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Abstract
Infectious disease is recognized as an important complication among patients with end-stage renal disease, contributing to 
excess morbidity and health care costs. However, recent epidemiological studies have revealed that even mild to moderate 
stages of chronic kidney disease (CKD) substantially increase risk of infection. Regarding underlying mechanisms, evidence 
suggests various aspects of altered immune response in patients with CKD including impaired function of T cells, B cells 
and neutrophil. Multiple conditions surrounding CKD, such as older age, diabetes, and cardiovascular disease are important 
contributors in the increased susceptibility to infection in this population. In addition, several mechanisms impairing immune 
function have been hypothesized including accumulated uremic toxins, increased oxidative stress, endothelial dysfunction, 
low-grade inflammation, and mineral and bone disorders. In terms of prevention strategies, influenza and pneumococcal 
vaccines are most feasible and important. Nevertheless, the extent of vaccine utilization in CKD has not been well docu-
mented. In addition, antibody response to vaccination may be reduced in CKD patients, and thus a vaccine delivery strategy 
(e.g., dose and frequency) may need to be optimized among patients with CKD. Through this review, we demonstrate that 
infection is a major but underrecognized complication of CKD. As CKD is recognized as a serious public health issue, 
dedicated research is needed to better characterize the burden of infectious disease associated with CKD, understand the 
pathophysiology of infection in patients with CKD, and develop effective strategies to prevent infection and its sequela in 
this high risk population.

Keywords  Chronic kidney disease · Infections · Pneumonia · Bloodstream infections · Renal failure · Influenza 
vaccination · Pneumococcal vaccination

Introduction

Chronic kidney disease (CKD) is a serious public health 
issue, affecting 8–16% of adult population worldwide [1]. 
Although historically cardiovascular disease has been con-
sidered as one of the most important CKD complications [2], 
an accumulating body of evidence has revealed that CKD 
is also an important risk factor for non-cardiovascular out-
comes (e.g., cognitive decline [3], fracture [4], bleeding [5]). 
In this context, infection is probably the most important non-
cardiovascular outcome since it poses the second leading 

cause of hospitalization after cardiovascular disease [2]. 
While it is well-recognized that infection risk is extremely 
high among patients with end-stage renal disease (ESRD), 
a few recent studies suggest that even less severe CKD sub-
stantially increases the risk of infection. Nevertheless, data 
on the epidemiology of infectious disease are still sparse in 
the entire CKD population including its mild to moderate 
stages. Such a knowledge gap is critical since the vast major-
ity of CKD patients are at mild to moderate stages [2]. In 
this review, we will discuss the current evidence regarding 
the epidemiology of infectious disease in CKD. In the first 
section, we will discuss the incidence of infectious disease 
associated with CKD in inpatient and outpatient settings. 
In the second section, we will discuss possible mechanisms 
and contributing factors to the increased susceptibility to 
infection in CKD. In the third section, we will discuss infec-
tion prevention strategies primarily focusing on vaccination 
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programs. We will also list some potential future directions 
in this context.

Incidence of infectious disease associated 
with CKD

According to a report from the 2017 United States Renal 
Data System [6], the incidence of hospitalization was 614 
per 1000 person-years in individuals aged 65 years or older 
with any stage of CKD, which was nearly 3 times higher 
as compared to the incidence of 214 per 1000 person-years 
in those without CKD. Regarding cause of hospitalization, 
cardiovascular disease was the leading cause of hospitaliza-
tion, accounting for 23% of all-cause hospitalization. Infec-
tion was the second major cause, accounting for 21% of all 
hospitalizations—a burden almost identical to cardiovascu-
lar disease [6]. Thus, it is important to recognize infection 
as a leading cause of hospitalization among individuals with 
CKD.

Table 1 summarizes the characteristics of representative 
cohort studies investigating the association between eGFR 
and risk of infection. Regarding the risk of hospitalization 
with infection, previous studies consistently showed an 
association between lower eGFR and risk of hospitaliza-
tion with infection [7–10]. The risk is substantially increased 
even at mildly to moderately reduced eGFR: as compared 
to those with eGFR ≥ 60 ml/min/1.73 m2, individuals with 
eGFR 30–59 ml/min/1.73 m2 had an approximately 50% 
higher risk of hospitalization with infection. This pattern 
was observed for all-cause infection, as well as type-specific 
infections. Although the low prevalence of eGFR < 30 ml/
min/1.73 m2 in the general population tends to limit the 
statistical power, the risk is exponentially increased in 
eGFR < 30 ml/min/1.73 m2, with a 2–3 times higher risk 
compared to eGFR ≥ 60  ml/min/1.73  m2. The associa-
tion between low eGFR and risk of infection tended to be 
stronger among younger adults than older adults [8]. This 
could be explained by the lower incidence rate of infection 
in younger adults, resulting in a substantial increase in the 
relative risk even with a modest increase in the absolute 
risk. In addition, younger adults with reduced eGFR might 
be likely to have a unique etiology of kidney disease such 
as glomerulonephritis, polycystic kidney disease, or severe 
diabetes (e.g., type 1 diabetes), posing a particularly high 
risk of infection.

Increased risk of infection associated with reduced eGFR 
was also observed in ambulatory settings (Table 1) [11, 12]. 
Of note, although the association (i.e., relative risk) for outpa-
tient infections seems weaker compared to inpatient infections, 
outpatient infections are much more common than inpatient 
infections. The incidence rates including outpatient infections 
ranged 100–150 cases per 1000 person-years, which was 3–5 

times more frequent as compared to the incidence of hospi-
talization with infection [7–10]. Thus, although outpatient 
infections should have less prognostic impact than inpatient 
infections, they still pose a significant burden on CKD patients 
in terms of excess clinic visits and frequent antibiotic prescrip-
tions, which reduce patients’ quality of life, impact health care 
costs, and induce multidrug resistant microorganisms [13, 14].

Previous studies also reported an increased risk of infec-
tion-related death associated with reduced eGFR (Table 1) 
[8, 15, 16]. However, we should interpret those results care-
fully since definitions of infection-related death varied across 
studies. For example, in a study of 38,520 individuals with 
eGFR < 60 ml/min/1.73 m2 using data from the electronic 
medical record-base registry in Ohio, the leading causes of 
death were cardiovascular disease (34.7%) and malignant neo-
plasms (31.8%), and deaths due to infections only accounted 
for 1.7% (influenza and pneumonia), and 1.4% (septicemia), 
respectively [17]. However, in a secondary analysis of the Trial 
to Reduce Cardiovascular Events With Aranesp Therapy [18], 
cause of death was centrally adjudicated, and infection was 
the second leading cause of death after cardiovascular death 
accounting for ~ 35% of all-cause mortality.

As compared to eGFR, fewer studies have examined albu-
minuria (Table 2). Among patients aged 65 years or older 
with diabetes, persons with positive dipstick proteinuria had 
nearly 10% higher risk for lower respiratory tract infections 
and nearly 30% higher risk for pneumonia or sepsis compared 
to those without [11]. In the Atherosclerosis Risk in Commu-
nities study, we observed a strong dose–response association 
between urinary albumin-to-creatinine ratio (ACR) and risk of 
hospitalization with infection, and this association was inde-
pendent of eGFR (Table 2) [15]. Indeed, when assessed in the 
context of CKD risk stage according to the Kidney Disease 
Improving Global Outcomes (KDIGO) [19], there were mul-
tiplicative contributions of low eGFR and high ACR to the risk 
of hospitalization with infection (Fig. 1): within each eGFR 
category, risk of hospitalization with infection was higher with 
higher ACR in a graded fashion. Importantly, those with pre-
served kidney function (i.e., eGFR ≥ 60 ml/min/1.73 m2), but 
ACR ≥ 300 mg/g had an equivalent or even greater infection 
risk compared to those with moderately to severely reduced 
kidney function, but without albuminuria. Thus, in addition to 
reduced eGFR, health care providers should recognize albu-
minuria as an important risk factor of infection.

Pathophysiological mechanisms increasing 
infection risk in CKD

Impaired immune system in CKD

Impaired immune system has been recognized in CKD 
patients. For example, in patients with reduced kidney 
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function, the number of lymphocytes, primarily the B lym-
phocyte and CD4+ T lymphocyte subset, is decreased [20]. 
In addition, T-cell response to antigen stimulus is impaired 
in persons with CKD [21]. CKD patients are also unknown 
to have the impaired function of neutrophil. In contrast to 
the decreased count in lymphocytes, the number of neutro-
phils remain unchanged in ESRD patients [22]. However, 
as compared to healthy subjects, patients with ESRD seem 
to have a lower capacity of phagocytosis and greater rate of 
apoptosis [23, 24].

Potential mechanisms impairing immune system 
in CKD

Underlying mechanisms of impaired immune system in 
CKD are considered multifactorial (Fig. 2). First, shared 
risk factors of CKD and infection are likely to play an 
important role. For example, CKD primarily affects older 
adults, a population at high risk of infection. Immunologi-
cal changes similar to patients with CKD are also observed 
in older adults, including reduced lymphocyte production, 
impaired leukocyte, and neutrophil functions [25, 26]. In 
addition, diabetes and cardiovascular disease are prevalent 
among CKD patients, and are known to increase the risk of 
infection in this population [27–29].

Also, several uremic toxins may contribute to the 
impaired immune system in CKD. For example, indoxyl 
sulfate and p-cresyl sulfate are metabolites of tryptophan 
and tyrosine [30], and previous in vitro studies suggest that 
these metabolites could impair the leucocyte and endothelial 
function [30–33]. A couple of small studies of hemodialy-
sis patients suggested the positive association of p-cresol 
sulfate levels with risk of infection [34, 35]. Another poten-
tial metabolite would be trimethylamine-N-oxide (TMAO). 
TMAO is an oxidative product of trimethylamine [36], 
and some studies have shown pro-inflammatory aspects of 
TMAO through the activation of macrophage in patients 
with CKD, which may ultimately interfere with the immune 
system [37, 38]. Nonetheless, future studies are still needed 
to better understand the involvement of these uremic toxins 
in the impaired immune system in CKD.

Reactive oxygen species (ROS) are important compo-
nents of the immune response such as activating inflamma-
tory signals and eliminating damaged cells [39]. However, 
due to their cytotoxicity, excess levels of ROS can actually 
impair immune function [40]. Among CKD patients, oxida-
tive stress is increased and antioxidant capacity is decreased, 
and several small studies suggested the link between oxida-
tive stress and impaired immune response [41–43]. How-
ever, it is yet to be determined to what extent increased lev-
els of ROS actually contribute to increased risk of infection 
in CKD patients.Ta
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Endothelial cells play an important role in the immune 
regulation such as cell migration, neutrophil adhesion, 
and permeability to circulating leukocytes. Several studies 
have reported the potential link between endothelial dys-
function and impaired immune function [44–46]. Patients 
with CKD have higher levels of markers for endothelial 
dysfunction (e.g., soluble P-selectin) compared to healthy 

controls [47]. Another study reported the association 
between decreased layer of endothelial surface, known as 
glycocalyx, and the incidence of albuminuria [48]. Thus, 
endothelial dysfunction may be another contributing fac-
tor for impaired immune response in CKD, and may be 
relevant to the underlying pathophysiology for elevated 
infection risk seen in individuals with albuminuria [49]. 
However, future studies are needed to specifically evalu-
ate whether a measure of endothelial dysfunction, such as 
flow-mediated dilation [50, 51], is related to the increased 
risk of infection.

Previous cross-sectional studies showed increased levels 
of inflammatory cytokines among patients with CKD [52, 
53]. For example, in the Chronic Renal Insufficiency Cohort 
study (eGFR 20–70 ml/min/1.73 m2), there was an inverse 
relationship between plasma levels of inflammatory mark-
ers (interleukin-1b, interluekin-1RA, interleukin-6 [IL-6], 
tumor necrosis factor-alpha [TNF-α], and C-reactive pro-
tein [CRP]) and eGFR [53]. Several prospective studies 
have also shown that an elevation of inflammatory markers 
such as CRP, IL-6, TNF-α, was associated with increased 
risk of infection [54–56]. These findings suggest a potential 

Albuminuria categories
Description and range

A1 A2 A3

Normal to
mildly

increased

Moderately
increased

Severely
increased
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 c
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G1 Normal or high ≥90 1 [Reference]
(n=897/3918)

1.38 (1.09-1.75)
(n=76/213)

1.69 (0.99-2.88)
(n=14/33)

G2 Mildly decreased 60-89 1.05 (0.96-1.15)
(n=1272/4576)

1.55 (1.28-1.88)
(n=126/295)

2.48 (1.71-3.59)
(n=30/51)

G3a Mildly to moderately 
decreased 45-59 1.46 (1.22-1.76)

(n=147/353)
2.17 (1.55-3.05)

(n=36/64)
2.24 (1.36-3.71)

(n=16/24)

G3b Moderately to severely 
decreased 30-44 1.37 (1.00-1.89)

(n=41/98)
2.92 (1.86-4.59)

(n=20/34)
5.37 (3.15-9.15)

(n=14/19)

G4 Severely decreased 15-29 3.54 (1.99-6.29)
(n=12/19)

Fig. 1   Adjusted hazard ratio of hospitalization with infection by 
eGFR and ACR categories. GFR glomerular filtration rate, ACR​ albu-
min-to-creatinine ratio. Green: low risk; yellow: moderately increased 
risk; orange: high risk; red, very high risk. For each category, hazard 
ratio and its 95% confidence interval were presented in the first row, 
and n = denotes number of events and number of individuals in the 

second row. The model was adjusted for age, race, sex, body mass 
index, smoking status, alcohol consumption, education level, use of 
antineoplastic agents and steroids, hypertension, diabetes, history of 
cancer, chronic obstructive pulmonary disease, prior heart failure, 
prior coronary disease, and prior stroke. Reprinted from reference 
15 with permission

Impaired function of T-cell, 
B-cell, and neutrophil InfectionCKD

Shared risk factors (older age, diabetes, CVD)

Uremic toxins
Oxidative stress

Endothelial dysfunction
Low-grade inflammation

Mineral and bone disorders

Fig. 2   Potential mechanisms increasing infection in chronic kidney 
disease. CKD chronic kidney disease, CVD cardiovascular disease
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contribution of inflammation to infection, although causality 
has not yet be determined.

Some evidence suggests that dysregulation of bone 
and mineral metabolism contributes to the increased risk 
of infection. Animal studies have suggested that elevated 
serum level of fibroblast growth factor 23 (FGF23) disrupts 
the leukocyte and innate immune function [57, 58]. Among 
patients on dialysis in the Hemodialysis (HEMO) Study, 
patients in the highest quartile for 25-hydroxyvitamin D 
had a 33% lower risk of infectious events compared to the 
lowest quartile; whereas those in the highest quartile FGF23 
had a 57% higher risk compared to the lowest quartile [59]. 
Similar results were also observed for elderly adults [60], 
as well as in the general population [61]. However, whether 
mineral and bone disorders can be targeted for an interven-
tion to reduce infection risk is unknown, although a recent 
meta-analysis reported the protective effects of vitamin D 
supplementation on reducing respiratory infection in the 
general population [62].

Prevention strategies

Some types of infection are preventable through vaccina-
tions such as the influenza and pneumococcal vaccine. Thus, 
adherence to vaccine recommendations should be the central 
strategy for reducing risk of vaccine-preventable infections 
[63, 64]. In addition, there are several non-vaccine preven-
tion measures (e.g., standard preventative measures for 
hospital-acquired infection), which are also applicable to 
individuals with CKD.

Vaccination

Influenza vaccination is probably the most feasible and 
effective strategy to reduce influenza-related diseases [63, 
64]. Although influenza vaccination is beneficial to all age 
groups, it is particularly important for those at high risk 
(e.g., older adults, individuals with chronic conditions). In 
the 2013 KDIGO guideline, annual vaccination with influ-
enza vaccine is recommended to all adults with CKD unless 
contraindicated [19].

Previous studies in the general population have con-
sistently shown protective effects of influenza vaccina-
tion in reducing risk of influenza-related complications by 
20–40% [65–67]. However, the effectiveness is less clear 
among patients with CKD. In ESRD populations in the 
US, influenza vaccination was non-significantly associated 
with 10–15% lower risks of hospitalization with influenza/
pneumonia [68, 69]. Similarly, a Taiwanese study of hemo-
dialysis patients reported that the receipt of influenza vacci-
nation was associated with ~ 20% lower risks of hospitaliza-
tion with pneumonia/influenza [70]. These findings suggest 

that influenza vaccine may be less effective in patients with 
advanced CKD compared to the general population.

Reduced effectiveness of influenza vaccine in advanced 
CKD may be due to poorer antibody response to influenza 
vaccination compared to non-CKD [71–76]. Chang et al. 
studied antibody response to a single dose H1N1/09 vaccine 
among 110 hemodialysis patients and 173 healthy controls, 
and found that the seroconversion rate was 24.5% among 
hemodialysis patients compared to 86.7% among healthy 
controls [71]. However, some studies reported less evident 
difference between dialysis patients and control groups [76]. 
Further studies are needed to assess antibody response to 
influenza vaccination in advanced CKD.

Recent studies showed higher effectiveness of a high-dose 
or adjuvanted influenza vaccine compared to regular vac-
cine [77, 78]. However, whether these vaccines could benefit 
CKD patients is not fully clear. A few studies reported a 
higher vaccine antibody response with an adjuvanted tri-
valent influenza vaccine among hemodialysis patients and 
renal transplant recipients [79, 80]. In contrast, a study 
assessing one booster influenza vaccination among hemo-
dialysis patients showed no differences in the seroconversion 
rate between a single dose group and one booster dose group 
[81]. Taken together, although newer influenza vaccines 
could theoretically induce a stronger vaccine response, addi-
tional studies are needed to assess whether CKD patients 
would benefit from such vaccines.

Pneumococcal vaccination is also an effective strategy 
to prevent diseases caused by Streptococcus Pneumoniae. 
Currently, two vaccine types, pneumococcal conjugate 
vaccine (PCV) and pneumococcal polysaccharide vaccine 
(PPSV), are available. In the 2013 KDIGO guideline [19], 
pneumococcal vaccination is recommended to all adults 
with eGFR < 30 ml/min/1.73 m2 and those at high risk of 
pneumococcal infection, such as individuals with nephrotic 
syndrome, diabetes, or those on immunosuppressive drugs. 
In addition, revaccination is recommended for adults with 
CKD within 5 years after receiving pneumococcal vaccina-
tion [19].

In a landmark trial of the Community-Acquired Pneu-
monia Immunization Trial in Adults (CAPITA), PCV13 
reduced the risk of community-acquired pneumonia due to 
vaccine-type strains by 46% in community-dwelling adults 
aged 65 years or older [82]. PCV13 could induce a stronger 
vaccine response than PPSV23, but the effectiveness is con-
sidered comparable [83]. Whether these data may be gen-
eralizable to individuals with CKD is unknown, but some 
observational studies suggested an improved survival among 
dialysis patients with pneumococcal vaccination compared 
to those without [84, 85].

To maintain the adequate immunogenicity, some experts 
suggest a booster dose of pneumococcal vaccination for 
patients with CKD [86], since individuals with CKD may 
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have a faster decline in the antibody titers post-vaccination 
[87–91]. However, its benefits have been controversial. 
Tobudic et al. reported that the prime-boost strategy did 
not result in the increased antibody response among trans-
plant patients [92]. Other previous studies have been limited 
by small number of study subjects and only investigating 
patients with ESRD. Thus, future studies are needed to 
assess the effectiveness of pneumococcal vaccination in a 
broader range of CKD and determine the optimal dose and 
vaccine delivery strategy.

Other strategies

Besides vaccine programs, there are several general 
approaches for preventing infection, which are also applica-
ble to individuals with CKD. Patients with CKD have a high 
risk of all-cause hospitalization [93], and thus prevention of 
hospital acquired infections is crucial [94]. Medical devices 
such as ventilator, central venous catheter, and urinary cath-
eter are frequently used for CKD patients, and are important 
sources of infection. Standard preventative measures such 
as good hand hygiene, maximal barrier precautions during 
the procedure, and prompt removal of devices are critical to 
minimize the chance of device associated infections [95]. In 
addition, some active interventions such as quality-improve-
ment interventions [96] and clinical decision support sys-
tems (e.g., reminders for preventive care) [97] are shown 
to be effective but can be expensive. From the perspective 
of policymaking, these active interventions may be cost-
effective when targeted to CKD patients given their high vul-
nerability to infection. Finally, antibiotic prophylaxis before 
some invasive procedures such as major surgeries (e.g., car-
diac and abdominal surgery) [98] and dental procedures [99] 
are also generally encouraged to all patients including those 
with CKD. However, CKD patients may have a high preva-
lence of multidrug-resistant organism colonization [100], 
which may complicate the clinical management concerning 
antibiotic prophylaxis in this clinical population.

Future research directions

Despite the advancement in the management of CKD, there 
remains a substantial knowledge gap in the epidemiology 
of infectious disease in CKD. Future studies should charac-
terize the incidence of overall and cause-specific infection 
across the spectrum of CKD, particularly including albumi-
nuria stages. Additionally, whether these infections affect 
the subsequent outcomes of CKD, and if so, to what extent, 
should be assessed. In addition, we should better under-
stand mechanisms elevating the risk of infection in CKD 
patients, which would have implications on preventive and 
therapeutic strategies for infection in CKD. Finally, effective 

strategies to maximize the benefits of vaccination programs 
should be developed to prevent vaccine-preventable diseases 
and improve the outcomes among patients with CKD.

Conclusions

A body of evidence demonstrated a high risk of infection 
even at mild to moderate stages of CKD. Nonetheless, infec-
tion has been underrecognized and understudied as a compli-
cation of CKD. Although several recent studies reported the 
increased risk of infection among individuals with reduced 
GFR, definitions of infection varied across studies, and sta-
tistical powers were limited in persons with eGFR < 30 ml/
min/1.73 m2 not requiring renal replacement therapy. Thus, 
the actual burden of overall and type-specific infection across 
CKD stages is yet to be determined. Additionally, more stud-
ies are needed to quantify the burden of infection associated 
with albuminuria. Incomplete understanding of underlying 
mechanisms may preclude us from considering and planning 
effective preventive strategies for infection in CKD patients. 
As true in the entire population, vaccination is a major pre-
vention approach for some types of infection in CKD popu-
lations, but whether its uptake is optimal is unknown and a 
few studies raise a question regarding the effectiveness of 
regular vaccinations in CKD patients. As the number of indi-
viduals with CKD is growing globally, it is time to focus on 
infectious disease as a complication of CKD and advance our 
understandings to reduce the burden of infection in CKD.
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