data from the 2 minutes of empty room recorded at the end of 

each session. The corresponding component was removed from the recordings47. Second, 

the environmental magnetic field, measured with three reference sensors located away from 

the participant’s head, was regressed out from the MEG signals using time-shifted PCA48. 

The MEG signals were then detrended and artifacts related to eyeblinks and heartbeats were 

removed using independent component analysis.

Source reconstruction—In order to reconstruct the brain activity generating the 

magnetic fields recorded by the MEG sensors, we used a linearly constrained minimum 

variance beamforming approach. Using the subject’s anatomical MRI we first reconstructed 

the brain surface. Then, the brain volume was filled with a 1 cm grid, which was normalized 

to the MNI template (Montreal Neurological Institute brain) using SPM8 

(www.fil.ion.ucl.ac.uk/spm). The lead fields were calculated for every grid point49 and the 

spatial filters were computed using the covariance matrix between all sensor pairs for all the 

trials. Finally, the spatial filters were applied to the sensors’ signals to reconstruct the time 

series for every source inside the brain (i.e. point of the grid).

Brain-to-stimulus synchronization—The degree of synchrony was measured by the 

PLV between brain activity and the cochlear envelope of the perceived train of syllables. 
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Sources’ signals were resampled at 100 Hz, filtered between 3.5 and 5.5 Hz and their phases 

were extracted by means of the Hilbert transform. The PLV was computed for windows of 1 

second duration with an overlap of 0.5 seconds. The results for all time windows were 

averaged across the total presentation of the stimuli, obtaining one PLV per source and per 

subject.

The PLVs were averaged for sources within the same region according to the Brainnetome 

Atlas50 (38 mean PLV values were computed for the frontal ROI and 24 for the temporal 

one, see below). ROI selection was theoretically driven, based on our initial hypothesis 

related to the audio-motor nature of the behavioral task. In other words, since the 

segregation of participants relies on an audio-motor task, we focused our analyses on two 

broad regions, comprising the cortical areas related speech perception and production:

i. Bilateral frontal ROI: It is composed of 19 regions in each hemisphere, 38 in 

total. It comprises the middle, precentral and inferior frontal gyrus from both 

hemispheres. Specifically the selected Brainnetome Atlas regions are: dorsal BA 

9/46, Inferior Frontal Junction, BA 46, ventral BA 9/46, ventro-lateral BA 8, 

ventro-lateral BA 6, lateral BA 10, dorsal BA 44, Inferior Frontal Sulcus, caudal 

BA 45, rostral BA 45, opercular BA 44, ventral BA 44, head and face region BA 

4, caudal dorso-lateral BA 6, upper limb region BA 4, trunk region BA 4, tongue 

and larynx region BA 4, caudal ventro-lateral BA 6 (Fig. 2B).

ii. Bilateral temporal ROI: It consists of 12 regions in each hemisphere, 24 in total. 

This ROI’s covers bilaterally the superior, middle and posterior temporal lobe 

(medial BA 38, BA 41/42, TE 1.0/1.2, caudal BA 22, lateral BA 38, rostral BA 

22, caudal BA 21, rostral BA 21, dorsolateral BA 37, anterior Superior Temporal 

Sulcus -STS-, rostro-posterior STS and caudo-posterior STS; Fig. S6B).

Since the preference of right auditory areas for frequencies matching the syllable rate has 

been theoretically proposed51,52 and experimentally reported53–55, we also explored the 

degree of asymmetry in auditory entrainment to speech. Based on the previous 

literature53,54, more restricted ROIs were chosen for this analysis. We defined early auditory 

regions as: BA 41/41, TE 1.0 and TE 1.2 (see Fig S7A). Next, we calculated brain-to-

stimulus synchrony within right and left early auditory areas for each group and we 

calculated their neurophysiological asymmetry: (PLVright − PLVleft)/0.5(PLVright + PLVleft).

In order to assess differences between groups (high/low synchronizers) non-parametric 

independent samples Mann-Whitney-Wilcoxon tests were calculated for all regions’ PLVs 

within the corresponding ROI. Results are reported at a FDR-corrected p < 0.05 value within 

ROI. To explore auditory brain-to-stimulus synchrony between hemispheres, within groups, 

a non-parametric paired Wilcoxon Signed-Ranks test was computed.

For the frontal ROI, 8 regions from the 39 showed a significant difference between groups, 

FDR corrected for multiple comparisons. All significant regions were located in the left 

hemisphere, specifically left: dorsal BA 9/46, ventral BA 9/46, Inferior Frontal Junction, 

dorsal BA 44, ventral BA 44, opercular BA 44, Inferior Frontal Sulcus, caudal BA 45.
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Anatomic connectivity study

Scanning Parameters and diffusion measures—DW-MRI data were acquired on a 

3T scanner (Siemens Prisma 3T MRI scanner) using a 64-channel phased-array head coil, at 

the Center for Brain Imaging (New York University). Diffusion images were acquired with 

an EPI sequence optimized for DTI-MRI of white matter -WM- (81 axial slices, TR: 4150 

ms, TE: 85.2 ms, flip angle: 90°, slice thickness: 1.5 mm, acquisition matrix: 150 × 152, 

voxel size: 1.5 × 1.5 × 1.5 mm3). One run with ten interleaved non-diffusion weighted 

volumes and 128 diffusion weighted volumes (i.e., 128 directions; b-values of 1500 s/mm2) 

was acquired. To allow a precise source reconstruction of the neurophysiological data, a high 

resolution T1 MPRAGE image was also acquired during this MRI session (TR = 2400 ms, 

TE = 2.24 ms, flip angle = 8°, voxel size = 0.80 × 0.80 × 0.80 mm3, 256 sagittal slices, 

acquisition matrix = 320 × 300).

DTI-MRI analysis—Diffusion data processing started by correcting for eddy current 

distortions and head motion using FMRIB’s Diffusion Toolbox (FDT), which is part of the 

FMRIB Software Library -FSL 5.0.1, www.fmrib.ox.ac.uk/fsl/56. Subsequently, the gradient 

matrix was rotated corresponding to the head movement, to provide a more accurate 

estimate of diffusion tensor orientations using the fdt_rotate_bvecs program included in 

FSL57. Brain extraction was performed using the Brain Extraction Tool58, which is also part 

of the FSL distribution. The analysis continued with the reconstruction of the diffusion 

tensors using the linear least-squares algorithm included in Diffusion Toolkit 0.6.2.259. 

Finally, Fractional Anisotropy (FA) and Radial Diffusivity (RD) maps for each participant 

were calculated using the eigenvalues extracted from the diffusion tensors.

Voxel based analyses of FA and RD maps were performed using Tract Based Spatial 

Statistics, TBSS60. FA maps from all participants were registered to the FMRIB58_FA 

template (MNI152 space and 1×1×1 mm3) using the nonlinear registration tool61. These 

registered FA maps were first averaged to create a mean FA volume. Then a mean FA 

skeleton was derived, which represents the centers of all tracts common to all participants in 

the study. Each participant’s aligned FA data were then projected onto this skeleton by 

searching for the highest FA value within a search space perpendicular to each voxel of the 

mean skeleton. This process was repeated for the RD maps by applying the transformations 

previously calculated with the FA maps. This resulted in individual FA and RD skeletons for 

each participant. In addition, given that laterality62 —specially of WM paths connecting 

auditory and motor regions —is also related to cognitive function, laterality maps were also 

created. First a symmetric skeleton was created using the script tbss_sym. Then FA and RD 

data were projected to this symmetric skeleton, with left-hemispheric values being 

subtracted from right-hemispheric ones. Thus, laterality FA and RD maps were also obtained 

(note that these maps reflect right minus left values; for the sake of clarity, results are shown 

on the left hemisphere, Fig. 3). A total of 4 analyses were performed (FA and RD, FA and 

RD lateralization).

Finally, in order to assess white matter differences between high and low synchronizers, 

independent samples t-tests were calculated for the FA and RD skeletons and laterality 

maps. For a more theoretically driven analysis, we focused on the regions that are part of the 
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dorsal and ventral pathways for language processing. In particular, we used a ROI approach 

to focus on WM pathways connecting auditory with frontal and motor regions -i.e., the 

arcuate fasciculus21. We also included in the analyses the ventral pathways connecting 

temporal, occipital and frontal areas as control regions. Our ROI was created using well-

known probabilistic atlases of white matter pathways in MNI space16,63. We included any 

voxel within the skeleton, which had at least a 50% of being part of the long, anterior, and 

posterior segments of the arcuate fasciculus, the inferior-fronto occipital fasciculus, the 

inferior longitudinal fasciculus and the uncinate fasciculus. Results are reported at a FWE-

corrected p < 0.05 value using threshold-free cluster enhancement64 and a nonparametric 

permutation test with 5000 permutations65. Significant voxels within the skeleton were filled 

to make the presentation of results easier to follow. Significant clusters (results) were 

averaged and a mean value per participant, reflecting individual microstructural differences 

was obtained. These diffusion values were then correlated (using Spearman rank’s 

correlation) to MEG derived measures of brain synchrony in both frontal and auditory 

regions (FDR-corrected for the 2 correlations computed; see MEG results).

Tractography analyses—Given the TBSS results showing that a cluster consistent with 

the left arcuate fasciculus differentiated between high and low synchronizers (Fig 3), 

confirmatory ad-hoc virtual dissections (i.e., deterministic tractography) were also computed 

to further locate the white matter pathway underlying the pattern of results. Specifically, for 

each participant we manually dissected the three segments (long, anterior and posterior) of 

the left arcuate fasciculus24. As a control, the left inferior-fronto-occipital fasciculus (IFOF) 

and the left inferior longitudinal fasciculus (ILF) were also dissected. The IFOF and ILF 

were selected based on: (i) the fact that their anatomy could partially overlap with the TBSS 

cluster; and (ii) research suggesting that these pathways are part of the ventral pathway for 

language processing14,29,66.

Using the previously pre-processed diffusion data, whole-brain tractography was performed 

using Diffusion Toolkit 0.6.2.259 and the interpolated streamlines algorithm. Tractography 

was started only in voxels with an FA value greater than 0.2 and was stopped when the angle 

between two consecutive steps was larger than 35°. Manual dissection of the tracks was 

performed using Trackvis59. ROIs were defined using the T1 high resolution image and the 

fractional anisotropy (FA) and FA color-coded maps as a reference for individual anatomical 

landmarks. The three segments of the left arcuate were dissected using established 

guidelines with a two-sphere approach. For the two control ventral tracts, three spherical 

ROIs at the level of the anterior temporal lobe (temporal ROI), the posterior region located 

between the occipital and temporal lobe (occipital ROI) and the anterior floor of the 

external/extreme capsule (frontal ROI) were created. In order to define each of the ventral 

tracts of interest, we applied a two-ROI approach: the ILF was obtained by connecting the 

temporal and occipital ROIs, while the streamlines passing through the occipital lobe and 

frontal ROIs were considered as part of the IFOF. All these ROIs were applied according to 

a well-defined anatomical atlas16. The exclusion of single fiber structures that do not 

represent part of the dissected tract was achieved using subject specific no-ROIs. After the 

dissection was completed, the volume and the mean FA and RD value of each tract was 

extracted for further analysis. In order to take into account individual differences in head 
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volume, volumes from all tracts were corrected by dividing their original value by each 

subject Total Intracranial Volume (TIV). TIV was calculated by submitting each 

participant’s T1 high resolution image to the standard Freesurfer (http://

surfer.nmr.mgh.harvard.edu/) pipeline. Using the extracted values (FA, RD and volume), we 

computed between group comparisons for the arcuate as a whole (sum of anterior, long and 

posterior segments), its three segments separated and the IFOF and ILF as control tracts. 

Thus we computed a total of 18 comparisons. We used a p < 0.05 FDR correction threshold 

to correct for these multiple calculations.

Phonological word-form learning task

The task consisted of a Volume adjustment step as above and two runs with the following 

experimental steps each:

• Exposure phase: participants were exposed to a two-minute long speech stream 

of words corresponding to one of the created languages (L1-L4, see Table S1) 

and were asked to remain silent (i.e. no whispering) during the auditory 

presentation.

• Test phase: Each word stream was immediately followed by a test phase. Test 

trials consisted of a two alternative forced choice between a word and a part-

word, both randomly selected from the pool corresponding to their language. 

Each word and part-word appeared only twice, each time paired with a different 

item. The total number of test trials was thus 8. Test items were presented both in 

their auditory and written forms and were assigned a number (1 or 2) according 

to their auditory presentation and left-right presentation on the screen. 

Participants were asked to make their choice by pressing the corresponding 

number.

The language presentation order was counterbalanced across participants. All participants 

thus completed two runs, each testing a different language. The proportion of correct 

responses in the two runs was averaged before proceeding with group analyses.

The group of participants (N=100) who completed the online and accelerated version of the 

SSS-tests, also completed an online version of this word-form learning task with the above 

specifications. The online word learning task was also created using oTree.

In order to assess learning differences between groups (high/low synchronizers) a non-

parametric independent samples Mann-Whitney-Wilcoxon test was calculated for the 

averaged proportion of correct responses.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the 

Supplementary Materials. Additional data related to this paper may be requested from the 

authors. Correspondence and request for materials should be addressed to MFA 

(fassaneo@gmail.com)
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Code availability

All computer code used for this study is available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Spontaneous speech synchronization reveals a bimodal distribution.
(A) SSS-test: example of the perceived (upper panel) and produced (lower panel) signals. 

Produced signals were independently recorded for each participant (N=84). Green line: the 

envelope bandpass filtered between 3.5–5.5 Hz. To eliminate auditory interference induced 

by listeners’ own speech output, participants wore foam earplugs and whispered softly. (B) 

PLV histogram (average across blocks). Colored lines: normal distributions fitted to each of 

the two clusters obtained by a kmeans algorithm (the number of participants in each cluster 

is: Nhigh = 43, Nlow = 41), low (blue)/high (orange) groups. Participants subsequently 

completing neurophysiology and neuroimaging sessions were randomly selected from 

below/above one sigma from the mean (blue/orange dashed lines). (C) Phase histogram for 

the lag between perceived and produced syllables. Histogram computed just for the high 

group. Low participants are not synchronized, thus it is not possible to define a phase lag. 
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(D) Average spectra of the utterances’ envelopes (Nhigh = 43, Nlow = 41). Shadowed regions: 

SD. (E) Average spectra for a subgroup of participants (Nhigh = 13, Nlow = 12). Dark/light 

lines correspond to no-rhythm/rhythm conditions. Straight lines on top: significant 

difference between conditions (Wilcoxon signed rank test, two-sided p < 0.05, FDR-

corrected). (F) PLV scatter plot of the correlation between first and second blocks 

(Spearman correlation coefficient r = 0.86, p < 0.001). Dots: individual subjects (N=84). 

Colored dots: participants selected to complete subsequent neurophysiology and 

neuroimaging sessions (Nhigh = 18, Nlow = 19). (G) Scatterplot of the correlation between 

the mean PLV in the first and second sessions (one month apart; Spearman correlation 

coefficient r = 0.78, p < 0.001). Orange/blue correspond to high/low synchronizers, 

respectively, in all panels.

Assaneo et al. Page 22

Nat Neurosci. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Neural distinction between groups: neurophysiological data.
(A) Activity from a high synchronizer generated in BA44 (upper panel) during passive 

listening to the stimulus (lower panel; in green, stimulus envelope). Similar signals were 

obtained for the others (N=17) high synchronizers. (B) Brain-to-stimulus synchronization. 

Left panel: ROI comprising bilateral pre-central, middle frontal and inferior frontal gyri. 

Right panel: Brain surface map showing PLV differences between groups (Nhigh = 18, Nlow 

= 19; Mann-Whitney-Wilcoxon test, two-sided p < 0.05, FDR-corrected).

Assaneo et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Structural distinction between groups: anatomic connectivity data.
(A) Laterality maps (using tract based spatial statistics, TBSS) of Fractional Anisotropy 

(FA), right minus left values. In red, white matter pathways differentiating between groups 

(Nhigh = 18, Nlow = 18, FWE-corrected, two-sided p < 0.05 using threshold free cluster 

enhancement) over the mean group skeleton (blue). Neurological convention is used, with 

MNI coordinates at the bottom of each slice. (B) To facilitate the visualization of the pattern 

of results, box-plots (Nhigh=18, Nlow=18) with the mean (center line) and SD (grey areas) 

FA value of the significant cluster for each participant are shown for the laterality (right-left, 

top) and for each group and hemisphere separately (bottom). (C) Scatter plots (N=36) 

display the correlation between mean FA laterality values (negative values imply a leftward 

structural lateralization) and the synchrony of the left inferior/middle frontal gyri with the 

speech syllable rate (Spearman r = −0.46, p=0.0051; Skipped Spearman r = −0.44, t = −2.90, 

CI = −0.14, −0.68). Orange/light blue, high/low synchronizers. Dots: individual participants. 

Black lines: mean across participants. Shadowed region: SD.
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Fig. 4. Spontaneous Speech Synchronization test predicts word learning.
(A) SSS-test outcome. Histogram of the PLVs between the envelope of the perceived and 

produced speech signals, bandpass filtered at 3.5–5.5 Hz. The median of the first cohort’s 

distribution is displayed (black line; individuals above/below this line are labeled as high/

low). (B) Percent correct answers for the statistical word-learning task (Nhigh =24, Nlow=20; 

Mann-Whitney-Wilcoxon test, two-sided p=0.024). Orange/light blue correspond to 

high/low synchronizers. Dots: individual participants. Black lines: mean across participants. 

Asterisk: p<0.05. Shadowed region: SD. Green dashed line: chance level in a two alternative 

forced-choice post-learning task.
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