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Abstract

Purpose: In assessing the severity of age-related macular degeneration (AMD), the Age-Related 

Eye Disease Study (AREDS) Simplified Severity Scale predicts the risk of progression to late 

AMD. However, its manual use requires the time-consuming participation of expert practitioners. 

While several automated deep learning (DL) systems have been developed for classifying color 

fundus photographs of individual eyes by AREDS severity score, none to date has utilized a 

patient-based scoring system that employs images from both eyes to assign a severity score.

Design: DeepSeeNet, a DL model, was developed to classify patients automatically by the 

AREDS Simplified Severity Scale (score 0-5) using bilateral color fundus images.

Participants: DeepSeeNet was trained on 58,402 and tested on 900 images from the longitudinal 

follow up of 4,549 participants from AREDS. Gold standard labels were obtained using reading 

center grades.
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Methods: DeepSeeNet (composed of three sub-networks) simulates the human grading process 

by first detecting individual AMD risk factors (drusen size; pigmentary abnormalities) for each 

eye and then calculating a patient-based AMD severity score using the AREDS Simplified 

Severity Scale.

Main Outcome Measures: Overall accuracy, specificity, sensitivity, Cohen’s kappa, area under 

the curve (AUC). The performance of DeepSeeNet was compared to that of retinal specialists.

Results: DeepSeeNet performed better on patient-based, multi-class classification 

(accuracy=0.671; kappa=0.558) than retinal specialists (accuracy=0.599; kappa=0.467) with high 

AUCs in the detection of large drusen (0.94), pigmentary abnormalities (0.93) and late AMD 

(0.97), respectively. DeepSeeNet also outperformed retinal specialists in the detection of large 

drusen (accuracy 0.742 vs 0.696; kappa 0.601 vs 0.517) and pigmentary abnormalities (accuracy 

0.890 vs 0.813; kappa 0.723 vs 0.535) but showed lower performance in the detection of late 

AMD (accuracy 0.967 vs 0.973; kappa 0.663 vs 0.754).

Conclusions: By simulating the human grading process, DeepSeeNet demonstrated high 

accuracy with increased transparency in the automated assignment of individual patients to AMD 

risk categories based on the AREDS Simplified Severity Scale. These results highlight the 

potential of deep learning systems to assist and enhance clinical decision-making processes in 

AMD patients such as early AMD detection and risk prediction for developing late AMD. 

DeepSeeNet is publicly available on https://github.com/ncbi-nlp/DeepSeeNet.
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Age-related macular degeneration (AMD) is responsible for approximately 9% of global 

blindness and is the leading cause of visual loss in developed countries1,2. The number of 

people with AMD worldwide is projected to be 196 million in 2020, rising substantially to 

288 million in 20403. The prevalence of AMD increases exponentially with age: late AMD 

in white populations has been estimated by meta-analysis at 6% at 80 years and 20% at 90 

years4. Over time, increased disease prevalence through changing population demographics 

may place great burdens on eye services, especially where retinal specialists are not 

available in sufficient numbers to perform individual examinations on all patients. It is 

conceivable that deep learning and/or telemedicine approaches might support future eye 

services; however, this might only apply when evidence-based systems have undergone 

extensive validation and demonstrated performance metrics that are at least non-inferior to 

those of clinical ophthalmologists in routine practice.

AMD arises from a complex interplay between aging, genetics, and environmental risk 

factors5,6. It is regarded as a progressive, step-wise disease, and is classified by clinical 

features (based on clinical examination or color fundus photography) into early, 

intermediate, and late stages7. The hallmarks of intermediate disease are the presence of 

large drusen and/or pigmentary abnormalities at the macula. There are two forms of late 

AMD: (1) neovascular AMD, and (2) atrophic AMD, with geographic atrophy (GA).
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The Age-Related Eye Disease Study (AREDS), sponsored by the National Eye Institute 

(National Institutes of Health), was a randomized clinical trial to assess the effects of oral 

supplementation with antioxidant vitamins and minerals on the clinical course of AMD and 

age-related cataract. Longitudinal analysis of this study cohort led to the development of the 

patient-based AREDS Simplified Severity Scale for AMD, based on color fundus 

photographs8. This simplified scale provides convenient risk factors for the development of 

advanced AMD that can be determined by clinical examination or by less demanding 

photographic procedures than used in the Age-Related Eye Disease Study. The scale 

combines risk factors from both eyes to generate an overall score for the individual, based on 

the presence of one or more large drusen (diameter >125 μm) and/or AMD pigmentary 

abnormalities at the macula of each eye8. The Simplified Severity Scale is also clinically 

useful, in that it allows ophthalmologists to predict an individual’s 5-year risk of developing 

late AMD. This 5-step scale (from score 0 to 4) estimates the 5-year risk of the development 

of late AMD in at least one eye as 0.4%, 3.1%, 11.8%, 25.9%, and 47.3%, respectively8.

Automated image analysis tools have demonstrated promising results in biology and 

medicine9-15. In particular, deep learning, a subfield of machine learning, has recently 

generated substantial interest in the field of ophthalmology9,16-21. Past studies have utilized 

deep learning systems for the identification of various retinal diseases, including diabetic 

retinopathy 22-27 glaucoma 27-30 retinopathy of prematurity 31, and AMD 19,21,27,32,33 In 

general, deep learning is the process of training algorithmic models with labeled data (e.g. 

color fundus photographs categorized manually as containing pigmentary abnormalities or 

not), where these models can then be used to assign labels automatically to new data. Deep 

learning differs from traditional machine learning methods in that specific image features do 

not need to be pre-specified by experts in that field. Instead, the image features are learned 

directly from the images themselves.

Recently, several deep learning systems have been developed for the classification of color 

fundus photographs into AMD severity scales, at the level of the individual eye. These 

severity scales have included both binary (e.g. referable vs. non-referable AMD17,19,21,27,32) 

and multi-class (e.g. the 9-step AREDS Severity Scale16,34 and a 4-class AMD 

classification35) systems. However, to the best of our knowledge, none to date has developed 

a patient-based system that, similar to the AREDS Simplified Severity Scale score, uses 

images from both eyes to obtain one overall score for the individual. This is particularly 

relevant because estimates of rates of progression to late AMD are highly influenced by the 

status of fellow eyes, as the behavior of the two eyes is highly correlated8. Additionally, 

several recent studies have reported robust performance in the automated classification of 

AMD from OCT scans21,36-39. Unlike these studies, DeepSeeNet is based on data from 

color fundus photography, which remains an important imaging modality for assessing the 

involvement of retinal and choroidal blood vessels in ophthalmic disease, and is essential in 

grading eyes using the AREDS Simplified Severity Score40. Similar to De Fauw et al37, 

DeepSeeNet contains two stages by design for improved performance and increased 

transparency. However, their two-stage approach is different from ours with respect to the 

actual approach details as well as issues in data variability.
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The primary aim of our study was to train and test a deep learning model to identify patient-

level AMD severity using the AREDS Simplified Severity Scale from color fundus images 

of both eyes. Images were obtained from the AREDS dataset, one of the largest available 

datasets containing nearly 60,000 retinal images. Different from previous methods, our 

proposed model mimics the human grading process by first detecting individual risk factors 

(drusen and pigmentary abnormalities) in each eye and then combining values from both 

eyes to develop an AMD score for the patient. Hence, our model closely matches the clinical 

decision-making process, which allows an ophthalmologist to inspect and visualize an 

interpretable result, rather than being presented with an AMD score by a ‘black-box’ 

approach. This approach offers potential insights into the decision-making process, in a 

fashion more typical of clinical practice, and has the advantages of transparency and 

explainability.

Methods and Materials

The specific aims of the study were: (1) to compare the performance of three deep learning 

models generated by three different training strategies; (2) for the most accurate of these 

three models, to compare its performance with that of retinal specialists (AREDS 

investigators whose assessments had previously been recorded during the AREDS).

The reference measure used as the “gold standard” for both training purposes and the 

measurement of performance was the grading previously assigned to each color fundus 

photograph by human graders at the Reading Center for the AREDS, as described below.

Assignment of the AREDS Simplified Severity Scale by Reading Center grading

This study employed the AREDS dataset8. Briefly, the AREDS was a 12-year multi-center, 

prospective cohort study of the clinical course, prognosis, and risk factors of AMD and age-

related cataract. Institutional review board approvals were obtained from each of the 11 

clinical sites and written informed consents were obtained from each of the AREDS study 

participants. Stereoscopic color fundus photographs from both eyes (field 2, 30° imaging 

field centered at the fovea) were obtained at the study baseline, the 2-year follow-up visit, 

and annually thereafter. Due to inherent redundancy in a pair of stereoscopic photographs, 

for each eye, only one of the pair of photographs was used in the current study. In general, 

the left image of the pair was used unless missing from the database, in which the right 

image was utilized instead (~0.5%).

The gold standard annotation (image labeling) was performed by expert human graders at 

the Reading Center (University of Wisconsin). The workflow is described in detail in 

AREDS Report number 641. In brief, a senior grader (grader 1) performed preliminary 

grading of the photograph for AMD severity using a standardized protocol for a 4-category 

scale and a junior grader (grader 2) performed detailed grading of the photograph for 

multiple specific AMD features. A computerized algorithm then extracted the AMD severity 

levels from the detailed gradings (by grader 2). In the case of any discrepancy regarding the 

AMD severity level between the graders, a senior investigator would adjudicate the final 

severity level. All photographs were graded independently, i.e. graders were masked to the 
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photographs and grades from previous visits. Senior graders had around 10-15 years of 

experience and junior graders had up to 5 years of experience.

In addition, a rigorous process of grading quality control was performed at the Reading 

Center including the assessment for the inter-grader and intra-grader agreement overall and 

according to specific AMD features.41. Analyses for potential ‘temporal drift’ was 

conducted by having all graders regrade in a masked fashion the same group of images 

annually for the duration of the study.

For each participant, at each time-point, grades for both eyes were employed to calculate the 

AREDS Simplified Severity Scale score. This scale ranges from 0 to 5, with a score of 0 to 4 

assigned to participants based on the drusen/pigment status in each eye, and a score of 5 

assigned to participants with late AMD (defined as either neovascular AMD or central GA) 

in either eye (Figure 1). This is a modification of the original scoring method described in 

Ferris et al8. As described above, these scores were used as gold standard labels (i.e., 

reference), both for training purposes and to assess the performance of the different models 

developed in this study.

Image datasets used in the training and testing of the deep learning model

The AREDS dataset is publicly accessible to researchers by request at dbGAP (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1) 8. A total 

of 59,302 color fundus images from 4,549 participants were extracted from the AREDS 

dataset. This dataset was divided into two subsets: (1) a testing dataset, which consisted of 

bilateral images captured at the study baseline from 450 participants (i.e. one image from 

each eye); at the time of the study, in addition to undergoing normal Reading Center 

grading, these images were also assessed (separately and independently) by the retinal 

specialists, whose responses were recorded; and (2) a training dataset, which consisted of 

58,402 images from the remaining 4,099 participants, captured at multiple study visits 

(though not all participants had follow-up visits through to 12 years). The images taken from 

the group of 450 participants at visits other than the baseline visit were not used in either 

dataset (Figure S1, available at www.aaojournal.org). Table 1 summarizes the distribution of 

participants by the AREDS Simplified Severity Scale at baseline. Table 2 summarizes the 

distributions of scored AMD features among the training and testing datasets.

Composition of the DeepSeeNet deep learning model

DeepSeeNet was designed as a deep learning model that could be used to assign patient-

based AREDS Simplified Severity Scale scores in an automated manner using bilateral color 

fundus photographs (Figure S3, available at www.aaojournal.org). DeepSeeNet simulates the 

grading process of ophthalmologists by first detecting the presence or absence of AMD risk-

associated features for each eye (large drusen and AMD pigmentary abnormalities) and then 

using this bilateral data to compute a patient-based score (0-5) using the algorithm described 

above.

DeepSeeNet consists of three constituent parts that contribute to its output: (a) a sub-

network, Drusen-Net (D-Net), which detects drusen in three size categories (small/none, 

medium, and large); (b) a sub-network, Pigment-Net (P-Net), which detects the presence or 
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absence of pigmentary abnormalities (hypopigmentation or hyperpigmentation); and (c) a 

sub-network, Late AMD-Net (LA-Net), which detects the presence or absence of late AMD 

(neovascular AMD or central GA).

D-Net, P-Net, and LA-Net were designed as deep convolutional neural networks (CNNs)42, 

each with an Inception-v3 architecture43, which is a state-of-the-art CNN model for image 

classification. In total, there are 317 layers in the Inception-v3 model, comprising a total of 

>21 million weights (learnable parameters) that were subject to training.

Prior to training, we followed the lead of Burlina et al18,35 to preprocess our image data as 

follows: the AREDS fundus photographs were cropped to generate a square image field 

encompassing the macula, followed by scaling the image to a resolution of 224×224 pixels 

(Figure S2, available at www.aaojournal.org). We trained our model in Keras with 

TensorFlow as the backend44,45. During the training process, we updated the model 

parameters using the Adam optimizer (learning rate of 0.0001) for every minibatch of 32 

images46. This reduces the variance of the parameter update, which leads to a more stable 

convergence. The training was stopped after 5 epochs (passes of the entire training set) once 

the accuracy values no longer increased or started to decrease. All experiments were 

conducted on a server with 32 Intel Xeon CPUs, using a wNVIDIA GeForce GTX 1080 Ti 

11Gb GPU for training and testing, with 512Gb available in RAM memory.

Performance comparison between DeepSeeNet and retinal specialists

We compare the performance of the deep learning model with that of retinal specialists, 

using the Reading Center grades as the gold standard, in both cases. For the performance of 

the retinal specialists, we used the AREDS Simplified Severity Scale scores that had 

previously been recorded from the retinal specialists who originally served as the AREDS 

investigators. These scores were recorded at the AREDS baseline study visits, when the 

retinal specialists (n = 88) had independently assessed 450 AREDS participants as part of a 

qualification survey used to determine initial AMD severity for each eye. The clinical 

assessment involved the determination of the following features: drusen size (within 2-disc 

diameter of macula center), presence of pigmentary abnormalities consistent with AMD 

(within 1-disc diameter), AMD subretinal neovascularization (SRNV), previous laser 

photocoagulation for AMD SRNV, central GA, retinal pigment epithelial detachment, and 

disciform scar. These clinical assessments were employed to derive the same patient-based 

Simplified Severity Scale as defined in Figure 1.

Overall accuracy, specificity, sensitivity, Cohen’s kappa47,48, and receiver operating 

characteristic curve analysis were used to evaluate the performance of DeepSeeNet and 

retinal specialists (with reference to the Reading Center grades as the gold standard). The 

kappa values < 0 indicate no agreement, and 0-0.20 indicate slight, 0.21-0.40 fair, 0.41-0.60 

moderate, 0.61-0.80 as substantial, and 0.81-1 almost perfect agreement49. We also followed 

the work of Poplin et al. to assess the statistical significance of the results50. For the test 

dataset, we sampled 450 patients with replacement and evaluated the model on this sample. 

By repeating this sampling and evaluation 2,000 times, we obtained a distribution of the 

performance metric (such as Kappa) and reported 95% confidence intervals.
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Results

Predicting AREDS simplified severity scale

DeepSeeNet predicted AREDS Simplified Severity Scale scores for each participant in the 

testing dataset (n=450). The performance of the deep learning models was measured against 

the Reading Center grades previously assigned to these 450 participants (as the reference or 

gold standard).

We investigated three strategies for training and optimizing DeepSeeNet (details located 

under ‘Training strategies’ in supplementary materials, available at www.aaojournal.org) and 

found the fine-tuning strategy (all layers in a pre-trained Inception-v3 model were fine-tuned 

using the AREDS dataset) achieved the best results, with accuracy=0.67 and kappa=0.56. As 

a result, we will only discuss Fine-tuned DeepSeeNet hereafter.

The performance of Fine-tuned DeepSeeNet was then compared with that of the retinal 

specialists (Table 3). The performance of DeepSeeNet (accuracy=0.671; kappa=0.558) was 

superior to that of the retinal specialists (accuracy=0.599; kappa=0.467).

In addition, the performance of the individual sub-networks utilized in Fine-tuned 

DeepSeeNet (D-Net, P-Net, and LA-Net) was compared with that of retinal specialists 

(Table 4). Figure 2 displays receiver operator characteristic (ROC) curves for the individual 

sub-networks, with the average performance of the retinal specialists shown as single blue 

points. The performance of D-Net and P-net were superior to the performance of the retinal 

specialists in assessing large drusen and pigmentary abnormalities, respectively. The 

accuracy of LA-Net was similar to that of the retinal specialists in assessing the presence of 

late AMD, though its kappa was lower.

Figure 3 shows confusion matrices comparing the performance of Fine-tuned DeepSeeNet 

and the retinal specialists in grading AMD severity (with accuracy comparisons detailed in 

Table S1, available at www.aaojournal.org). These matrices depict the true versus the 

predicted AREDS Simplified Severity Scale scores of the 450 participants at baseline. The 

numbers of predictions are summarized with count values broken down by each class, 

indicating the accuracy and errors made by either DeepSeeNet or the retinal specialists. 

From Figure 3, it is seen that DeepSeeNet correctly classified scores 0-4 more often than the 

retinal specialists, while the retinal specialists correctly classified late AMD more often than 

DeepSeeNet.

Lastly, the performance of Fine-tuned DeepSeeNet was also compared on all images in the 

test set (accuracy=0.662; kappa=0.555) and images at study baseline (Table S2, available at 

www.aaojournal.org). We observed that the overall accuracy is at the study baseline are 

slightly better than overall data, however the kappas are same. While it is true that the 

distribution of AMD severity (for the testing cases) was on the slightly less severe side at 

baseline only, we do not consider this to have introduced ‘bias’, in the true meaning of the 

word, as the test cases were the same for the model as for the humans.
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Interpretation

Although Fine-tuned DeepSeeNet demonstrated a relatively robust performance on 

classifying color fundus photographs according to AMD severity, the mechanics of this and 

other deep learning models are sometimes considered cryptic or lacking in transparency. 

Indeed, for this reason, deep learning models are often referred to as ‘black box’ entities. In 

order to improve transparency, in addition to creating models composed of sub-networks 

with overt purposes, we applied two additional techniques to aid interpretation of the results.

T-Distributed Stochastic Neighbor Embedding (t-SNE) Method

In this study, the internal features learned by Fine-tuned DeepSeeNet were studied using t-

distributed Stochastic Neighbor Embedding (t-SNE; see Glossary), which is well suited for 

the visualization of high-dimensional datasets51. We first obtained the 128-dimensional 

vector of DeepSeeNet’s last dense layer and applied the t-SNE technique to reduce the 

vector into two dimensions for visualization (Figure 4). Figure 4 demonstrates that, for 

drusen, small/none drusen and large drusen were split across the medium drusen point cloud. 

The figure contains some points that are clustered with the wrong class, many of which are 

medium drusen and difficult to identify. For pigmentary abnormality and late AMD, 

presence and absence classes were separated clearly.

Saliency Method

The second method used to aid interpretation of the results towards model transparency was 

the saliency method. In order to visualize important areas in the color fundus images (i.e., 

those areas that contributed most towards classification), we applied image-specific class 

saliency maps to assess manually whether DeepSeeNet was concentrating on image areas 

that human experts would consider the most appropriate to predict AMD severity52. The 

saliency map is widely used to represent the visually dominant location in a given image, 

corresponding to the category of interest, by back-projecting the relevant features through 

the CNN. It helps highlight areas used by the deep learning algorithm for prediction and can 

also provide insight into misclassified images. For example, as seen in the ‘drusen’ category 

of Figure 5, the areas highlighted in the saliency maps are indeed areas with drusen that are 

visually apparent in the color fundus images. Similarly, in the ‘pigmentary changes’ and 

‘late AMD’ categories in Figure 5, the areas highlighted in the saliency maps are visually 

confirmed to correspond with the relevant features in the corresponding color fundus 

images. However, although saliency maps aid interpretation by highlighting the dominant 

areas, they are limited in that they do not completely explain how the algorithm came to its 

final decision.

Discussion

The accuracy of Fine-Tuned DeepSeeNet was superior to that of human retinal specialists 

(accuracy 67% vs 60%), together with moderate agreement with the ground truth as 

indicated by the kappa score. If deep learning approaches were to support eye services in the 

future, comparisons of this kind (with demonstration of non-inferiority to human clinicians) 

would be very important, together with extensive validation across multiple and diverse 

image datasets. Interestingly, while the overall accuracy of Fine-tuned DeepSeeNet was 
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superior, subgroup analysis showed that Fine-tuned DeepSeeNet classified participants with 

Severity Scale scores 0-4 correctly more often than the retinal specialists, while the retinal 

specialists classified late AMD correctly more often than Fine-Tuned DeepSeeNet (Figure 

3). However, one important potential reason for the latter difference is that the number of 

images of late AMD that were available for model training was relatively low at 13.0% of 

the total training set (537 participants). We postulate that further training of Fine-tuned 

DeepSeeNet with larger numbers of late AMD images may improve its performance in this 

area.

Error analysis on misclassified images in the AREDS testing dataset

We considered that useful lessons might be learnt by careful examination of those instances 

where Fine-tuned DeepSeeNet made errors in the Severity Scale classification, particularly 

(as described above) in the case of late AMD (where its accuracy was lower than that of the 

retinal specialists). The matrices shown in Figure 3 demonstrate that, for actual Severity 

Scale scores of 0-4, in the large majority of cases, the score predicted by Fine-tuned 

DeepSeeNet was incorrect by 1 scale step only. We also examined those cases where Fine-

tuned DeepSeeNet incorrectly classified a participant as having late AMD (score 5), and 

found that, in 50% of these cases, non-central GA was present in at least one eye. For the 

purposes of this study, non-central GA was not defined as late AMD, though recent studies 

have expanded the definition of late AMD to include non-central GA7. The misclassification 

of these images by our deep learning model suggest an inherent similarity between these 

groups of images.

Image quality also affected the accuracy of the deep learning model. Of the participants 

classified incorrectly by Fine-tuned DeepSeeNet as having late AMD, 25.0% had digital 

artifacts obscuring the fovea. In addition, image brightness affected the model accuracy. 

Participants with a pale retina, secondary to melanin loss in the RPE or digital artifacts, were 

more likely to be misclassified as having GA. In the future, we aim to address these 

problems by identifying color fundus photographs with inferior quality, either for exclusion 

or for additional processing.

Strengths, limitations, and future work

One current limitation of DeepSeeNet (at least in its present iteration) arises from the 

imbalance of cases that were available in the AREDS dataset used for its training, 

particularly the relatively low proportion of participants with late AMD. As described above, 

this is likely to have contributed to the relatively lower accuracy of DeepSeeNet in the 

classification of late AMD, i.e., through the performance of Late AMD-Net in the overall 

model. However, this limitation may potentially be addressed by further training using 

image datasets with a higher proportion of late AMD cases.

A limitation of this dataset includes the sole use of color fundus photographs as this was the 

only images obtained in a study that began in 1992. Multi-modal imaging would be 

desirable. Other imaging techniques such as optical coherence tomography and fundus 

autofluorescence images were not yet feasible or universally available. Future studies would 

benefit from inclusion such addition methods of imaging.
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Another potential limitation lies in the reliance of DeepSeeNet on higher levels of image 

quality for accurate classification. Unlike in other studies16,19, we did not perform extensive 

pre-processing of images, such as the detection of the outer boundaries of the retina or 

normalization of the color balance and local illumination. It is possible that the use of these 

techniques might have improved the accuracy of the model. However, we deliberately 

avoided extensive pre-processing in order to make our model as generalizable as possible.

We recommend further testing of our deep learning model, using other datasets of color 

fundus images. In addition, it would be interesting for future studies to compare the accuracy 

of the model against those of different groups of ophthalmologists (e.g. retinal specialists, 

general ophthalmologists, and trainee ophthalmologists). Indeed, a recent study on grader 

variability for diabetic retinopathy severity using color fundus photographs suggested that 

retinal specialists have a higher accuracy than that of general ophthalmologists53. In the 

current study, we therefore set the bar as high as possible for the deep learning model, as we 

considered that the retinal specialists might have accuracy as close as possible to that of the 

Reading Center gradings.

In conclusion, this study shows that DeepSeeNet performed patient-based AMD severity 

classification with a level of accuracy higher than a group of human retinal specialists. If 

these results are tested and validated by further reports of superiority across multiple 

datasets (ideally from different countries), it is possible that the integration of deep learning 

models into clinical practice might become increasingly acceptable to patients and 

ophthalmologists. In the future, deep learning models might support eye services by 

reducing the time and human expertise needed to classify retinal images and might lend 

themselves well (through telemedicine approaches) to improving care in geographical areas 

where current services are absent or limited. Although deep learning models are often 

considered ‘black box’ entities (owing to difficulties in understanding how algorithms make 

their predictions), we aimed to improve the transparency of DeepSeeNet by constructing it 

from sub-networks with clear purposes (e.g. drusen detection) and analyzing its outputs with 

saliency maps. These efforts to demystify deep learning models may help improve levels of 

acceptability to patients and adoption by ophthalmologists. We have also analyzed the 

performance of several distinct training strategies; lessons from these approaches may have 

applicability to the development of deep learning models for other retinal diseases, such as 

diabetic retinopathy, and even for image-based deep learning systems outside of 

ophthalmology.

Our new model utilizes deep learning in combination with a clinically useful, patient-based, 

AMD classification system that combines risk factors from both eyes to obtain a score for 

the patient. The deep learning model and data partition are publicly available (https://

github.com/ncbi-nlp/DeepSeeNet). By making these available, we aim to maximize the 

transparency and reproducibility of this study, and to provide a benchmark method for the 

further refinement and development of methodologies. In addition, this deep learning model, 

trained on one of the largest publicly-available color fundus photograph repositories, may 

allow for future deep learning studies of other retinal diseases in which only smaller datasets 

are currently available.
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In the future, we aim to improve the model by incorporating other information such as 

demographic, medical, and genetic data, potentially together with imaging data from other 

modalities. We also plan to evaluate our model on a new dataset from the second Age-

Related Eye Disease Study sponsored by the National Eye Institute (AREDS2). In addition, 

we hope to investigate the combination of OCT-based and CFP-based deep learning models 

once each has been more highly validated individually. Taken together, we expect this study 

will contribute to the advancement and understanding of retinal disease and may ultimately 

enhance clinical decision-making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Adam optimizer
Adam is an optimization algorithm to update network weights. Different from classical 

optimization that maintains a single learning rate for all weight updates and the learning rate 

does not change during training, it computes adaptive learning rates for different parameters 

during the training46.

Back-propagation
A method used in artificial neural networks to calculate a gradient that is needed in the 

calculation of the weights to be used in the network54.

Convolutional neural network
A class of artificial neural network algorithms utilized in deep learning largely for image 

classification.

Deep learning
A subfield of machine learning in which explicit features are determined from the training 

data and do not require pre-specification by human domain experts.

Development set
A mutually exclusive set of images not utilized in the training set. These images are used for 

testing deep learning models, in order to evaluate their performance levels.

Epoch
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A single pass through the entire training set.

Fine-tune
A process to take a neural network model that has already been trained for a given task, and 

make it perform a second task.

Fully-connected layer
A linear operation in which every output neuron has connections to all activations in the 

previous layer.

Hidden layer
The middle layer of a neural network, because its values are not observed in the training set.

ImageNet
An image database comprised of >14 million natural images and their corresponding labels. 

Due to the large number of labeled images, this dataset is often employed in deep learning 

techniques to pre-train models. In a process known as transfer learning, the first layers are 

trained with ImageNet to extract more primitive features from the images (e.g., edge 

detection).

Inception-v3
A convolutional neural network with the inception architecture for computer vision43.

Layer
A container that usually receives weighted input, transforms it with a set of mostly non-

linear functions, and then passes these values as output to the next layer.

Leaning rate
A hyper-parameter that controls how much the weights of deep neural network are adjusted 

with respect the loss gradient.

Multiclass classification
A classification task with more than two classes.

Multilayer perceptron
A class of feedforward artificial neural network that consists of at least one hidden layer.

Over-fitting
The production of an analysis that corresponds too closely or exactly to a particular set of 

data and may therefore fail to fit additional data or predict future observations reliably.

Saliency map
The saliency map is computed for an input image and a given output class It tells us which 

pixels in the image contribute most to the model’s classification of that class. Specifically, 

we first computed the gradient of a given label with respect to the input image. The gradient, 

by definition, points in the direction of the greatest rate of class changes with respect to a 

small change in the input images. That small region of changes in the input image, thereby, 

contributes most and is highlighted in the saliency map.
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Stochastic gradient descent
An iterative method for optimizing the objective function in machine learning.

Training
A data-driven approach requiring tens of thousands of labeled images for the training set.

Training set
The set of images used for training a deep learning model. The network then predicts the 

category of each image and compares it with known “ground truth” labels. The parameters 

in the network are then optimized to improve the model’s predictive ability, in a process 

known as back-propagation.

Transfer learning
The process of training a deep learning model on a large set of data, such that the model’s 

weights are optimized as learned features. These weights are then “transferred” to a new 

neural network to allow for more efficient training of the model on a new training set (often 

smaller in size).

t-SNE
t-SNE is a technique used to visualize and explore complex datasets (particularly those with 

high-dimensional features) in a low-dimensional space. In our case, we use it to creates a 

two-dimensional map by assigning a location to each datapoint (each retinal image). The 

locations are decided by probability distributions, such that datapoints that are similar across 

high-dimensional features end up close to each other, and datapoints that are dissimilar end 

up far apart. As a result, t-SNE plots often seem to display clusters (e.g. the cluster for large 

drusen, in this case), where the datapoints in the cluster all have relatively similar features. It 

can therefore be used to help the classification process, and in the visual inspection and 

exploration of results from deep learning experiments55

Weights
Learnable parameters of the deep learning model.
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A novel deep learning model developed to automatically classify patient-based age-

related macular degeneration severity from bilateral color fundus images achieved 

comparable performance to that of retinal specialist ophthalmologists.
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Figure 1. 
Scoring schematic for participants with and without late age-related macular degeneration. 

Pigmentary abnormalities- 0-no, 1-yes; drusen size- 0-small or none, 1-medium, 2-large; late 

AMD- 0-no, 1-yes.
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Figure 2. 
Receiver operating characteristic curves for large drusen, pigment abnormalities, and late 

AMD classification. Retinal specialists performance levels are represented as a single blue 

point.
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Figure 3. 
Confusion matrices comparing retinal specialists’ performance with that of DeepSeeNet 

based on the test set values. The rows and columns of each matrix are the Scale scores (0-5).
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Figure 4. 
t-SNE visualization of the last hidden layer representation for each sub-network of 

DeepSeeNet. Each point represents a fundus image. Different colors represent the different 

classes of the respective risk factor or late AMD.
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Figure 5. 
Image-specific class saliency maps that highlight the macular region for color fundus 

photographs with large drusen, pigmentary abnormalities, and late AMD.
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Table 1.

Summary of AREDS participants according to AREDS Simplified Severity Scale scores at study baseline (by 

Reading Centre grading).

AREDS Simplified
Severity Scale Score

No. of Participants (% Total)

Training Testing

0 1,258 (30.7) 185 (41.1)

1 653 (15.9) 79 (17.6)

2 461 (11.3) 56 (12.4)

3 303 (7.4) 46 (10.2)

4 279 (6.8) 33 (7.3)

5 537 (13.1) 51 (11.3)

Total participants 4,099 (100.0) 450 (100.0)
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Table 2.

Number of color fundus images in the training and testing sets stratified by risk factors and late AMD 

categorization.

Risk factors
Number of Fundus Images (% Total)

Training (all visits) Testing (baseline)

Drusen

  Small/none 23,625 (40.5) 395 (43.9)

  Medium 16,020 (27.4) 206 (22.9)

  Large 18,757 (32.1) 299 (33.2)

Pigmentary abnormalities

  No 36,712 (62.9) 631 (70.1)

  Yes 21,690 (37.1) 269 (29.9)

Late AMD

  No 50,800 (87.0) 849 (94.3)

  Yes 7,602 (13.0) 51 (5.7)

Total images 58,402 (100.0) 900 (100.0)
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Table 3.

Performance of Fine-tuned DeepSeeNet compared to retinal specialists; on classifying AREDS Simplified 

Severity Scale scores from color fundus photographs.

Fine-tuned DeepSeeNet Retinal specialist

(95% CI) (95% CI)

Overall accuracy 0.671 (0.670, 0.672) 0.599 (0.598, 0.600)

Sensitivity 0.590 (0.589, 0.591) 0.512 (0.511, 0.513)

Specificity 0.930 (0.930, 0.930) 0.916 (0.916, 0.916)

Kappa 0.558 (0.557, 0.560) 0.467 (0.466, 0.468)
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