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Abstract

Purpose: To enable parameter-free, accelerated cardiovascular magnetic resonance (CMR).

Methods: Regularized reconstruction methods, such as compressed sensing (CS), can 

significantly accelerate MRI data acquisition but require tuning of regularization weights. In this 

work, a technique, called Sparsity adaptive Composite Recovery (SCoRe), that exploits sparsity in 

multiple, disparate sparsifying transforms is presented. A data-driven adjustment of the relative 

contributions of different transforms yields a parameter-free CS recovery process. SCoRe is 

validated in a dynamic digital phantom as well as in retrospectively and prospectively 

undersampled cine CMR data.

Results: The results from simulation and six retrospectively undersampled datasets indicate that 

SCoRe with auto-tuned regularization weights yields lower root-mean-square error (RMSE) and 

higher structural similarity index (SSIM) compared to state-of-the-art CS methods. In 45 

prospectively undersampled datasets acquired from 15 volunteers, the image quality was scored by 

two expert reviewers, with SCoRe receiving a higher average score (p<0.01) compared to other CS 

methods.

Conclusion: SCoRe enables accelerated cine CMR from highly undersampled data. In contrast 

to other acceleration techniques, SCoRe adapts regularization weights based on noise power and 

level of sparsity in each transform, yielding superior performance without admitting any free 

parameters.
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Introduction

Aided by advances in hardware and software, MRI has evolved rapidly in the last two 

decades. The availability of high-field scanners and high-performance gradients as well as 

the development of parallel MRI (1, 2) and optimized pulse sequences have led to new 

applications. Parallel MRI alone has enabled 2 to 3 fold acceleration for a variety of MRI 

applications. In the last decade, significant developments have been made in the field of 

compressed sensing (CS), which exploits underlying sparsity in the signal to enable recovery 

from highly undersampled data (3, 4). Dynamic applications of MRI such as cardiovascular 

magnetic resonance (CMR) have especially benefited from CS recovery because of the 

inherent redundancies in spatiotemporal images (5). Using the combination of CS recovery 

and parallel MRI, several studies have demonstrated the feasibility of dynamic MRI with 

improved resolution (6), reduced acquisition time (7), and in higher spatial dimensions (8).

The success of CS is predicated on identifying a sparse representation of the signal being 

recovered. Since the true image content is not known a priori, it is difficult to select a single, 

optimal transform. Dictionary learning methods provide a promising avenue for data-driven 

learning of an optimal sparsifying transform (9). Such methods, however, are 

computationally slow and their performance is sensitive to the values assigned to several 

tuning parameters, including patch size, dictionary size, fraction of the patches used for 

training, required sparsity level, extent of patch overlap, and data consistency weight (10). A 

more common remedy is to use composite regularization with two or three disparate 

sparsifying transforms (4, 11) or use sparsity averaging where a composite sparsifying 

transform is constructed by concatenating multiple individual sparsifying transforms (12, 

13). These approaches expose the rich structure in MR images that is not revealed by a 

single transform. However, the level of sparsity may differ widely across different 

transforms. For example, Figure 1 shows the decomposition of a typical cine image series 

into nondecimated wavelet subbands. The disparity in the level of sparsity across different 

wavelet subbands is obvious. This vast disparity in sparsity shows both the opportunity and 

challenge of using a composite regularization. On one hand, multiple transforms exploit rich 

structure in the data, but on the other hand, such approaches suggest the use of multiple 

tuning parameters (regularization weights).

The performance of any regularized reconstruction is sensitive to the selection of 

regularization weight, and methods to adjust these weights have a long history (14, 15). 

Current practices in MRI include: (i) finding an “appropriate” weight based on visual 

assessment of the resulting image quality, (ii) learning the weights from high-quality, 

independent datasets and applying those values to the datasets of interest, and (iii) using 

some heuristic weights based on a specific normalization of the data. Classical methods, 

such as L-curve, discrepancy principle, and generalized cross-validation (16) are often listed 

as plausible options to adjust regularization weight but are seldom used due to a significant 

computation burden or a nontrivial extension to CS-based nonlinear methods. More recently, 

Weller et al. extended Stein’s Unbiased Risk Estimate for parameter tuning in MRI (17). 

Such methods, however, either require an explicit computation of the Jacobian matrix of the 

nonlinear reconstruction function or a Monte Carlo approximation to the trace of the 

Jacobian, leading to increased computation time. More importantly, all the above mentioned 
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approaches are typically described in the context of single-parameter tuning and their use in 

the multiple-parameter context is significantly more difficult.

In this work, we present and validate a versatile CS recovery method, called Sparsity 

adaptive Composite Recovery (SCoRe), that provides high acceleration by exploiting 

sparsity across multiple, disparate transforms and provides a data-driven tuning of 

regularization weights. The theoretical basis for SCoRe has been provided here (18), where 

the algorithm was referred to as the “composite L1 (Co-L1).” For validation, we have 

applied SCoRe to simulated cine data, retrospectively downsampled segmented cine, and 

prospectively downsampled real-time, free-breathing cine data.

Theory

For a spatiotemporal image sequence, the most commonly employed SENSE-based CS-

recovery can be expressed as the following ℓ2-ℓ1 optimization problem

x =  argmin 
x

1
σ2‖y − Ax‖2

2 + λ‖Ψx‖1, [1]

where x ∈ ℂN × 1 is a vectorized spatiotemporal image, y ∈ ℂM × 1 is measured noisy data, σ2 

is noise variance in the measured data, Ψ ∈ ℂL × N is a spatiotemporal sparsifying transform 

with L ≥ N, λ is the regularization weight, and A ∈ ℂM × N is the measurement operator for 

parallel MRI that includes multiplication with sensitivity maps, discrete Fourier transform, 

and undersampling. Commonly employed choices for Ψ include Discrete Wavelet 

Transform (DWT) (19), Nondecimated Wavelet Transform (NWT) (20), Temporal Fourier 

Transform (TFT) (21), and Total Variation (TV) operator (22).

To exploit sparsity in multiple transforms, one could build Ψ ∈ ℂ
∑d = 1

D Ld × N
 by vertically 

concatenating D > 1 sparsifying transforms (12), each with Ld rows. For example, Ψ can be 

constructed by concatenating spatial and temporal TV operators or different subbands of 

NWT. This formulation, however, ignores disparity in the level of sparsity among individual 

transforms. For example, in CMR, the temporal TV representation is typically more sparse 

than the spatial TV representation. Likewise, the lowpass (approximation) subband of NWT 

is rarely sparse for most CMR applications. For this reason, composite regularization is 

often utilized for MRI or CMR image recovery, leading to the following optimization 

problem

x =  argmin 
x

1
σ2‖y − Ax‖2

2 + ∑
d = 1

D
λd‖Ψdx‖1, [2]

where Ψd represents the dth sparsifying transform with Ld rows, and λd represents the 

corresponding regularization weight. The following SCoRe algorithm attempts to recover x 
while auto-tuning the λd values.
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Algorithm 1 The SCoRe Algorithm

1: input: A, y, normalized Ψd d = 1
D , σ2, ϵ

2: initialization: λd
(1) = 1/max AHy ∀d

3: for i = 1, 2, 3, ⋯

4:  x(i)   argmin 
x

1
σ2‖y − Ax‖2

2 + ∑d = 1
D λd

(i)‖Ψdx‖1

5:  λd
(i + 1) 1

τ
2

1
Ld

‖Ψdx(i)‖1 + ϵ
, d = 1, …, D

6: end

7: output: x(i)

In Algorithm 1, τ = 1
N ∑d Ld represents the level of redundancy, i.e., the ratio of the total 

number of coefficients to the total number of pixels or voxels, and ensures that regularizing 

effects of multiple transforms are averaged and not accumulated. As described in Line 5 of 

Algorithm 1, regularization weight, λd, of sparse representation, Ψdx, is inversely related to 

its normalized ℓ1-norm, i.e., mean of the absolute values of the coefficients in that 

representation. As a result, SCoRe preferentially emphasizes the influence of sparse 

representations with small normalized ℓ1-norm. To avoid nonuniform scaling among different 

Ψd, the ℓ2-norm of the rows of Ψd is set to a constant value. For typical choices of Ψd and 

realistic x, the vector Ψdx will almost never be exactly zero; however, a small constant 

0 ≤ ϵ < < 1
Ld

‖Ψdx(i)‖1∀d can be optionally added to prevent denominator from reaching 

zero. For MRI, σ2 can be readily calculated from a pre-scan. The main computational burden 

of Algorithm 1 is the convex ℓ2-ℓ1 optimization given in Line 4, which can be solved using 

any of several algorithms (23, 24, 25, 26).

Methods

For validation, we performed a simulation and two in vivo studies, one with retrospective 

undersampling (RU) and one with prospective undersampling (PU). For both in vivo studies, 

the protocol involving human subjects was approved by the institutional review board, and a 

written consent was obtained from each volunteer. For each study, results from SCoRe are 

compared with three other state-of-the-art CS methods: low-rank and sparse (L+S) (27), 

spatiotemporal 3D total variation (3DTV) (28) and spatiotemporal 3D NWT (3DNW) (26).

Simulation Study

The simulation study is based on the MRXCAT digital phantom for free-breathing cardiac 

cine (29). In its default setting, the phantom has 408 × 408 pixels, 1 mm isotropic spatial 

resolution, twelve receive coils, and 96 frames that span four cardiac cycles. To mimic the 

variations in the MRI acquisition process, the image recovery process was repeated for these 
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150 combinations of simulation parameters: three spatial resolutions (3.20 × 3.20 mm2, 2.25 

× 2.25 mm2, and 1.60 × 1.60 mm2), two temporal resolutions (24 frames per cardiac cycle 

and 12 frames per cardiac cycle), five pre-downsampling SNR values (18 dB, 21 dB, 24 dB, 

27 dB, and 30 dB), and five acceleration rates (R = 4, 8, 12, 16, and 20). The spatial 

resolution was adjusted by cropping the k-space, while the temporal resolution was lowered 

from its default value of 24 frames per cardiac cycle to 12 frames per cardiac cycle by 

discarding even-numbered frames. The sampling pattern used for undersampling was 

generated using VISTA (30). Supporting Information Figure S1 shows an example VISTA 

pattern. The reconstruction was performed using SCoRe, L+S, 3DTV, and 3DNW.

In Vivo Study with RU

Two healthy volunteers were imaged on a 1.5 T scanner (MAGNETOM, Avanto, Siemens 

Healthcare, Erlangen, Germany) with an 18-channel cardiac array, where anterior 6-channel 

body array was combined with 12 channels in the posterior spine array coil. Three fully 

sampled slices were collected from each subject, resulting in six datasets. Each slice was 

collected under a separate breathhold using balanced SSFP. For the first volunteer, three 

parallel short-axis slices were collected, with a gap of 15 mm between the neighboring 

slices. To enhance data diversity, one short-axis and two long-axis slices were collected from 

the second volunteer. Other imaging parameters included: 8 to 10 mm slice thickness, 50° to 

55° flip angle, 1.8 to 2.5 mm isotropic spatial resolution, 360 to 400 mm FOV in the readout 

direction, 280 to 400 mm FOV in the phase-encode direction, 33 to 36 ms temporal 

resolution, 1.4 to 1.7 ms TE, 2.8 to 3.2 ms TR, and 11 to 15 heartbeats per breathhold. The 

datasets were retrospectively undersampled at rates R = 2, 4, 6, 12, 15, 18 using VISTA. To 

calculate root-mean-square error (RMSE) and structural similarity index (SSIM), reference 

images were reconstructed from the fully sampled datasets using the 3DNW algorithm with 

the regularization turned off, which generated the least squares solution.

In Vivo Study with PU

Fifteen volunteers were imaged on a 1.5 T scanner (MAGNETOM, Avanto, Siemens 

Healthcare, Erlangen, Germany) with an 18-channel cardiac array. Three views (short-axis, 

2-chamber, and 4-chamber) were collected from each volunteer, resulting in 45 datasets. 

Each slice was collected during free-breathing using balanced SSFP with VISTA 

undersampling. Other imaging parameters included: 8 to 10 mm slice thickness, 60° to 80° 

flip angle, 1.8 to 2.2 mm spatial resolution in the readout direction and 2.2 to 2.5 mm spatial 

resolution in the phase-encode direction, 350 to 450 mm FOV in the readout direction, 250 

to 380 mm FOV in the phase encoding direction, 9 to 12 acceleration rate, 38 to 50 ms 

temporal resolution, 1.3 to 1.4 ms TE, 2.5 to 3.1 ms TR, and 4 heartbeats per scan.

Image Reconstruction

All the images were reconstructed in 64-bit Matlab (Mathworks, Natick, MA). Sensitivity 

maps were estimated from time-averaged data using ESPIRiT (31). To reduce computation 

burden, coil compression was employed to generate 12 virtual coils. To solve the ℓ2-ℓ1 

optimization for 3DNW (Eq. 1 without the 1
σ2  factor and with Ψ defining the vertical 

concatenation of eight subbands of single-level 3D NWT with Haar filter), the bFISTA 
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algorithm (26) was used. For SCoRe, the subbands of 3D NWT were treated as eight 

separate sparsifying transforms, with their regularization weights adjusted via Line 5 of 

Algorithm 1. To solve Line 4 in Algorithm 1, the bFISTA algorithm was employed. For 

3DTV (Eq. 1 without the 1
σ2  factor and with Ψ defining the vertical concatenation of two 

spatial and one temporal finite difference operators), where Ψ does not yield a tight frame, 

i.e., ΨHΨ ≠ I a more general algorithm, called mFISTA (25), was used. For L+S, Matlab 

code was downloaded from here (32).

All the reconstructions were performed off-line using an Ubuntu 14.04 workstation with 12-

core Intel Core i7–5820K CPU running at 3.3 GHz with 64 GB system memory. For SCoRe, 

the number of inner iterations (to solve Line 4 in Algorithm 1 using bFISTA) was set at 10. 

The number of outer iterations for SCoRe and the total number of iterations for 3DNW, 

3DTV, and L+S were selected by qualitatively observing the RMSE convergence curves 

(‖x − x(i)‖2/‖x‖2) in a small number of training datasets selected from the simulation study. 

Based on the RMSE convergence curves (not shown), 100 bFISTA iterations for 3DNW, 160 

mFISTA iterations for 3DTV, 250 iterations for L+S, and 16 outer iterations (the for loop in 

Algorithm 1) for SCoRe were adequate to reach convergence. In addition, the value of the 

normalized image update ‖x(i) − x(i − 1)‖2/‖x(i)‖2 was recorded during the training phase, 

with the minimum value observed to be 3 × 10−5 across all reconstruction methods. Based 

on this information, the early termination threshold, δ, (i.e., terminate if 

‖x(i) − x(i − 1)‖2/‖x(i)‖2 < δ) was conservatively set at 2 × 10−6 for all methods. For SCoRe, 

the early termination criterion was set for the inner loop. The maximum number of iterations 

and the value of δ were not changed across different studies. For the in vivo study with PU, 

average reconstruction time, including preprocessing steps, was 123 s, 251 s, 347 s, and 173 

s for 3DNW, L+S, 3DTV, and SCoRe, respectively. A Matlab implementation of SCoRe is 

provided on Github: https://github.com/MRIOSU/SCoRe_demo.

For every in vivo dataset, a 250 ms pre-scan was used to pre-whiten noise across receive 

channels and to estimate the σ2 used in Line 4 of Algorithm 1. To avoid convergence to bad 

minima in SCoRe, extremely large values of λd, which can set all coefficients in the dth 

representation to zero, were discouraged in the earlier iterations of SCoRe. To this end, the 

maximum value of λd, across different subbands, was capped at 20 times the minimum 

value of λd during the first 50% of the outer iterations, i.e., λd = min λd, 20 min
d

λd ∀d. This 

restriction was removed during the last 50% of the outer iterations. The value of ϵ was set at 

0.01% of the maximum absolute value from all coefficients. The SCoRe-based tuning of 

regularization weights was not influenced by a particular choice of ϵ because 

ϵ < < 1
Ld

‖Ψdx(i)‖1∀d. For 3DNW, L+S, and 3DTV, the data were similarly pre-whitened but 

the resulting value of σ2 was not used to scale the ℓ2 term in Eq. 1. Instead, as per common 

practice for regularized MRI reconstruction, the data were normalized such that the 

maximum absolute value in the measured k-space was set to a positive constant (33).
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The regularization weights for 3DNW (λNW), L+S (λL and λS), and 3DTV (λTV) were 

manually tuned using one dataset from each study. To avoid artifacts associated with 

thresholding the non-sparse LLL subband (34) and thus to improve RMSE, λLLL was set at 

one fourth of the value, λNW, used for other seven subbands in 3DNW. For simulation, the 

values were adjusted using the dataset with medium spatial resolution, high temporal 

resolution, R = 12, and SNR = 24 dB. For the in vivo study with RU, Dataset #6 at R = 9 

was used to tune those parameters. For these two studies, the values of λNW, λL, λS, and 

λTV were adjusted to minimize RMSE. For the in vivo study with PU, one dataset (out of 

45) was randomly selected for parameter tuning; the images were reconstructed for a 

number of different regularization weights, and the image quality, assessed by an expert 

(OPS) with over twenty-five years of experience in CMR, was used to select the optimal 

values.

Quality Comparison

For the simulation study and the in vivo study with RU, the comparison was based on RMSE 

and SSIM. For the in vivo study with PU, the comparison was based on visual assessment of 

images by two experts (JC and NJ) each with over ten years of experience in CMR. For each 

of the 45 datasets, the movies originating from four reconstruction methods were placed next 

to one another on a PowerPoint slide. The order of the movies was randomly varied from 

slide to slide. The reviewers were instructed to assign a score (scale 1 to 5) to each movie, 

with a score of 5 (excellent) indicating images that are equivalent to or better than a typical 

segmented cine at 1.5 T, score of 4 (good) indicating images with visible but insignificant 

degradation, score of 3 (acceptable) indicating images that are of diagnostic quality but have 

significant degradation, score of 2 (poor) indicating images that may not be of diagnostic 

quality and have severe degradation, and the score of 1 (very poor) indicating images that 

are unusable. For datasets where two or more reconstruction methods received the highest 

score, the reviewers were instructed to select the results that they thought had the highest 

image quality.

Results

The results from the simulation study are summarized in Figure 2. SCoRe was compared, in 

terms of RMSE and SSIM, with 3DNW, L+S, and 3DTV for 150 different combinations of 

simulation parameters. For 3DNW, the comparison was also drawn after the regularization 

weight was increased or decreased from its manually tuned value by a factor of 3. Overall, 

SCoRe outperformed the other three reconstruction methods with lower RMSE and higher 

SSIM. To demonstrate that the superior performance of SCoRe was not merely due to the 

inclusion of 1
σ2  term, the results with only one SNR (24 dB) are plotted separately in Figure 

3. Representative results for one of the 150 simulated datasets are shown in Figure 4; a 

single frame is shown along with the corresponding error map.

The results from the in vivo study with RU are summarized in Figure 5 and Supporting 

Information Figure S2; SCoRe was compared, in terms of RMSE and SSIM, with 3DNW, L

+S, and 3DTV for seven different acceleration rates (R = 2, 4, 6, 9, 12, 15, 18). SCoRe 

consistently outperformed the other reconstruction methods, with more pronounced 
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advantage at higher acceleration rates. For this study, the performance of L+S was only 

slightly inferior to SCoRe. Figure 6 provides an example showing different reconstruction 

methods, with SCoRe showing the least signal in the error map.

The results from the in vivo study with PU are summarized in Table 1. Paired t-tests were 

used to compare the image quality score of SCoRe with other CS methods, with SCoRe 

receiving significantly (p<0.01) higher score than each of the other three methods. The 

SCoRe was also the most frequent choice (62.2%) by the reviewers in terms of overall image 

quality. Figure 7 shows two different frames from one of the datasets, with 3DNW, L+S, and 

3DTV showing visible artifacts in or around the myocardium. The figure also shows x-t 

profile, with SCoRe showing minimal artifacts while preserving pertinent details. Related 

time-resolved images comparing different reconstruction methods are included as 

Supporting Information Video S1 (2-chamber view, R = 11.1). Two additional time resolved 

images, Supporting Information Video S2 (short-axis view, R = 10.2) and Supporting 

Information Video S3 (4-chamber view, R = 11.1) are also included. In these videos, 3DNW, 

L+S, 3DTV, and SCoRe are arranged from left to right. Figure 8 provides an example where 

SCoRe was not deemed the best by the reviewers perhaps due to softer appearance of the 

endocardium edges. The relative values of the SCoRe-tuned regularization weights for eight 

different sparse representations are captured in Figure 9.

To demonstrate the application of SCoRe for other sparsifying transforms, the simulation 

study was repeated with NWT replaced with TV. For TV, two spatial and one temporal finite 

difference operators were used to create three distinct sparse representations. Supporting 

Information Figure S3 shows results from the combination of SCoRe and TV. To further 

illustrate that the benefit of SCoRe is tied to not just optimal but also independent tuning of 

the regularization weights, we compared SCoRe with a reduced version of SCoRe, called 

SCoRe-Red; see Supporting Information Figure S4. For SCoRe, the regularization weights 

for all eight subbands (λLLL, λHLL, λLHL, λHHL, λLLH, λHLH, λLHH, and λHHH) were 

auto-tuned independently. In contrast, for SCoRe-Red, the NWT coefficients were divided 

into only two groups, i.e., LLL and non-LLL, and the resulting regularization weights (λLLL
and λLLL.) were auto-tuned following the procedure similar to that for SCoRe.

Discussion

Regularized MRI reconstruction methods enable higher acceleration than possible with 

unregularized methods. In particular, CS-inspired reconstruction methods that exploit 

sparsity and/or low-rank property have become increasingly popular and have demonstrated 

great promise for a variety of MRI applications (35, 22, 36). Application of CS often 

involves selecting a sparsifying transform and related regularization weight. To exploit rich 

data structure, especially for spatiotemporal applications, it is a common practice to utilize 

multiple sparsifying representations. Since the level of sparsity can vary significantly across 

different sparse representations, a single regularization weight, even when carefully tuned, 

may yield suboptimal results. The level of disparity among different sparse representations 

can be particularly evident for dynamic applications, where temporal sparsity is typically 

more pronounced than spatial sparsity, as demonstrated in Figure 1. In addition, considering 
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that bandwidth, slice thickness, coil array, flip angle, spatial and temporal resolutions, 

acceleration rate, and patient habitus can vary significantly from one scan to another and 

also from subject to subject, optimizing multiple parameters for such a diversity of 

acquisition settings may not be practical. The proposed method, SCoRe, not only provides 

unmatched acceleration by exploiting sparsity across multiple representations but it also 

provides a data-driven tuning of all free parameters and thus eliminates the need to hand-

tune regularization weights. Also, SCoRe is amenable to fast algorithms, such as bFISTA 

(26).

We have validated SCoRe using three different CMR studies. In the simulation study, to 

mimic the diversity encountered in CMR acquisition, the data were simulated with 150 

different combinations of spatial and temporal resolution, acceleration rate, and SNR. The 

performance of the four tested reconstruction methods was similar under low acceleration 

rates, where accurate recovery was possible even without regularization. For more 

challenging scenarios, e.g., high acceleration or low SNR, the advantage of SCoRe over the 

other method was more pronounced. In addition to highlighting the benefits of SCoRe, 

Figure 2 also highlights the impact of suboptimally selecting the regularization weight. A 

factor of 3 variation in λNW showed a tangible degradation in the performance of 3DNW.

SCoRe is equally applicable when sparse representations are merged into a smaller number 

of representations. For example, one could treat all NWT subbands as one representation or 

divide them into two (LLL and non-LLL) representations. However, the full benefit of 

SCoRe is realized only when the regularization weights for disparate representations are 

adjusted independently. In Supporting Information Figure S4, we compare RMSE of SCoRe 

with a reduced version of SCoRe, called SCoRe-Red. Since the only difference between 

SCoRe and SCoRe-Red is the number of distinct sparse representations, the superior 

performance of SCoRe highlights the benefit of treating disparate representations 

individually.

To comply with existing practice, the 1
σ2  factor was not included in 3DNW, L+S, and 3DTV 

reconstructions. However, the superior performance of SCoRe should not be solely 

attributed to this factor. As shown in Figure 3, SCoRe also maintained its advantage over 

other methods when SNR was restricted to the value (24 dB) used to optimize parameters 

for 3DNW, L+S, and 3DTV. An example comparing different reconstruction methods is 

shown in Figure 4, with SCoRe exhibiting the smallest error signal. Compared to 3DNW, the 

reconstruction using 3DTV showed more error around the edges. This is because 3DTV 

prefers perfect edges while the underlying true phantom has more realistic, soft edges. In 

comparison to other methods, L+S results look visually noisy with the error more 

pronounced in the moving parts of the phantom, which do not comply with the low rank 

constraint.

The in vivo study with RU agrees with the simulation study. SCoRe is consistently superior 

to other methods in terms of RMSE and SSIM, especially at high acceleration rates. 

Compared to the simulation study, the performance of L+S is only marginally inferior to 

SCoRe. We conjecture that relative improvement in the performance of L+S is due to lack of 
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respiratory motion for the in vivo data, which makes the low rank constraint more effective. 

Figure 6 shows a representative frame from Dataset #1 reconstructed at R = 12. All 

reconstruction methods present some level of blurring, which is expected at the high 

acceleration rate of 12. Both 3DNW and 3DTV show blocky artifacts in the ventricular 

blood pool, while L+S exhibits more noise across the image. In contrast, SCoRe is devoid of 

major artifacts.

For the in vivo study with PU, since the ground truth was not available, the images were 

subjectively evaluated by two experts. As summarized in Table 1, SCoRe received the 

highest score from both the reviewers and was the most frequent choice (in 62.2% of cases) 

in terms of “best” overall quality. In contrast, 3DNW, on average, was selected in 28.9% of 

cases and 3DTV and L+S were selected in less than 10% of cases. Also, SCoRe and 3DNW 

were the only methods that did not receive a score below 3 (acceptable). Typical results from 

the different reconstruction methods are shown in Figure 7 and Supporting Information 

Videos S1, S2, and S3. The poor performance of 3DTV can be attributed to blocky artifacts 

that are easily noticeable in dynamic images. The relatively poor performance of L+S can be 

attributed to a noisy appearance due to lack of explicit spatial regularization or perhaps poor 

generalization of λS and λL tuning that was performed using a single dataset in each study. 

SCoRe results, however, were not deemed superior in all instances. Figure 8 shows an 

example where both reviewers preferred 3DNW over SCoRe. Although SCoRe images have 

the least amount of blocky artifact compared to other reconstructions, a slightly softer 

appearance of endocardium edges in SCoRe may have led to lower scores.

For the in vivo datasets with PU, relative regularization weights for eight subbands are 

reported in Figure 9. A large difference among the regularization weights points to widely 

varying levels of sparsity for different subbands. The last four subbbands have higher 

regularization weights due to stronger redundancies along the temporal (third) dimension, 

leading to more sparse representations in LLH, HLH, LHH, and HHH. The value of λLHL is 

slightly lower than that of λHLL. This difference can be attributed to slightly worse spatial 

resolution along the phase encoding dimension, which, in most cases, was the second spatial 

dimension.

It is worth mentioning that the performances of 3DNW, L+S, and 3DTV could be further 

improved. For 3DNW, separately adjusting different wavelet subbands should improve the 

performance. In fact, this is what separates 3DNW from SCoRe, where the regularization 

weight of each subband is auto-tuned. However, for 3DNW, manually tuning the 

regularization weights of all eight subbands may not be practical, especially considering the 

variations in MRI setup and in underlying sparsity. For 3DTV, performance could be 

improved by separately adjusting the regularization weights of two spatial and one temporal 

dimensions (37). Also, 3DTV may benefit from employing higher order derivatives, which 

can combat the blocky appearance associated with the first derivative (38). These remedies, 

however, would introduce additional tuning parameters. Likewise, L+S could also be 

improved by incorporating spatial regularization, e.g., spatial TV. Again, including 

additional regularization terms will make manual adjustment more challenging.
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We recognize that SCoRe has several limitations. First, the optimality of SCoRe’s parameter 

tuning can be justified using variational expectation maximization under the Laplacian prior 

or fully Bayesian estimation under a hierarchical Laplace-Gamma prior (18), but the images 

generated by SCoRe may not be subjectively viewed as optimal. As shown in Figure 8, a 

viewer may find a SCoRe reconstruction too soft or too noisy. Also, since the estimation of 

regularization weights in SCoRe is data-driven, low SNR for a specific sparse representation 

can lead to imprecise estimation of its regularization weight, which, in turn, can impact the 

image quality. However, in the studies presented in this work, we did not encounter an 

instance where SCoRe images were overwhelmingly under- or overregularized. Also, if 

needed, the overall regularization can be manually adjusted by scaling all λd values 

generated by SCoRe, for example, using discrepancy principle (39). This remedy preserves 

the relative ratios between different λd and thus introduces only one tuning parameter. 

Second, SCoRe is nonconvex and thus its performance may depend on the initialization. To 

evaluate the impact of initialization on the final SCoRe reconstruction, we reconstructed six 

in vivo datasets (R = 12) with RU from two different initializations, i.e., AHy and the time-

averaged image replicated across all frames. In all cases, the impact of initialization on 

RMSE was less than 0.2%, with no discernible differences between the reconstructed 

images. In addition to the initialization of the image, SCoRe is also sensitive to the 

initialization of λd. If the value of λd ∀ d becomes comparable to or larger than the 

maximum value of the coefficients in the dth sparse representation, it can threshold the entire 

representation to zero, which, in turn, will further increase λd (Line 5 of Algorithm 1), 

ensuring that the dth representation stays zero. To reduce the possibility of extremely large 

λd values, we forced the maximum value of λd, during earlier iterations of SCoRe, to be 

capped at 20 times the minimum value of λd, as explained in the previous section. In 

addition, the value of ϵ was set to 0.01% of the maximum absolute value rather than the 

machine precision to further discourage extreme values of λd. Although not included in the 

presented implementation of SCoRe, the value of ϵ can be lowered to machine precision in 

the later iterations of SCoRe. Third, the computation times of SCoRe was comparable to that 

of non-adaptive CS methods, making it a practical choice for clinical implementation.

In this work, we limited the different sparse representations to be subbands of NWT or 

spatial and temporal finite differences, but SCoRe is equally applicable for other sparsifying 

transforms or patch-based processing, where the regularization weight of each patch is 

adjusted independently. Another potential extension of SCoRe is to expand the number of 

sparse representations to include both NWT subbands and TFT, with NWT exploiting 

spatially and temporally local structures and TFT exploiting semiperiodic physiological 

motions. Yet another potential application of SCoRe is to auto-tune the parameters for XD-

GRASP (40). With two temporal and three spatial dimensions, XD-GRASP can benefit from 

the data-driven auto-tuning provided by SCoRe. Also, SCoRe can be applied to non-cardiac 

MRI applications and can be readily extended to 3D.

Conclusions

We have presented a reconstruction method, SCoRe, that can employ a large number of 

sparse representations and provides data-driven auto-tuning of regularization weights. 
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SCoRe is amenable to fast algorithms and is parameter free, making it an attractive 

candidate for clinical use. Based on the preliminary results, SCoRe outperforms other state-

of-the-art CS method in terms of RMSE, SSIM and subjective evaluation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Decomposition of a typical GRAPPA-reconstructed segmented cardiac cine dataset (input) 

using 3D nondecimated wavelet transform (NWT) with single-level Haar wavelet filter. 

LLL, HLL, LHL, HHL, LLH, HLH, LHH, and HHH represent eight NWT subbands in the 

(x, y, t) domain, with x, y, and t representing vertical axis, horizontal axis, and time, 

respectively. Only one representative temporal frame is shown. Compared to the first four 

subbands (LLL, HLL, LHL, and HHL), the intensity of the last four subbands (LLH, HLH, 

LHH, and HHH) was amplified by a factor of 8 for better visualization. The fraction of 

coefficients in each subband that is larger than 1% of the maximum value across all 

subbands is 0.96, 0.37, 0.29, 0.16, 0.13, 0.09, 0.05, and 0.04 for LLL, HLL, LHL, HHL, 

LLH, HLH, LHH, and HHH, respectively. This disparity in the level of sparsity across 

different subbands is also visually evident.
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Figure 2: 
RMSE (top row) and SSIM (bottom row) comparison of various image reconstruction 

methods for the simulation study. SCoRe is compared to 3DNW with three different values 

of regularization weight, L+S, and 3DTV. The regularization weights for 3DNW, L+S, and 

3DTV were manually optimized for one specific simulation setting. Compared to 3DNW, 

the regularization weight was decreased and increased by a factor of 3 for 3DNW- and 

3DNW +, respectively. The identity line is represented in red, and each dot corresponds to a 

unique combination of simulation parameters, i.e., spatial resolution, temporal resolution, 

SNR, and acceleration.
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Figure 3: 
A subset of the data shown in Figure 2. Results from only one SNR value (24 dB) are 

shown.
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Figure 4: 
Reconstructed images from the simulation study. Representative frames from noiseless, fully 

sampled (FS) data and four different reconstruction methods are shown in the first row. 

Corresponding error maps after five-fold amplification are shown in the second row. This 

particular dataset was simulated with high temporal resolution, medium spatial resolution, R 
= 16, and SNR = 27 dB.
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Figure 5: 
RMSE comparison of various image reconstruction methods for the in vivo study with RU. 

The identity line is shown in red, and the seven dots in each panel represent different 

acceleration rates (R = 2, 4, 6, 9, 12, 15, 18). In all cases, the values of RMSE for SCoRe 

monotonically increased with R.
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Figure 6: 
Reconstructed images from the in vivo study with RU. A representative frame from (Dataset 

#1) is shown. Results from fully sampled (FS) reference and four different reconstruction 

methods are shown in the first row. Corresponding error maps after three-fold amplification 

are shown in the second row. For the images shown, the data were retrospectively 

undersampled at R = 12.
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Figure 7: 
Representative results from a real-time cine dataset collected under free-breathing. The data 

were prospectively undersampled at R = 11.1. The numbers in parenthesis are the scores 

given by the two reviewers. Two different frames are shown. The x-t profiles (third row) are 

plotted for the location shown with dashed line in the second row. The green arrows 

highlight artifacts on the myocardium.
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Figure 8: 
Representative results from a real-time cine dataset where SCoRe was not considered the 

best by the reviewers. The data were prospectively undersampled at R = 11.6. The numbers 

in parenthesis are the scores given by the two reviewers. Two different frames are shown. 

The x-t profiles (third row) are plotted for the location shown with dashed line in the second 

row. The green arrows highlight endocardium edges.
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Figure 9: 
The final values of SCoRe-tuned regularization weights of 3D (x-y-t) NWT subbands. Only 

the relative values are shown, with the value of λLLL normalized to one for each dataset. The 

error bars represent the standard deviation across 45 real-time cine datasets with PU.
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Table 1:

Scores (mean±std.) assigned to the four reconstruction methods by the two reviewers. The numbers in 

parenthesis indicate the relative frequency of being considered the “best” out of the four image series. The 

pooled score of SCoRe was significantly higher (p<0.01) than the other three CS methods.

3DNW L+S 3DTV SCoRe

Reviewer #1 3.31±0.47
(31.1%)

3.02±0.34
(4.4%)

3.13±0.41
(6.7%)

3.51±0.55
(57.8%)

Reviewer #2 3.73±0.44
(26.7%)

3.27±0.50
2.2%)

3.35±0.48
(4.4%)

3.93±0.45
(66.7%)

Pooled 3.52±0.50
(28.9%)

3.14±0.44
(3.3%)

3.24±0.46
(5.6%)

3.72±0.54
(62.2%)
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