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Abstract

Purpose: To investigate SUPER, a novel blockwise curve-fitting method for accelerating 

parametric mapping with very fast reconstruction.

Methods: SUPER uses interleaved k-space undersampling, which enables a blockwise 

decomposition of the otherwise large-scale cost function to improve the reconstruction efficiency. 

SUPER can be readily combined with SENSE to achieve at least 4-fold acceleration. D-factor, a 

parametric-mapping counterpart of g-factor, was proposed and formulated to compare spatially 

heterogeneous noise amplification due to different acceleration methods.

As a proof-of-concept, SUPER/SUPER-SENSE was validated using T1 mapping, by comparing 

them to alternative model-based methods, including MARTINI and GRAPPATINI, via 

simulations, phantom imaging, and in vivo brain imaging (n=5), over criteria of normalized root-

mean-squares error (NRMSE), average d-factor, and computational time per voxel (TPV). A novel 

SUPER-SENSE MOLLI cardiac T1-mapping sequence with improved resolution (1.4mm×1.4mm) 

was compared to standard MOLLI (1.9mm×2.5mm) in 8 healthy subjects.

Results: In brain imaging, 2-fold SUPER achieved lower NRMSE (0.04±0.02 vs 0.11±0.02, 

p<0.01), lower average d-factor (1.01±0.002 vs 1.12±0.004, p<0.001), and lower TPV (4.6ms

±0.2ms vs 79ms±3ms, p<0.001) than 2-fold MARTINI. Similarly, 4-fold SUPER-SENSE 

achieved lower NRMSE (0.07±0.01 vs 0.13±0.03, p=0.02), lower average d-factor (1.15±0.01 vs 

1.20±0.01, p<0.001), and lower TPV (4.0ms±0.1ms vs 72ms±3ms, p<0.001) than 4-fold 

GRAPPATINI. In cardiac T1 mapping, SUPER-SENSE MOLLI yielded similar myocardial T1 

(1151ms±63ms vs 1159±32ms, p=0.6), slightly lower blood T1 (1643ms±86ms vs 1680ms±79ms, 

p=0.004), but improved spatial resolution compared with standard MOLLI in the same imaging 

time.

Conclusion: SUPER and SUPER-SENSE provide fast model-based reconstruction methods for 

accelerating parametric mapping and improving its clinical appeal.
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Introduction

MR parametric mapping, such as T2 (1–3) and T1 mapping (2,4–6), has important value for 

quantitative assessment of tissue properties in detection and monitoring of disease. However, 

parametric mapping generally requires acquisition of multiple images, causing increased 

scan time and lower spatial resolution compared to single-contrast imaging. Parallel imaging 

(7,8) is the main acceleration method in current clinical practice, but the acceleration rate is 

typically around 2, due to the signal-to-noise ratio (SNR) penalty. Model-based 

reconstruction is another broad type of acceleration methods, which, in its simplest form, 

use an analytical model (e.g. mono-exponential model for T1 mapping) as a constraint for 

the multi-contrast data to reduce the k-space sampling (9–14). Additionally, model-based 

reconstruction was often combined with Tikhonov regularization (15–17), low-rank 

constraints (18–23), or compressed sensing (24–28) to further improve the k-space 

undersampling rate.

A common limitation for model-based reconstruction is the long reconstruction time. 

Conventional voxelwise curve-fitting with complete multi-contrast data can be fulfilled in a 

clinically preferable time. Model-based reconstruction, however, requires an iterative 

process to gradually update the parametric maps to the desired solution. This process is not 

performed on a voxelwise basis, but the entire image has to be updated as a whole in each 

iteration. This results in a long reconstruction time, due to the large image size and 

potentially a large number of iterations.

In a related field—dynamic imaging, e.g. cardiac cine—a common acceleration method is to 

use interleaved Cartesian undersampling (29), by alternately sampling the odd and even k-

space lines at each time frame. This undersampling strategy shifts the spectrum of the 

aliasing signal to the Nyquist frequency, so that the aliasing signal can be removed by 

lowpass filtering (29). Early efforts exploring this strategy include UNFOLD (29), and later 

TSENSE (30), and KT-BLAST (31). However, lowpass filtering is not suitable for 

parametric mapping, because parametric mapping generates fewer images than dynamic 

imaging (e.g. cine), and each image has a different contrast. These differences contribute to 

greater overlapping between the aliasing spectra, making lowpass filtering unsuitable for this 

application.

In this work, we propose a novel utilization of the interleaved Cartesian undersampling—

here named shift undersampling—to achieve fast and accurate reconstruction for parametric 

mapping. We firstly show that any k-space uniform undersampling pattern enables a 

blockwise decomposition of the otherwise large-scale cost function for model-based 

reconstruction. This blockwise decomposition allows the reconstruction to be fulfilled via 

curve-fitting on a blockwise basis, which has a comparable reconstruction time to the 

conventional voxelwise curve-fitting. We then show that the basic principle underlying shift 

undersampling for dynamic imaging can also benefit parametric mapping, in that the 

conditioning of the model-based reconstruction is well retained despite the k-space 

undersampling.
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On the other hand, it is well-known that the SNR penalty of parallel imaging is a 

multiplicative effect of reduced imaging time and the g-factor (7). The noise in parametric 

maps should follow the same principle. However, while the parametric noise has been 

quantified by previous work using Cramer-Rao Lower Bound (CRLB) (32), there has been a 

lack of effort to quantify parametric noise amplification due to acceleration. A second 

contribution of the work, is to use the CRLB formulation to derive a so-called d-factor, 

similar to g-factor in parallel imaging, to quantify the acceleration-induced noise 

amplification in parametric mapping.

The proposed acceleration method was named SUPER, representing “Shift Undersampling 

improves Parametric mapping Efficiency and Resolution”. The combination of SUPER with 

SENSE—named SUPER-SENSE—was also proposed, where detailed discussion was 

dedicated to choosing the best shift undersampling strategy for SUPER-SENSE. SUPER/

SUPER-SENSE was compared to alternative model-based methods, including MARTINI (9) 

and its descendent GRAPPATINI (10), via simulations, phantom imaging, and in vivo brain 

and cardiac T1 mapping. All methods were compared with the proposed d-factor concept, to 

demonstrate the advantage of shift undersampling on reducing acceleration-induced noise 

amplification.

Theory

Problem formulation

We start our derivation from a general formulation used in many previous work (9,15,32) for 

model-based reconstruction, assuming Cartesian k-space sampling:

ylm = DlFSmΦl x + ηlm (1)

where ylm ∈ ℂP × 1 represents undersampled k-space data at the lth contrast point(0 ≤ l < L) 

and mth coil (0 ≤ m < M), x = x0, x1, …, xN − 1
T ∈ ℂNJ × 1 the unknown parametric map 

(e.g. T1 or T2 map) where xn ∈ ℂJ × 1 for n = 1, 2, …, N is the parameter-set at the nth voxel 

(N is the image size), Φl ∈ ℂN × 1 the signal model evaluated at the lth contrast point, 

Sm ∈ ℂN × N the sensitivity matrix of the mth coil, F ∈ C(N × N) discrete Fourier transform, 

Dl ∈ C(P × N) the k-space subsampling matrix at the lth contrast point, and ηlm ∈ ℂP × 1 the 

multi-channel measurement noise, which is assumed to be white Gaussian. The frequency-

encoding direction is ignored in this work. Given ylm, the unknown x can be estimated by 

solving the following least-squares cost function (9,15,32)

GCFN1: ∑
m = 0

M − 1
∑
l = 0

L − 1
ylm − DlFSmΦl x 2 (2)
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This cost function is labeled the first Global Cost Function (GCFN1), since x includes all 

voxels in the image. GCFN1 can be reformulated in the spatial domain, by zerofilling the 

data and then applying inverse Fourier transform, which leads to an aliased image at each 

contrast point and each coil. Mathematically, this transformation is represented by

ylm = FHDl
Hylm (3)

where yml ∈ ℂN × 1 represents the aliased image. Substituting Equation 1 into Equation 3, we 

have

ylm = FHDl
H DlFSmΦl x + ηlm = V lSmΦl x + ηlm (4)

where ηlm = FHDl
Hηlm ∈ ℂN × 1 is the a linear transformation of the noise to the spatial 

domain, and V l = FHDl
HDlF ∈ ℂN × 1 is a convolution matrix, which represents the aliasing 

pattern at the lth contrast point. The second Global Cost Function (GCFN2) is thus defined 

by

GCFN2: ∑
m = 0

M − 1
∑
l = 0

L − 1
ylm − V lSmΦl x 2 (5)

GCFN2 is seldom used in model-based reconstruction literature, since Vl is generally not 

sparse while the fast Fourier transform in GCFN1 can be rapidly executed. However, Vl is 

sparse if k-space is uniformly undersampled. In a trivial example, Vl is an identity matrix 

(Figure 1, row 1) if k-space is fully sampled, enabling fast reconstruction with voxelwise 

curve-fitting. In another example, if k-space is uniformly undersampled (Figure 1, rows 2 

and 3), Vl is a banded matrix, leading to so-called blockwise curve-fitting as introduced 

below.

Blockwise curve-fitting

When Vl is an identity matrix, each row of Vl corresponds to a single unique voxel. As a 

result, GCFN2 can be minimized row by row with voxelwise curve-fitting:

VCFN: ∑
m = 0

M − 1
∑
l = 0

L − 1
∑

n = 0

N − 1
ylmn − smΦl xn

2 (6)

where VCFN represents voxelwise cost function. The voxelwise curve-fitting leads to a 

much faster reconstruction than minimizing either global cost function (Equation 2 or 5), 

due to the large variable size involved in the latter approach. On the other hand, when Vl is a 

banded matrix, each row of Vl corresponds to a unique block of voxels, which uniformly 
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span the field of view (FOV) (Figure 1, rows 2 and 3). In this case, GCFN2 can still be 

minimized row by row, but each row forms a blockwise curve-fitting problem, where the 

original signal at each voxel in the block is linearly combined to generate an aliased signal. 

The size of each block equals the undersampling rate (e.g. R=2), which is usually much 

smaller than the image size, and thus allows for faster reconstruction.

Mathematically, the block for the nth voxel under R-fold undersampling rate can be 

represented by a vector of length R, as shown below:

n de f n, n + N
R , …, n + R − 1 N

R
T

; 0 ≤ n < N
R (7)

where we made a trivial assumption that R divides N (image size). Let xn ∈ ℂRJ × 1

represents parameters in the n th block, Sm n ∈ ℂR × R the sensitivity matrix of the nth block, 

the blockwise cost function (BCFN) is given by:

BCFN: ∑
m = 0

M − 1
∑
l = 0

L − 1
∑

n = 0

N
R − 1

ylmn − W lSm nΦl xn
2 (8)

where W l ∈ ℂ1 × R is a vector representing the coefficient of each voxel and formed by the 

nonzero values of matrix Vl in the first row (or equivalently any other row since Vl is a 

convolution matrix):

W l r
= V l 0, Nr

R
; 0 ≤ r < R (9)

where [·]r and ⋅
0, Nr

R
 represent the corresponding elements in a vector or matrix. Note that 

for each n in Equation 8, parameters of all R voxels in the block are estimated. When R=1, 

BCFN relaxes to VCFN, demonstrating that voxelwise curve-fitting is a special case of 

blockwise curve-fitting.

To summarize, model-based reconstruction can be fulfilled by blockwise curve-fitting only 

when k-space is uniformly undersampled at each contrast point. Otherwise, Vl is not sparse 

(Figure 1, row 4), and the reconstruction must be performed over the entire image space, 

such as in the case of MARTINI (9) or GRAPPATINI (10). Blockwise curve-fitting enables 

faster reconstruction. However, when blockwise curve-fitting is used, the undersampling 

pattern across different contrasts has a strong influence on the accuracy and precision of the 

estimation result, as discussed below.
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Shift undersampling vs static undersampling

The contrast dimension in parametric mapping grants freedom in choosing undersampling 

patterns. Shift undersampling refers to continuous shifting of the k-space undersampling 

pattern along the phase-encoding direction at each contrast point (Figure 1, row 2). Static 

undersampling refers to an unchanged undersampling pattern at every contrast point (Figure 

1, row 3). Note that both are uniform undersampling strategies. The static undersampling 

leads to the following Wl coefficient vector in the blockwise curve-fitting:

W l
STAT

r
= 1

R (10)

To demonstrate the disadvantage of W l
STAT, we use an example of 2-fold accelerated T1 

mapping, which has the following BCFN (from Equation 8):

∑
m = 0

M − 1
∑
l = 0

L − 1
∑

n = 0

N
2 − 1

ylmn − 0.5 Smn0
An0

− Bn0
e

−
tl

T1n0 + Smn1
An1

− Bn1
e

−
tl

T1
n1

2

(11)

where An0
, Bn0

, and T1n0
 are parameters at the first voxel in the block, and An1

, Bn1
 and T1n1

are parameters at the second voxel. Equation 11 suggests that the net effect of W l
STAT on the 

two aliasing T1-relaxation signals, after ignoring the coil sensitivity, is to directly combine 

them into the aliased signal. In the contrast-frequency domain, the spectrum of the two T1-

relaxation signals are completely aliased, as shown in the Figure 2 (left side). Fitting such a 

multi-exponential model to noisy data is a well-known ill-conditioned problem (33,34).

On the other hand, based on the work of UNFOLD (29), TSENSE (30), and KT-BLAST 

(31), we know that shift undersampling creates a frequency modulation for each aliasing T1-

relaxation signal. Mathematically, the frequency modulation is generated by the Wl vector:

W l
SHIFT

r
= 1

Re
2πιlr

R (12)

The corresponding BCFN for 2-fold accelerated T1 mapping is

∑
m = 0

M − 1
∑
l = 0

L − 1
∑

n = 0

N
2 − 1

ylmn − 0.5 Smn0
An0

− Bn0
e

−
tl

T1n0 + eπιl ⋅ Smn1
An1

− Bn1
e

−
tl

T1n1

2

(13)
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Notice the different modulation frequency eπιl for the second voxel in the block. In the 

contrast-frequency domain, the net effect of W l
SHIFT is to shift the spectrum of each T1-

relaxation signal to a unique frequency position, so that each spectrum is distinguishable 

even after the aliasing (Figure 2, right side). Since the shape of each individual spectrum 

contains information about the underlying parameters, such as the relaxation rate, a better 

preservation of the spectrum leads to better accuracy in the reconstruction. From the view of 

linear algebra, this means a better conditioned inverse problem. In fact, the condition 

number for the simulation used in Figure 2 was 40 for shift undersampling, which is very 

reasonable, and 3×1017 for static undersampling, which suggests severe ill-conditioning.

Nested shift undersampling for SUPER-SENSE (nSUPER-SENSE)

SUPER-SENSE is the combination of SUPER and SENSE to further improve the 

acceleration rate. SUPER-SENSE solves the same blockwise cost function in Equation 8. 

However, for a higher undersampling rate (R ≥ 4), there are two basic shift undersampling 

strategies for SUPER-SENSE. On one hand, the ordinary shift undersampling pattern 

described by Equation 12 can be used (e.g. at R=4, sampling lines #1, #5, #9 for the first 

contrast point, and then #2, #6, #10 for the second, and so on and so forth). On the other 

hand, the shift undersampling pattern can be nested within a static undersampling pattern, 

such as using sampling lines #1, #5, #9 at odd contrast points and #3, #7, #11 at even 

contrast points (shift undersampling within the odd lines only). Intuitively, this nested 

pattern has an advantage, in that a lower shift-undersampling rate can be used, providing a 

wider spread of modulation frequencies in the contrast-frequency domain. This can be 

confirmed from the Wl vector of the nested shift undersampling:

W l
NEST

r
= 1

R1R2
e

2πιlr
R2 (14)

where R1 is the acceleration factor for the static-undersampling component, R2 is the 

acceleration factor for the shift-undersampling component, and 0 ≤ r < R1R2 = R. Since R2 < 

R, the modulation frequency 2πιlr
R2

 of nested shift undersampling is greater than 2πιlr
R  of 

ordinary shift undersampling.

Figure 3 demonstrates this advantage by comparing SUPER-SENSE based on nested shift 

undersampling (nSUPER-SENSE) to that based on ordinary shift undersampling (oSUPER-

SENSE) for 4-fold T1 mapping acceleration. For better demonstration, we assume each coil 

has a step-function profile and thus only measures signal from the two proximal voxels. The 

resultant BCFN of each coil for nSUPER-SENSE is:
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Coil1: ∑l = 0
L − 1 ∑n = 0

N
4 − 1

yl0n − 0.25 An0
− Bn0

e

−
tl

T1n0 + eπιl An1
− Bn1

e

−
tl

T1n1 2

Coil2: ∑l = 0
L − 1 ∑n = 0

N
4 − 1

yl1n − 0.25 An2
− Bn2

e

−
tl

T1n2 + eπιl An3
− Bn3

e

−
tl

T1n3 2

(15)

Notice that the modulation frequencies are 0 and πιl for the two aliasing voxels measured by 

each coil. On the other hand, the BCFN of each coil for oSUPER-SENSE is:

Coil1: ∑l = 0
L − 1 ∑n = 0

N
4 − 1

yl0n − 0.25 An0
− Bn0

e

−
tl

T1n0 + e
1
2πιl

An1
− Bn1

e

−
tl

T1n1 2

Coil2: ∑l = 0
L − 1 ∑n = 0

N
4 − 1

yl1n − 0.25eπιl An2
− Bn2

e

−
tl

T1n2 + e
1
2πιl

An3
− Bn3

e

−
tl

T1n3 2

(16)

Note that the modulation frequency of the two aliasing voxels differs by only 1
2πιl (half of 

that with nested shift undersampling), increasing spectral aliasing and causing poorer 

conditioning. Since coil sensitivity generally is more similar for proximal voxels, nSUPER-

SENSE works better on compensating for the limitation of parallel imaging by having a 

stronger modulation for proximal voxels than oSUPER-SENSE. This advantage is also 

demonstrated with simulations and in vivo data.

Optimization

The optimization of blockwise curve-fitting should not be different from that of voxelwise 

curve-fitting, since the latter is simply a special case of the former for R=1. One of the most 

common methods for voxelwise curve-fitting in parametric mapping is Levenberg-

Marquardt (1,6,35). In this work, we used a slightly modified Levenberg-Marquardt method 

for T1-mapping, to restrict each parameter in a physiologically meaningful bound. However, 

any nonlinear optimization algorithm, such as conjugate gradients should suffice to 

minimize the blockwise cost function. Details about the proposed Levenberg-Marquadrt 

algorithm can be found in the Supporting Information due to space limitation.

D-factor

The g-factor, firstly introduced in SENSE (7) and further developed in other works (36,37), 

is important for quantifying parallel-imaging-induced noise amplification. In this work, we 
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used the same principle to derive the so-called d-factor to quantify the parametric noise 

amplification due to acceleration. Following the principle underlying SENSE noise 

amplification, the amplification of parametric noise, represented by standard deviation of the 

parameter, due to any acceleration is a multiplication of two factors:

SDR xn j

SD1 xn j
= dR xn j R (17)

where xnj is the jth fitting parameter at the nth voxel, SDR(xnj) is the standard deviation of 

xnj estimated with R-fold acceleration, SD1(xnj) is the standard deviation of xnj estimated 

without any acceleration, R is a ubiquitous factor that represents a global increase of noise 

due to the reduced imaging time, and dR(xnj) is the so-called dynamics-factor, or d-factor, 

which represents the spatially heterogeneous increase of noise due to ill-conditioning of the 

model-based reconstruction. Like the g-factor in parallel imaging, d-factor should be greater 

than 1 for any acceleration solely based on model-based reconstruction.

D-factor was named as such because signal dynamics is the main factor affecting the spatial 

heterogeneity of d-factor, just like the impact of coil geometry on spatial heterogeneity of g-

factor. As Figure 4 shows, if a signal grows too fast, the spectrum of each signal would be 

wider, which causes increased overlapping between aliasing spectra, leading to elevation of 

d-factors. Since the parameter, such as T1 or T2, is spatially varying, the d-factor is also 

spatially varying. Other factors, such as density of contrast points and k-space 

undersampling pattern, also affect the value of d-factor, but in a more spatially uniform 

fashion (i.e. changing spectral width uniformly). Finally, when parallel imaging is used in 

model-based reconstruction, g-factor itself also affects the value of d-factor.

In practical applications, d-factor can be approximately calculated by the Cramer-Rao Lower 

Bound (CRLB) (38,39), which provides a lower bound (thus an approximation) for the 

variance of the parameters after reconstruction. A derivation of CRLB-based formulation for 

quantifying parametric noise was given in Ref. (32). Here, we briefly describe the derivation 

for the sake of completeness. The first step is to use Equation 1 to derive the Fisher 

Information matrix, which for a normally distributed data, y 𝒩 DlFSmΦl x , σE  (E is an 

identity matrix and σ the noise standard deviation), is given by

I x = 1
σ2 ∑

m = 0

M − 1
∑
l = 0

L − 1
∇xΦl

HSm
HFHDl

HDlFSm∇xΦl (18)

where I is the Fisher Information matrix, and ∇xΦl the first-order derivative of the nonlinear 

function Φl with respect to the variable x. By definition, CRLB is given by the inverse of 

Fisher Information matrix:
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CRLBR x de f I x −1 = σ2 ∑
m = 0

M − 1
∑
l = 0

L − 1
∇xΦl

HSm
HFHDl

HDlFSm∇xΦl

−1
(19)

where CRLBR(x) is a matrix, which represents the lower bound for the covariance matrix of 

all parameters under R-fold acceleration. The CRLB for each single parameter xnj is given 

by the corresponding diagonal element of the CRLB matrix:

CRLBR xn j = CRLBR x
n j, n j

(20)

More detailed derivation for Equations 19–20 can be found in Ref. (32). Based on these 

equations, we can estimate the d-factor, which, different from CRLB, accounts for the 

parametric noise amplification due to acceleration, rather than the noise inherent to the non-

accelerated parametric mapping. The CRLB-based estimation of d-factor for xnj is given by

dR xn j de f
SDR xn j

R ⋅ SD1 xn j
≈

CRLBR xn j

R ⋅ CRLB1 xn j

=
∑m = 0

M − 1 ∑l = 0
L − 1 ∇xΦl

HSm
HFHDl

HDlFSm∇xΦl
−1

n j, n j

R ⋅ ∑m = 0
M − 1 ∑l = 0

L − 1 ∇xΦl
HSm

HSm∇xΦl
−1

n j, n j

(21)

Notice that FHDl
HDlF in the denominator is omitted since it’s an identity matrix when 

R=1.The formulation above is only used for Cartesian trajectories in this work. However, the 

formulation can also work for non-Cartesian trajectories by substituting DlF to a nonuniform 

Fourier encoding matrix (32). Notice that this metric only depends on coil sensitivities (Sm), 

sampling pattern (Dl), and the parametric regrowth curve Φl, but not on the reconstruction 

methods.

Methods

Simulations, phantom imaging, and in vivo imaging were conducted to compare several 

acceleration methods for T1 mapping, including the SENSE-based methods, SUPER, 

nSUPER-SENSE, oSUPER-SENSE, MARTINI (9), and GRAPPATINI (10). Both 

MARTINI and GRAPPATINI were reconstructed with conjugate gradients (CG)(40) line-by-

line for each line along the phase-encoding direction. This CG algorithm is the same type 

used in the original work of MARTINI (9) and GRAPPATINI (10). CG was stopped using 

the same rule as in SUPER or SUPER-SENSE except for a larger number of iterations, due 

to the larger variable size: a) number of iterations greater than 1000 (SUPER/SUPER-
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SENSE uses 300), b) gradient
max 1, residual < 1 × 10−6, or c) stepsize less than 1×10−6 of the initial 

stepsize.

All imaging was performed on a 3T scanner (Siemens Trio, Erlangen, Germany). All the 

subjects enrolled to the study provided informed written consent prior to the scan. The study 

was approved by our institutional review board (IRB).

Simulations

A digital phantom with A=1, B=2, and 4 T1s (200ms, 500ms, 1000ms, 1500ms) was used to 

generate k-space data, with 6 coils and 6 TI values (100ms, 200ms, 500ms, 1000ms, 

2000ms, 5000ms). The k-space data was then undersampled for 8 different reconstruction 

methods, including the standard non-acceleration method (R=1), SUPER (R=2), static 

undersampling based blockwise curve-fitting (R=2), MARTINI (R=2), SENSE (R=4), 

oSUPER-SENSE (R=4), nSUPER-SENSE (R=4), and GRAPPATINI (R=4).

Phantom study

Fourteen vials filled with Gadolinium-doped water or a mixed solution of NiCl2 and agar gel 

with T1 ranging from 200ms to 1500ms were scanned with a 12-channel head coil using 7 

repetitions of an inversion recovery turbo spin-echo (IR TSE) sequence, with TI of 100ms, 

200ms, 400ms, 800ms, 1600ms, 3200ms, and 6400ms. Other parameters were: FOV = 

280mm×140mm, image size = 192×96, TR=7000ms, TE=4.9ms, slice thickness=5mm, echo 

train length (ETL) = 12, and bandwidth = 789Hz/pixel. Eight reconstruction methods were 

performed: the standard non-acceleration method (R=1), SENSE (R=2), SUPER (R=2), 

MARTINI (R=2), SENSE (R=4), nSUPER-SENSE (R=4), oSUPER-SENSE (R=4), and 

GRAPPATINI (R=4). Coil mapping was performed using the TSE image at TI=6400ms with 

the method in (41).

Brain T1 mapping

Brain T1 mapping was performed in 5 healthy subjects (4 male, age 26±3) with a 12-

channel quadrature head coil and 8 continuously applied IR TSE with TI of 250ms, 500ms, 

750ms, 1000ms, 1500ms, 2000ms, 3500ms, and 5000ms. Other parameters were: 

TR=5200ms, ETL=16, FOV=240mm×240mm, acquisition matrix size=256×128, slice 

thickness=4mm, and bandwidth=789 Hz/pixel. Seven reconstruction methods were 

performed: the standard non-acceleration method (R=1), SENSE (R=2), SUPER (R=2), 

MARTINI (R=2), nSUPER-SENSE (R=4), oSUPER-SENSE (R=4), and GRAPPATINI 

(R=4). White matter, gray matter, and cerebrospinal fluid (CSF) ROIs were segmented on 

the gold standard T1 map using thresholding, with T1 in [580ms, 1080ms] classified as the 

white matter, [1080ms, 1580ms] as gray matter, and [3000ms, 6000ms] classified as CSF 

(42).

High-resolution cardiac T1 mapping

Parametric mapping, such as T1 or T2 mapping, has been extensively used in cardiac MR 

for clinical assessment of myocardial fibrosis (6,43) or edema (1). The standard MOLLI T1 

mapping (6) is based on cardiac gated single-shot acquisition and 2-fold parallel imaging, 
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but suffers from low spatial resolution. K-space undersampling cannot be used to reduce the 

total imaging time, which is only determined by the number of TIs collected, but can be used 

to improve image resolution of the single-shots acquisitions in each heartbeat. Here we aim 

to demonstrate the capability of SUPER-SENSE for high-resolution single-breath-hold 

cardiac T1 mapping in vivo.

MOLLI was performed in 8 healthy subjects (3 male, age 33±7) with a 24-channel spine coil 

and 18-channel body coil in a short-axis mid-ventricular slice. The standard MOLLI (6) 

sequence (17 heartbeats, 3(3)3(3)5 scheme, TI=100ms, 200ms, and 350ms) was modified to 

enable SUPER-SENSE acquisition with a higher spatial resolution. T1 mapping was firstly 

performed with the standard MOLLI (resolution=1.9mm×2.5mm, 2-fold SENSE), and then 

4-fold SUPER-SENSE MOLLI (resolution=1.4mm×1.4mm). Other parameters were: FOV= 

360mm×270mm, slice thickness=8mm, bandwidth=1495 Hz/pixel, TR=2.5ms, and flip 

angle=40°. The central 24 k-space lines were sampled for coil mapping (41). ROIs were 

drawn in the myocardial and blood pool.

Evaluation metrics

All reconstruction was performed offline with Matlab (v2014b, Mathworks, Natick, MA). In 

simulations, phantom T1 mapping, and brain T1 mapping, normalized root-mean-square 

error (NRMSE), defined by l2-norm of the difference between solution and the gold 

standard divided by the l2-norm of the gold standard, was calculated for each method. The 

d-factor map was calculated and matched to the T1-difference map for each acceleration 

method. The d-factor map also provided a metric for characterizing and comparing the noise 

property of each method.

Computational efficiency was evaluated using computational time per voxel (TPV), since 

TPV does not vary with spatial resolution as in the case of total computational time. For all 

blockwise curve-fitting methods, TPV was the computational time per optimization divided 

by the acceleration rate. For MARTINI or GRAPPATINI, TPV was the computational time 

per optimization divided by the number of voxels along the phase-encoding direction.

For in vivo studies, NRMSE (if available), mean T1 in each ROI, the average d-factor over 

the cerebral cortex region or the heart, and TPV were statistically compared between 

different methods via Student’s t-test. A p-value less than 0.05 was considered statistically 

significant.

Results

Simulations

Figures 5 shows the reconstruction results for the simulated phantom. All methods led to 

good visual quality except static undersampling (column 3) and 4-fold SENSE (column 5), 

due to severe ill-conditioning and large g-factors, respectively. oSUPER-SENSE (column 6) 

was noisier than nSUPER-SENSE (column 7) due to a higher d-factor especially around the 

image center. The d-factor map of oSUPER-SENSE shows mainly a 4-fold aliasing pattern 

(yellow arrows), while that of nSUPER-SENSE shows mainly a 2-fold aliasing pattern, 

consistent with our theoretical anticipation. Furthermore, SUPER (column 2) and nSUPER-
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SENSE provided higher precision in those small bottles (white arrows) than MARTINI 

(column 4) and GRAPPATINI (last column), respectively, also due to elevated d-factor in the 

latter cases. The d-factor maps excellently matched the T1-difference map for all methods. 

The fact that all 4-fold acceleration methods led to noisier reconstruction than 2-fold 

acceleration methods is partly due to the global noise amplification in Equation 17, which 

equals the square root of the acceleration rate.

Phantom studies

Figure 6 shows the phantom study results, which demonstrated a similar trend as the 

simulation results. SENSE (columns 2 and 5) led to noisier results compared to all other 

methods at the same acceleration rate. oSUPER-SENSE (column 6) was much noisier than 

nSUPER-SENSE (column 7), due to elevated d-factors in the image center (yellow arrows). 

MARTINI/GRAPPATINI (columns 4 and 8) led to noisier results than SUPER/nSUPER-

SENSE (columns 3 and 7) in the vials with an excessively high or low T1 (white arrows). 

The d-factor maps also excellently matched the T1-difference maps for all methods.

Brain T1 mapping

Figure 7 shows the reconstruction results from one healthy subject. Consistent with all 

previous results, oSUPER-SENSE (column 5) was noisier than nSUPER-SENSE (column 

6), with the main elevation of d-factor in the image center, showing a strong 4-fold aliasing 

pattern. SUPER/nSUPER-SENSE (columns 3 and 6) achieved lower NRMSE than 

MARTINI/GRAPPATINI (columns 4 and 7). In particular, CSF T1 was more accurately 

estimated with SUPER/nSUPER-SENSE, due to a lower d-factor in this region (white arrow 

heads). However, SUPER/nSUPER-SENSE showed mild aliasing artifacts in the image 

(blue arrows), which were aliased from the interface region between skull and subcutaneous 

fat, potentially due to partial-voluming between these tissues.

Figure 8a shows the ROI-based comparison between each acceleration method and the gold 

standard, where CSF T1 was severely underestimated with MARTINI and GRAPPATINI. 

Figure 8b shows statistical comparison of NRMSE, average d-factor, and TPV. On one hand, 

NRMSE and d-factor were lower comparing SUPER to MARTINI (NRMSE: 0.04±0.02 vs 

0.11±0.02, p<0.01; d-factor: 1.01±0.002 vs 1.12±0.004, p<0.001), nSUPER-SENSE to 

oSUPER-SENSE, and nSUPER-SENSE to GRAPPATINI (NRMSE: 0.07±0.01 vs 

0.13±0.03, p=0.02; d-factor: 1.15±0.01 vs 1.20±0.01, p<0.001). On the other hand, TPV was 

dramatically reduced comparing SUPER to MARTINI (4.6ms±0.2ms vs 79ms±3ms, 

p<0.001), and nSUPER-SENSE to GRAPPATINI (4.0ms±0.1ms vs 72ms±3ms, p<0.001). 

The reconstruction of SUPER/nSUPER-SENSE was much faster than MARTINI/

GRAPPATINI, and similar to voxelwise curve-fitting on the absolute time scale.

High-resolution cardiac T1 mapping

Figure 9 shows the reconstruction result of standard MOLLI and SUPER-SENSE MOLLI in 

4 healthy subjects. Both led to excellent image quality under visual inspection. However, the 

higher resolution of nSUPER-SENSE improved depiction of the septal walls (black arrows), 

especially at its boundary against the blood pool, and of papillary muscles (green arrow 

heads), compared to the low-resolution results.
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Figure 10 shows the statistical comparison of average myocardial T1, average blood T1, 

average d- factor in the heart, and average TPV. SUPER-SENSE MOLLI yielded similar 

myocardial T1 (1151ms±63ms vs 1159±32ms, p=0.6), slightly lower blood T1 (1643ms

±86ms vs 1680ms±79ms, p=0.004), slightly larger d-factor (1.034±0.006 vs 1.026±0.008, 

p=0.01), and longer TPV (8.7ms±0.7ms vs 1.0ms±0.1ms, p<0.001) compared to the 

standard MOLLI.

Reconstruction time comparison

The reconstruction time quantified by TPV of voxelwise curve-fitting, SUPER, SUPER-

SENSE, MARTINI, and GRAPPATINI for all the experiments is collectively shown in 

Supporting Information Table S1. The speed-up of SUPER relative to MARTINI, and 

SUPER-SENSE relative to GRAPPATINI, is shown in Supporting Information Table S2. 

Overall, SUPER and SUPER-SENSE achieved a speed-up around 20 relative to MARTINI 

and GRAPPATINI, respectively.

Discussions and Conclusion

In this work, we have proposed a novel model-based acceleration method for parametric 

mapping using shift undersampling. We have demonstrated its utility in accelerated brain 

T1-mapping, and cardiac T1 mapping with increased spatial resolution. The value of shift 

undersampling lies in its capability to separate different aliasing spectra, and further to 

enable blockwise curve-fitting, which allows for fast reconstruction due to greatly reduced 

computational burden. This is a major innovation of SUPER, since many model-based 

methods, including MARTINI and GRAPPATINI, are based on iterative algorithms that 

update the parametric maps on the entire image domain. SUPER and SUPER-SENSE thus 

provide a fast model-based reconstruction approach that is very suitable for clinical 

utilization.

Another contribution of the work was to propose the concept of d-factor for quantifying 

parametric noise amplification due to acceleration. This concept enriches the theory of 

acceleration-induced noise amplification in MRI, which was originally developed for 

parallel imaging (g-factor) only. Using d-factor, we demonstrated the advantages of SUPER 

and nSUPER-SENSE over alternative undersampling patterns, including MARTINI and 

GRAPPATINI, on minimizing the noise amplification. The difference between d-factor and 

the CRLB formulation developed in the previous work (32), is that d-factor quantifies the 

amplification of noise, while CRLB quantifies noise itself, which is a combined effect of 

many factors such as magnetic field strength, coil loading, voxel size, and acceleration rate. 

D-factor, however, separates the impact of acceleration from all the other SNR-related 

factors, providing specific information about the compromise between amplification of 

parametric noise and the acceleration.

A prior study (9) found less aliasing artifacts using MARTINI vs. a SUPER-like acquisition 

(but with traditional reconstruction) for brain T2 mapping in the presence of partial-

voluming. We also found aliasing artifacts with SUPER in our brain study, probably also due 

to partial-voluming. However, we have demonstrated with our experiments that SUPER/

SUPER-SENSE achieves a lower noise amplification than MARTINI/GRAPPATINI, which 
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is probably attributable to the k-space undersampling difference, in that SUPER/SUPER-

SENSE samples central k-space twice as often as MARTINI/GRAPPATINI. This difference 

is especially significant for extreme T1 values, which have a higher requirement on 

sufficient sampling of the contrast domain to cover the signal dynamics. In addition, the 

prior works did not utilize blockwise curve-fitting for SUPER reconstruction, which is 

proposed in this work.

The aliasing artifacts in SUPER can be generated from factors such as motion, partial 

volume, and other acquisition imperfections, such as J-coupling (44) or combined T1/T2 

contrast (45), which all cause imperfect modeling. The impact of these other sources of 

parametric mapping is not addressed in this work. However, a potential method for 

suppressing this artifact is to use data-driven models, such as those based on principal 

component analysis (18,25,28), which is under our current investigation. In this study, we 

did not compare SUPER with more advanced regularization-based acceleration methods 

(18–21,24–28), which rely on sparsity and an incoherent sampling pattern. The uniform 

sampling strategy of SUPER enables the very fast reconstruction, and has other advantages 

of a Cartesian acquisition, such as its insensitivity to gradient system imperfections (46), but 

also makes SUPER potentially incompatible with compressed sensing.

In conclusion, we have proposed a novel technique for parametric mapping with very fast 

reconstruction, and a tool for evaluating the noise amplification due to model-based 

acceleration in parametric mapping. The technique utilizes so-called shift undersampling 

pattern in k-space and blockwise curve-fitting in the reconstruction, which has a comparable 

reconstruction time to the conventional voxelwise curve-fitting. The concept of d-factor is 

fully integrable with the conventional g-factor, to characterize spatially heterogeneous noise 

amplification in parametric mapping. These tools may greatly improve the clinical appeal of 

parametric mapping.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Different k-space undersampling patterns and their Vl matrices. Row 1 shows complete k-

space sampling, which leads to an identity matrix for Vl at each contrast point. Row 2 and 

row 3 show 2-fold shift and static undersampling pattern, respectively, both of which lead to 

banded Vl matrices that have nonzero values for only 2 voxels at each row. Row 4 shows the 

block undersampling pattern used by MARTINI, which leads to non-sparse matrices at all 

contrast points.
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Figure 2. 
Comparison between shift undersampling and static undersampling. The central panel shows 

the original T1-relaxation signals at the two aliasing voxels. With static undersampling (left 

panel), the two signals are directly combined, leading to a complete overlapping between 

their spectra. The associated inverse problem is severely ill-conditioned with a condition 

number of 3×1017. With shift undersampling (right panel), each signal is firstly multiplied 

by a modulating function with a unique modulation frequency, yielding a smooth signal in 

the first voxel and an oscillating signal in the second voxel. The two modulated signals are 

then combined, resulting in a spectrum with two separate spectral peaks, suggesting less 

spectral overlapping. The associated inverse problem is well-conditioned, with a condition 

number of 40.
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Figure 3. 
Comparison of ordinary and nested shift undersampling for 4-fold SUPER-SENSE. Two 

coils were simulated, each with a step-function profile. With ordinary shift undersampling 

(top), each voxel has a unique modulation frequency. With nested shift undersampling 

(bottom), there is no frequency modulation between voxels half-FOV apart, but these voxels 

are measured by different coils. On the other hand, nested shift undersampling leads to a 

spectral difference twice as large as that with ordinary shift undersampling, between voxels 

¼-FOV apart (double-headed arrows). This leads to reduced overlapping between these 

voxels compared to ordinary shift undersampling.
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Figure 4. 
Illustration of the impact of signal dynamics on d-factor, using 2-fold SUPER T1-mapping 

acceleration. The d-factor is 1.2 when both aliasing signals have T1 of 800ms, and rises to 

3.9 when T1 is 200ms. When T1 is reduced, the signal grows faster, resulting in a wider 

spectrum, which in turn causes more overlapping (arrows) and elevates the d-factor.
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Figure 5. 
Simulation comparing standard non-acceleration T1 mappng (R=1), SUPER (R=2), static 

undersampling based T1 mapping (R=2), MARTINI (R=2), SENSE-based T1 mapping 

(R=4), oSUPER-SENSE (R=4), nSUPER-SENSE (R=4), and GRAPPATINI (R=4). The top, 

middle, and bottom row shows the reconstructed T1 maps, the fractional T1-difference 

maps, and the d-factor maps for each method. The d-factor map for the static undersampling 

based T1 mapping cannot be calculated due to the severe ill-conditioning, NRMSE and TPV 

were noted under each method’s name. Yellow arrows point to the elevation of d-factor due 

to 4-fold aliasing in oSUPER-SENSE. White arrows point to the little bottles, with T1 of 

200ms (right), 1000ms (middle), and 1500ms (left), which have a higher d-factor with 

MARTINI/GRAPPATINI than SUPER/SUPER-SENSE.
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Figure 6. 
Phantom T1 mapping comparing standard non-acceleration T1 mappng (R=1), SENSE-

based T1 mapping (R=2), SUPER (R=2), MARTINI (R=2), SENSE-based T1 mapping 

(R=4), oSUPER-SENSE (R=4), nSUPER-SENSE (R=4), and GRAPPATINI (R=4). The top, 

middle, and bottom row shows the reconstructed T1 maps, the fractional T1-difference 

maps, and the d-factor maps for each method. NRMSE and TPV were noted under each 

acceleration method’s name. Yellow arrows point to the elevation of d-factor due to 4-fold 

aliasing in oSUPER-SENSE. White arrows point to the bottles with the highest (1600ms) 

and lowest T1 (200ms), which have a higher d-factor with MARTINI/GRAPPATINI than 

SUPER/SUPER-SENSE.
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Figure 7. 
Brain T1 mapping in one healthy subject. Seven methods were compared: standard non-

acceleration T1 mappng (R=1), SENSE-based T1 mapping (R=2), SUPER (R=2), 

MARTINI (R=2), oSUPER-SENSE (R=4), nSUPER-SENSE (R=4), and GRAPPATINI 

(R=4). The top, middle, and bottom row shows the reconstructed T1 maps, the fractional T1-

difference maps, and the d-factor maps for each method. NRMSE and TPV were noted 

under each acceleration method’s name. Blue arrows point to the aliasing artifacts in SUPER 

and SUPER-SENSE due to model inconsistency. White arrow heads point to the increased 

bias and d-factor in CSF using MARTINI and GRAPPATINI.
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Figure 8. 
(a) Plot of the average T1 of white matter (WM) ROI, gray matter (GM) ROI, and CSF ROI 

over 5 subjects measured by different acceleration methods against the standard non-

acceleration T1 mapping. The red arrow points to the large underestimate of CSF T1 with 

MARTINI and GRAPPATINI. (b) Statistical comparison between different acceleration 

methods in terms of NRMSE (value multiplied by 500), average d-factor (value multiplied 

by 50), and computational time per voxel over 5 subjects.
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Figure 9. 
Representative T1 maps acquired with the standard MOLLI (R=2) and SUPER-SENSE 

MOLLI (R=4) in 4 healthy subjects. On the right shows the magnified T1 maps around the 

heart for both methods to demonstrate the improvement of spatial resolution with SUPER-

SENSE MOLLI, which leads to better depiction of septal wall (arrows) and papillary 

muscles (arrow heads).
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Figure 10. 
Statistical comparison between standard MOLLI and SUPER-SENSE MOLLI in terms of 

average myocardial T1, average blood T1, average d-factor (multiplied by 1000), and time 

per voxel in the unit of 10 microseconds.
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