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Automated tumour budding 
quantification by machine learning 
augments TNM staging in muscle-
invasive bladder cancer prognosis
Nicolas Brieu1, Christos G. Gavriel2, Ines P. Nearchou2, David J. Harrison2, Günter Schmidt1 & 
Peter D. Caie2

Tumour budding has been described as an independent prognostic feature in several tumour types. We 
report for the first time the relationship between tumour budding and survival evaluated in patients 
with muscle invasive bladder cancer. A machine learning-based methodology was applied to accurately 
quantify tumour buds across immunofluorescence labelled whole slide images from 100 muscle invasive 
bladder cancer patients. Furthermore, tumour budding was found to be correlated to TNM (p = 0.00089) 
and pT (p = 0.0078) staging. A novel classification and regression tree model was constructed to stratify 
all stage II, III, and IV patients into three new staging criteria based on disease specific survival. For the 
stratification of non-metastatic patients into high or low risk of disease specific death, our decision 
tree model reported that tumour budding was the most significant feature (HR = 2.59, p = 0.0091), 
and no clinical feature was utilised to categorise these patients. Our findings demonstrate that tumour 
budding, quantified using automated image analysis provides prognostic value for muscle invasive 
bladder cancer patients and a better model fit than TNM staging.

Muscle-invasive bladder cancers (MIBC) are classified as having grown into or through the muscle layers of 
the bladder wall1 however are phenotypically heterogeneous. Current clinical guidelines for both prognosis and 
treatment strategies are based on Tumour Node Metastasis (TNM) staging system; of which MIBC cancers are 
comprised of pT2–pT4 tumours, with or without nodal and distant metastasis2. Patients with MIBC are rec-
ommended for radical cystectomy with pelvic lymph node dissection. Approximately 25% of newly diagnosed 
bladder cancer patients present with muscle invasive disease. In contrast to non-muscle invasive bladder cancer 
(NMIBC), MIBC is highly aggressive with a high incidence of metastasis and a poor prognosis where 5-year 
survival rates vary between 30 and 50%3,4.

Despite recent research into novel treatment and surgical strategies the mortality rates and prognosis of MIBC 
patients have remained immutable over the past 30 years3,5. In addition to inter- and intra-reporter variability, 
TNM staging may not adequately encompass the complex and dynamic behaviour of the disease6–10. There is 
therefore a need to substantially improve patient stratification and earlier definitive treatment for high risk MIBC 
patients. A morphological analysis of the different patterns of tumour invasion may hold important pathological 
information, which could allow for a better risk stratification of patients with MIBC.

Tumour budding (TB) is defined as discrete clusters of up to four cancer cells that reflects an infiltrative inva-
sive growth pattern11,12. Most studies have shown that a higher density of TB is typically present at the invasive 
front (peritumoural budding) compared to tumour core (intratumoural budding)12–17. It has been suggested that 
TB reflects an early step in progression towards metastasis due to their cell’s reported phenotypic epithelial to 
mesenchymal transition (EMT)18–20. Despite reports of observer variability, studies in other cancer types have 
continuously demonstrated the significant association of TB with adverse clinicopathological features and the 
independent significance of TB as a prognostic factor21–25. Information about the role of TB in bladder cancer is 
scarce26 and it has not yet been reported to be associated with disease specific survival (DSS) in MIBC.
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In this study, we evaluate whether TB can more precisely predict MIBC patients at a low or medium risk of 
disease specific death than current clinical guidelines based on TNM staging. To this end, we introduce an image 
analysis solution for the detection of tumour buds, which following from our previous works27,28, is based on the 
automated detection of both the nuclei and the segmentation and classification of cancer cell clusters. Our auto-
mated solution enables the quantification of TB at the patient level via the computation of seven image analysis 
features, while eliminating inter-observer variability. Survival analysis provided evidence of the prognostic value 
of TB quantification in MIBC patients and showed that a combination of clinicopathological features with TB 
predicted patient survival more precisely than the standard TNM staging.

Results
Patient clinicopathological data.  This study comprised 100 MIBC patients with a median age at the 
time of surgical resection of 68 years (range; 29–87 years). The follow-up time was up to 113.13 months. DSS was 
gathered from NHS Scotland’s patient database and was defined by the patient’s cause of death being directly from 
their bladder cancer. Median DSS is 23.63 months. In terms of TNM staging, 25% of patients were diagnosed with 
stage II, 41% with stage IIIA, 4% with stage IIIB and 30% with stage IV. No positive lymph nodes were found in 78 
patients and 1–2 lymph nodes contained cancer in 22 patients. Full patient characteristics can be found in Table 1.

Survival statistics on the MIBC cohort.  TNM staging, returned the lowest log rank p-value (p = 4.76E−11) 
and highest hazard ratio (HR = 5.44, p = 2.53E−09) than any other image analysis or clinical feature. Of all the 
treatment combinations, as displayed in Supplementary Table S4, treatment with only Mytomycin C was the 
sole treatment significantly associated with survival (HR = 0.21, p = 0.018) while neither the growth pattern nor 
the grade were prognostic for survival in our cohort. The total number of tumour buds in the detected tumour 
core (‘number of TB in core’) reported the highest significance for MIBC patient survival by both the log rank 
test (p = 9.97E−06) and Cox-regression (HR = 3.22, p = 2.67E−05) than any other TB quantification method. Full 
survival univariate statistics for each analysed parameter are stated in Table 2.

Association of tumour budding with clinicopathological data.  The chi-squared (χ2) test of inde-
pendence was used to examine associations between clinicopathological data and the ‘number of TB in the 
core’ (see Supplementary Table S2). High TB was found to be correlated with higher TNM stage (χ2 = 11.037, 
p = 0.00089), and pT stage (χ2 = 7.065, p = 0.0078) which were also the two most significant clinicopathological 
features associated with patient survival and were previously demonstrated predictors of patient outcome. No 
other clinicopathological feature was associated with TB.

Survival Decision Tree.  In order to assess if a combination of clinicopathological and TB features could 
predict patient survival more precisely than the standard TNM staging, we performed a survival decision tree 
analysis (see Fig. 1 and Methods for more details). As listed in Table 2, all seven tumour bud features were entered 
as input into the survival decision tree alongside all clinicopathological parameters. The first reported split of 
the decision tree separated patients with (stage II and III) from those with metastasis (stage IV) by the use of the 
TNM staging parameter (HR = 5.44, p = 2.53E−09). The resulting sub-group of stage II and III MIBC patients 
without metastasis (N = 70) was further optimally separated by the ‘number of TB in core’ feature. The associated 
log rank p value (p = 0.0091) and hazard ratio (HR = 2.59, p = 0.0119) showed the statistical significance of this 
second split against other TB features and clinicopathological parameters (see Supplementary Table S1). To pre-
vent overfitting, leave one-out cross-validation was applied. Through the N = 100 leave-one-out pre-validation 
runs, TNM was systematically chosen to take the first decision on all patients. On the non-metastatic patients, 
the feature ‘number of TB in core’ was chosen in 97 of the 100 runs whereas the parameter pT stage was only 
chosen in the three remaining runs. To ensure the unicity of the model, we fixed the second decision feature for 
the branch analysing non-metastatic patients to ‘number of TB in core’ and cross-validated the associated cut-off 
value. The resulting survival decision model is denoted as ‘TB stage model’ in the remaining of this work. As 
detailed in the Methods, the TB stage model splits the MIBC patients into three groups that we arbitrarily denote 
as II’, III’ and IV. More precisely, and as shown by the association table between the TNM and TB stage models 

Features Patients number N = 100 (%)

Age  < 70 (55%)  ≥ 70 (45%)

Gender Male (59%) Female (41%)

TNM staging II (25%) IIIA (41%) IIIB (4%) IV (30%)

pT stage 2a (9%) 2b (18%) 3a (19%) 3b (30%) 4a (13%) 4b (11%)

Metastasis Absent (71%) Present (29%)

Lymph node status N0 (78%) N1 (14%) N2 (8%)

Patient outcome Survived (46%) Died of disease (54%)

Treatment (cf. Table S4) Tr1 (11%) Tr2 (9%) Tr3 (13%) Tr4 (9%) Tr5 (50%) Other (12%)

Grade G2 (11%) G2-3 (2%) G3 (87%)

Growth pattern Solid (70%) Solid/Papillary (16%) Papillary (12%) Other (2%)

Table 1.  Clinicopathological features evaluated in this study. The explanation of treatment option codes are 
provided in Supplementary Table S4.
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(see Supplementary Table S5), the proposed TB stage model reassigns a subset of TNM stage III patients (N = 27) 
into stage II’.

Novel TB stage model.  Results of categorical Cox-regression analysis on the TB stage model and on the 
clinical TNM staging are reported in Table 3. Groups II’ (TB stage model) and II (clinical TNM model) are taken 
as baseline respectively. Corresponding Kaplan Meier curves are displayed in Fig. 2. We observed that the pro-
posed novel model yields statistically significant separation (p < 0.05) for both stage III’ and stage IV patients. 
This indicates a strong relationship between the model’s proposed staging and an increased risk of disease specific 
death. The TB model stage III’ returned a HR of 2.48 with stage II’ as baseline, as compared with the clinical TNM 
stage III returning a HR of 1.92 with clinical stage II as baseline. Furthermore, the confidence interval for HR on 
clinical TNM stage III included 1 and the separation between TNM stage II and stage III patients is not significant 
(p = 0.13). This observation is confirmed by the outputs of the three overall tests (Likelihood ratio, Wald and log 
rank). While the p values for both the clinical TNM and the proposed TB model’s staging, for the aforementioned 
statistical tests, are highly significant (p < 1E-07), the proposed staging yields larger test statistics. This indicates a 
stronger rejection of the null hypothesis that the stage has no effect on the survival and it suggests a better model 
fit to survival than the standard TNM stage.

Multiple hypothesis testing.  The main test hypothesis in this study is that TB predicts disease specific 
survival in MIBC patients. Characterising TB with multiple approaches leads us to define in practice m = 7 
test hypotheses, i.e. one hypothesis for each of the seven analysed TB features (as detailed in Table 2) e.g. H1: 
“Number of TB in core” predicts survival, H2: “Number of TB in invasive front” predicts survival, H3: “Density 
of TB in Core” predicts survival. Correcting the p values reported in the previous paragraphs using the most con-
servative Benjamini method yields the ‘number of TB in Core’ to keep significance below α = 0.001 on all MIBC 
patients (see Table 2, q-values). When applying p value correction to non-metastatic patients (see Supplementary 
Table S1), the corrected log rank p value of ‘number of TB in Core’ is very close to the expected level of sig-
nificance (p = 0.064 vs. p = 0.05). While more realistic p values could be computed after the estimation of the 
expected proportion of true null p-values π0, we found the number of p values to be too small in practice to enable 
such estimation. With the Benjamini methodology being the most conservative, we can however conclude that 
the reported corrected p values are upper bounds of the actual ones.

Discussion
To investigate whether the presence of TB predicts survival in patients with MIBC, we employed immunofluo-
rescence, image analysis and machine learning for the quantification and statistical analysis of TB, in an accurate, 
fully automated and standardized manner. We found that the incorporation of TB features improved the accuracy 
of the prediction of DSS compared to standard TNM staging alone. TB has been identified as a predictor of poor 
outcome in many types of cancer such as pancreatic, breast, colorectal and lung cancer21–23,29. As far as we are 
aware, we present the first evidence of TB holding prognostic significance in MIBC.

Features

Log rank test Cox regression

p value/q value
Hazard Ratio 
[95% CI] p value/q value

TNM stage 4.76E−11*** 5.44 [3.11 9.49] 2.53E−09***
pT stage 6.18E−06*** 3.59 [1.99 6.47] 2.15E−05***
Lymph node status 0.0169* 1.99 [1.11 3.54] 0.0191*

Metastasis 4.76E−11*** 5.44 [3.11 9.49] 2.53E−09***
Grade 0.5724 1.27 [0.54 2.98] 0.5780

Growth Pattern 0.3288 0.63 [0.25 1.59] 0.3326

Treatment 0.0178* 0.21 [0.05 0.87] 0.0318 *

Gender 0.6555 0.88 [0.51 1.51] 0.6545

Age 0.1932 0.67 [0.37 1.22] 0.1974

Number of TB in core 9.97E−06***/6.70 E−05 3.22 [1.87 5.57] 2.67E−05***/1.87E−04

Number of TB in invasive front 0.12687/0.1501 1.51 [0.88 2.60] 0.1300/0.1517

Density of TB in core 0.01312*/0.0306 1.99 [1.14 3.46] 0.0150*/0.0350

Density of TB in invasive front 0.05876/0.0822 1.71 [0.97 3.03] 0.0619/0.0867

Number of TB in a single 0.785mm2 field of view 0.24322/0.24322 1.41 [0.78 2.53] 0.2458/0.2458

Number of TB in ten 0.785mm2 fields of view 0.0077**/0.0269 2.04 [1.19 3.49] 0.0091**/0.0319

Number of TB in ten 0.238mm2 fields of view 0.03919*/0.0685 1.85 [1.02 3.37] 0.04214*/0.0737

Table 2.  Results of univariate log rank test and univariate Cox regression analysis of clinical and image analysis 
features associated with disease specific survival in all MIBC patients (N = 100). Reported p-values and hazard 
ratios are obtained for each feature through leave-one-out pre-validation of the optimal separation cut-off used 
to separate the patients into two optimal low/high sub-groups. (***) indicates p < 0.001, (**) p < 0.01 and (*) 
p < 0.05. For the seven tumour budding features, p values corrected for the multiple tumour budding hypothesis 
using the most conservative Benjamini method (q-values) are reported together with the original p values.
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Methodologies for TB quantification.  Despite TB being reported as an independent predictor of patient 
outcome in several disease areas, it has not been accepted as a core item in the clinical guidelines30,31 and conse-
quently not regularly used in patient management. One of the reasons for this is the variety of TB quantification 
methods employed in individual studies; however, this standardisation issue is being addressed for colon cancer by 
the ITBCC12. In order to identify the optimal methodology to quantify TB in MIBC we reported on the number 
and density (per area pixel) of tumours buds across four different methods. Methods 1 and 2 were based on work 
by Karamitopoulou E et al.21 and Ueno H et al.32 and the recommendations of ITBCC12. Method 3 was inspired 
by Lohneis P et al.24 applying ten 0.238 mm2 fields of view. Finally, Method 4–7 are novel approaches quantify-
ing tumour buds across the whole slide or large regions of interest; methods only made feasible by the application 
of automated image analysis. Despite the fact that the ITBCC guidelines represent the first international effort to 
standardise manual TB count methodology, consistent reporting may still be affected by subjectivity, and inter- and 
intra-observer variability. Furthermore, manual quantification can be a time consuming process. To overcome these 
issues and standardise the quantification of TB we designed a fully automated ML based methodology capable of 
quantifying both the number and density of TB across specific regions of interest within the whole slide image.

It is interesting to note that in this study, TB quantified across the tumour core outperformed “field of view” 
methodologies, based on the ITBCC or published recommendations, when assessed against DSS prediction. 
Together with previous studies13–17, our results link intra-tumoural budding to a worse prognosis in MIBC. 
Interestingly, in this study, and in contrast with the majority of work in other cancer types, the number or density 
of TB within the invasive front of MIBC was not significantly associated with DSS. Additionally, we assessed the 
association between TB and a number of clinicopathological features (see Supplementary Table S2). We, like 
studies in a variety of other cancer types16,17,23, found a statistically significant positive association between TB 
and TNM staging (χ2 = 11.037, p = 0.00089) in MIBC.

Figure 1.  Proposed survival decision tree grouping of MIBC patients into three distinct groups, which results 
in the proposed ‘TB stage model’. The leave one out cross-validated log rank test p value between the two 
resulting branches is indicated at each node. The first decision is based on the clinical parameter TNM stage and 
the second decision on the feature ‘number of TB in core’. The number of patients is indicated for each resulting 
group/leaf.

Model

Cox regression Likelihood 
ratio test Wald test Log rank testFactor HR [95% CI] p value/q value

Clinical TNM staging
Stage III 1.92 [0.82 4.51] 0.13 G = 34.1 

p = 3.94E−08
z2 = 36.2 
p = 1.41E−08

lr = 44.95 
p = 1.74E−10Stage IV 8.66 [3.65 20.28] 8.4E−07**

TB stage model
Stage III 2.48 [1.18 5.21] 0.017*/0.119 G = 36.9 

p = 9.78E−09 
q = 6.85E−08

z2 = 37.83 
p = 6.09E−09 
q = 4.26E−08

lr = 47.35 
p = 5.22E−11 
q = 3.65E−10Stage IV 7.33 [3.87 13.89] 1.0E−09**/7.0E−09

Table 3.  Results of Cox regression analysis on all MIBC patients stratified into three groups (II, III and IV) 
using the standard TNM staging and the proposed model respectively, with their respective stage II as reference. 
Two degrees of freedom are considered for overall tests. P values of the TB stage model are corrected (q values) 
for multiple hypothesis testing corresponding to the (m = 7) features used for TB quantification.
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Image analysis for automated TB quantification.  Despite the fact that most previous studies have eval-
uated TB using haematoxylin and eosin (H&E), recent reports have provided meaningful information about TB 
and disease progression using both immunohistochemistry (IHC)33–36 and immunofluorescence (IF)37,38. The use 
of cytokeratin-based immuno-labelling as a tumour mask clearly identifies TB even in cases that display a high 
density of peri-tumoural inflammatory infiltrate or reactive stromal cells. This fluorescence cytokeratin-aided 
distinction of TB allows for a more accurate recognition of TB when applying automated image analysis. 
However, the automated quantification of histopathological features may still be confounded by tissue artefact 
and necrotic debris. This is particularly true for methodology that employs object segmentation based on signal 
intensity thresholds or sole colour information, which can result in false positive and false negative detections. 
A further obstacle to overcome, when employing threshold based image analysis across patient cohorts, is inter- 
and intra-heterogeneity. The large inter- and intra-sample heterogeneity of the signal utilised to automatically 
segment tissue, for example tumour from stroma, may lead to inaccurate segmentation when run across large 
cohorts. Machine learning, and in particular convolutional neural network and context based random forest, 
was used to overcome the above limitations. By enabling the automatic definition of high-dimensional decisions 
based on colour and hierarchical texture information, the employed algorithms yield a precise quantification of 
true tumour bud objects against other false positive objects while ensuring robustness against variability in the 
visual appearance of tumour regions (see Supplementary Materials M4–M7). We believe that our methodology 
represents an advancement in automated image analysis compared to other such studies in the literature39,40 that 
quantify histopathological features based on object-based thresholding or sole colour-based analysis.

Deep learning for automated TB analysis.  While our approach for tumour bud quantification builds on 
our own prior original and generic methods for IF image analysis27,28, Weis et al. recently proposed an application 
specific approach to recognise TB in IHC images of colorectal carcinoma based on classification convolution 
neural networks41. We believe that the two approaches differ in both their aim and their methodology. Regarding 
the methodology, Weis et al. performed segmentation of the tumour mask utilising mainly colour information: 
colour deconvolution was employed followed by k-mean clustering and heuristic post-processing rules. Tumour 
buds were then selected among the resulting tumour objects using a classification convolutional neural network. 
In contrast, we employ a semantic segmentation neural network for the segmentation of the tumour objects and 
detect all nuclei in the image. The selection of the tumour buds among the detected tumour objects then relies on 

Figure 2.  (a) Kaplan-Meier plot and risk table of disease specific survival (DSS) for MIBC patients in 
dependence of TNM staging (II, III, IV). (b) Kaplan-Meier plot and risk table of DSS for MIBC patients utilising 
the TNM stage model and the novel ‘TB stage model’.
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the heuristic definition of a tumour bud based on the number of nuclei within a tumour cell cluster (see Fig. 3a.iv).  
In summary, while Weis et al.41 relies on colour information and heuristic rules to segment the tumour object 
and on deep learning for classification, we rely from the start on deep learning to segment the tumour objects and 
on the definition of tumour buds for their classification. Regarding the aim, we believe that utilising the explicit 
detection of nuclei and the explicit segmentation of tumour from stromal regions makes our approach more 
generic and usable in studies outwith specific tumour bud quantification. As an example, the explicit detection of 
nuclei further enables their classification into different sub-types and, in the context of immuno-oncology studies, 
opens the way towards the automated quantification of immune-related features42. In addition to enabling the 
automated estimation of the tumour core and invasive front, as presented in this study (see Fig. 3b), the explicit 
segmentation of tumour and stromal regions makes it further possible to evaluate the tumour infiltration level of 
the different immune cell types. We believe that relying on generic image analysis approaches is key for studying 
the joint impact of tumour buds and immune context, which would be an interesting extension of this work.

Foreseen extension to IHC/H&E.  Being trained on manual annotations performed on IF images, the 
aforementioned deep learning and random forest models for the segmentation of the epithelium regions and the 
detection of the nuclei location can at this stage only be applied for the analysis of IF images. However, by design, 
both algorithms are adaptable to staining used in routine practice (e.g. H&E or IHC) provided that correspond-
ing manual annotations are available for training. As an example, we have first developed the regression random 
forest model used for cell detection for the analysis of H&E slides28, and have recently used convolutional neural 
networks for the segmentation of tumour region in the context of automated PD-L1 scoring43. The majority of 
whole slide scanning, in both the clinic and research laboratories, utilises brightfield illumination. As the algo-
rithms described here can be adapted for brightfield scanned slides, the methodology allows the transition and 
uptake of these algorithms for the quantification of TB by facilities without fluorescence capability.

Proposed TB stage model.  Upon analysing the full MIBC cohort, no TB parameter was as significantly 
associated with patient survival as clinical TNM staging even though the parameter ‘number of TB in core’ was 

Figure 3.  Three main components of image analysis. (a) CNN based segmentation of tumour regions: (i) 
PanCK and Hoechst channels; (ii) Initial detection of PanCK regions based on convolutional neural network-
random forest model (blue) combined with additional detection based on Segnet (red); (iii) Segmentation result 
after local contour optimisation; (iv) Final detection and classification of tumour cell clusters, obtained from the 
tumour segmentation mask, in tumour buds (in green) or other tumour objects (in gray), based on the number 
of detected nuclei contained in each tumour cell cluster. (b) Automatic detection of the tumour core (green) and 
of the invasive front (in red) based on mathematical morphology applied to the tumour segmentation mask. (c) 
Results of the automatic detection of nuclei centres based on visual context regression random forest.
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shown to be strongly prognostic for survival. By excluding the metastatic patients from the analysis, the objec-
tively reported ‘number of TB in core’ (HR = 2.59, p = 0.01) outperformed all clinical features for predicting 
disease specific death (see Supplementary Table S1). Decision tree analysis of all the reported clinicopathological 
features combined with the seven tumour bud related features was performed to stratify patients into three sur-
vival groups, resulting in a novel TB stage model which utilises a combination of TNM staging and the ‘number 
of TB in core’ quantification. The model’s risk stratification of MIBC patients into three new staging groups 
improves upon the standalone clinical gold standard of TNM staging (see Table 3). While further research is 
required to validate these findings in larger cross-institutional studies, the current study provides evidence for the 
prognostic value of TB quantification.

Conclusion.   This work demonstrates the automated detection and classification of tumour buds across dig-
itised whole slide images which enables the quantification of TB in IF images. Based on this quantification, this 
study also reports for the first time that the presence of TB confers prognostic significance in the risk stratifica-
tion of MIBC patients. In addition, a survival decision tree analysis was used to identify a combination of TB 
based features and clinical parameters, which, by separating non-metastatic MIBC patients into low and high TB 
groups, improves on current clinical gold TNM-based standard for prognosis.

Methods
Patients and specimens.  All patients who underwent radical cystectomy for muscle-invasive bladder cancer 
in Edinburgh hospitals between the years 2006 to 2013, were collated into a study cohort from the hospital archives 
(N = 163). Due to the unavailability of patient material containing cancer tissue for some cases, the study number 
was reduced to 110. The archived formalin fixed paraffin embedded (FFPE) tissue block that contained the deepest 
invasion of cancer was selected for the 110 patients after review of haematoxylin and eosin (H&E) labelled slides by 
both a pathologist (DJH) and research scientist (PDC) (see Supplementary Figure S3). These samples were obtained 
from the NHS Lothian NRS BioResource Research Tissue Bank (Ethical status/approval ref: 10/S1402/33), con-
forming to protocols approved by East of Scotland Research Ethics Service (REC). Clinicopathological, treatment 
and survival data (see Table 1) was collected for each patient (see Supplementary Material M1). Disease specific 
survival was determined by a patient’s cause of death being attributed specifically to bladder cancer and patients 
were followed up for a total time of 113.13 months with a median survival time of 23.63 months The samples had 
been de-identified and unlinked from patient information prior to the commencement of the study. We excluded a 
further 10 out of 110 cases: 4 cases with unknown disease related death information and 6 cases with extensive tissue 
section artefacts. This resulted in a final and complete study cohort of 100 patients.

Immunofluorescence and whole slide imaging.  Automated immunofluorescence (IF) was performed 
on de-paraffinised 3 μm FFPE tissue sections using a Dako link 48 instrument (Dako, Agilent Technologies). The 
primary antibody against Pan-cytokeratin (PanCK; Cat# Z0622, Agilent Technologies) was utilised to visual-
ise urothelial cells and nuclei were counterstained with Hoechst (Hoechst 33342, Cat# H3570, ThermoFisher 
Scientific). A Carl Zeiss AxioScan.Z1 whole slide scanner (Zeiss, Göttingen, Germany) was used to capture and 
digitise whole slide fluorescence images with a 20x objective (see detailed immunofluorescence and digitisation 
protocol in the Supplementary Material).

Quantification of tumour buds through digital image analysis.  The quantitative image analysis of 
tumour buds was performed using machine learning and deep learning approaches based on Definiens Tissue 
Phenomics® technology (Definiens AG, Munich, Germany)44,45. The automated image analysis algorithms were 
developed for the detection of nuclei and the segmentation of urothelial-specific PanCK positive regions from 
both stroma and artefacts prior to the classification and quantification of tumour buds. The following paragraphs 
provide more details on the image analysis methods.

Detection of tumour cell clusters.  The tumour cell clusters are defined as the connected components of 
the tumour mask (PanCK positive labelled cells). The tumour mask is segmented by ensemble prediction of two 
deep-learning models, trained on manual annotations. The two models read as follow. First, a semantic segmen-
tation convolutional neural network (CNN) was developed based on the Inception architecture46 modified to 
include transposed convolution layers47 and skip connections48. As detailed in our previous work27, the second 
model combined a layer normalisation step, a fully CNN and a classification visual context Random Forest (RF)49. 
In comparison to our previous work27, the second model’s PanCK normalisation step relied on the detection of 
the PanCK reference objects from the output of the first network and not from heuristic rules. The outputs of the 
two networks were then ensemble by merging the two tumour masks detected by either of the two networks. The 
networks were trained based on the manual delineation of tumour and non-tumour regions (including tissue 
and staining artefacts as well as necrosis) on a subset of images prior to their application across the entire cohort 
of images. Examples of detected tumour masks are provided in Fig. 3a. In a final step, we formed the tumour cell 
clusters as the connected components of the tumour mask. The tumour core and invasive front, which are defined 
as the main tumour mass and as its border with a width of 1000 μm (500 μm inside and 500 μm outside of the bor-
der) respectively, were estimated from the segmented tumour mask. First, the main tumour mass was segmented 
using morphological closing on the tumour mask, which removes small interstices between the detected tumour 
cell clusters, and the resulting closed regions that were too small to correspond to the core removed. Once the 
tumour mass was classified, morphological dilation (500 μm) and erosion (500 μm) were then used to identify 
the outer and inner invasive front, respectively. An example of detected tumour core and invasive margins are 
provided in Fig. 3b.
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Nuclei detection.  Nuclei were detected based on the training and application of two regression visual con-
text RF models that respectively predict the pixel-wise spatial proximity to the closest nucleus as well as the size of 
the corresponding nucleus. As detailed in our previous work28, these two resulting prediction maps are inputs to 
a “local maxima” algorithm that outputs the position of the nuclei. This is illustrated in Fig. 3c.

Quantitative evaluation.  We performed a quantitative evaluation of the tumour segmentation and the 
nuclei detection algorithms on a set of 10 and 5 validation fields of view respectively, selected on whole slide 
images unused for training (see Supplementary Materials M4–M7). The quantitative evaluation of the detected 
tumour masks against manually annotated masks resulted in an overall Dice score of 0.86. In addition, a total of 
5844 nuclei were manually annotated to enable the evaluation of the nuclei counts per consolidated tumour cell 
clusters, obtained by intersecting the detected and the true tumour cell clusters. The scatter plot between the true 
number and the estimated number of nuclei for each of the resulting 196 tumour cell clusters is illustrated in 
Supplementary Figure S2. A Pearson correlation of 99.3% is reported. Qualitative results of tumour segmentation 
and nuclei detection are illustrated in Supplementary Materials M2 and M3.

Tumour bud classification.  Post tumour segmentation and nuclei detection, we counted the number of 
nuclei within each tumour cell cluster. As specified in the recommendations for tumour bud reporting in colorec-
tal cancer11,12, this yielded tumour cell clusters to be classified as tumour buds if containing between 1 and 4 nuclei 
(see Fig. 3a).

Tumour budding quantification.  Given the detected tumour buds and the estimated tumour core and 
invasive front, we quantified the number and density of both peri-tumoural (tumour buds within the invasive 
front) and intra-tumoural (tumour buds within the tumour core) detected budding. More precisely, the four 
following automated quantification methods were employed:

•	 Method 1: Across the ten 0.785 mm2 fields of view containing the highest number of detected tumour buds 
within the image.

•	 Method 2: Across a single 0.785 mm2 field of view which contained the highest number of detected tumour 
buds.

•	 Method 3: Similar to Method 1 but with a smaller 0.238 mm2 field of view.
•	 Method(s) 4–7: Quantification of the total number of tumour buds and their density in the detected tumour 

core and in the detected invasive front.

The first and third methods are based on the quantification methods previously described by Karamitopoulou 
E. et al.21. The size of the field of views of Method 1 and Method 2 was defined as recommended by the 
International Tumour Budding Consensus Conference (ITBCC) for the reporting of TB in colorectal can-
cer12. The third method was proposed by Lohneis P. et al.24. The fourth method explored other quantification 
approaches than the ones previously described in the literature and leads to an additional set of four tumour bud 
related features. The resultant (m = 7) TB related features are set out in Table 2. Note that a larger set of features 
could easily be derived from the image analysis results. However, given the number of patients (N = 100), we fol-
lowed the recommendations by Field et al.50 and restricted in this study the number of tested tumour bud related 
predictors. This aimed at limiting the impact of multiple hypothesis testing.

Image analysis infrastructure.  The convolutional neural networks were trained and predicted using the 
open source Python deep learning library Keras (https://keras.io/) (Version 2.0.9) running on top of TensorFlow51 
(Version 1.4.0). Other operations, such as the training and prediction of the classification and regression RF 
models as well as the computation and export of the tumour bud related features, were performed in an extended 
version of the Definiens Developer XD software52.

Univariate statistical analysis.  Together with the seven TB related features described in the previous sec-
tion, we included the following clinicopathological features for univariate statistical analysis on all MIBC patients: 
TNM stage, pT stage, lymph node status, presence of metastasis, grade, growth pattern, treatment option, age 
and gender. Univariate Log rank test and cox regression analysis were performed in R (Version 3.3.2) using the 
survival package (Version 2.39–5) and the survminer package (Version 0.4.3). When meaningful, we performed 
p values correction to account for the m = 7 hypotheses resulting from the definition of the TB related features. 
Corrected p values, or q values, were computed using the R package Bioconductor53. Because we did not have 
enough p values to warrant the estimation of the overall proportion of true null p values π0, the input parameter 
λ was set to 0, which resulted in following the most conservative Benjamini methodology.

Survival decision tree for multivariate statistical analysis.  Our survival decision tree (see Fig. 1) 
analysis reads as follows: starting with a root consisting of all MIBC patients (N = 100), we iteratively identified 
the best decision (i.e. the best pair of feature and associated cut-off) among all the input features and all possible 
cut-off values which maximised the difference in the survival distributions of the two resulting sub-groups. This 
difference was quantified by log rank p value with a minimum prevalence of the two resulting low/high groups 
of 25%. Since the two clinical features of growth pattern and treatment combination are strictly categorical, no 
cut-off can be applied for splitting. In these two cases, the split is instead defined by patients having the given 
growth pattern versus patients having a different growth pattern, or by patients having received the given treat-
ment combination versus patients having received a different treatment. The optimisation and leave-one-out 
cross validation of the decisions were developed in Python (Version 3.5.3) using the lifelines package (version 
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0.14.3). In the next paragraphs, we further justify the use of a survival decision tree vs. a standard classification 
tree, detail the employed leave-one-out cross-validation methodology, report our leaf merging strategy and finally 
describe the statistical analysis performed for comparison of the resulting TB stage model against the standard 
TNM stage model.

Survival decision function.  Our survival decision tree differs from the standard classification tree: while the 
standard classification tree finds at each node the decision that minimises the misclassification rate between 
the two resulting branches, we instead return the decision that minimises the log rank test p value between the 
survival characteristics of the two resulting branches. By bypassing the need of an arbitrary set of classes, the pro-
posed survival decision tree has the advantages of keeping both the time and event information and of maintain-
ing the continuous characteristic of survival information. In contrast, the use of a classification tree would require 
to arbitrarily define the classes either (1) by directly taking the event (death/survival) as class, or (2) by classifying 
patients with time-to-event higher than an arbitrary reference time (e.g. median survival time) as high survival 
class and patients with time-to-event lower than this reference time as low survival class.

Leave-one-out cross validation.  Each split’s feature and associated optimal cut-off value were validated together 
with the whole decision tree using leave-one-out pre-validation to prevent overfitting54, resulting in the decisions 
at each node to be independently optimised for each patient. While overfitting the decisions on all patients would 
result in stronger separation between the survival groups, the employed leave-one-out approach enables a better 
assessment of how the found results would generalise to another dataset. This is of high importance given the 
limited size of our current dataset (N = 100). The leave-one out analysis reads as follows: for a given patient, the 
decision is chosen to minimize the log rank p value of the separation of the remaining N-1 patients into low and 
high survival branches. Each patient is therefore left out of the selection of its optimal decision. The final grouping 
is obtained by applying the individual leave-one-out cross validated decisions to the corresponding individual 
patients, which results in the independence between the patients and the decisions.

Leaf merging.  Because the low number of TNM IIIB patients (4%, see Table 1) would not result in any meaning-
ful statistical observation, we focused the analysis on the standard TNM stages II, III and IV for MIBC patients. 
To ensure comparability with this TNM staging, we enforced the proposed survival decision tree to output three 
final categories by setting the maximum depth to two and by splitting only the most populated node at depth one.

Statistical tests.  Categorical Cox regression analysis was finally performed on the three standard TNM groups 
(II, III, and IV) as well as on the three categories (II’, III’, IV) resulting from the proposed survival decision tree 
model, also denoted ‘TB stage model’. The hazard ratios together with their confidence intervals were computed 
to estimate the effect of the two respective staging methods. The respective TNM stage II and TB model stage II’ 
were taken as baseline for both models, leading to the following analysis: TNM III vs TNM II, TNM IV vs TNM 
II, TB III’ vs TB II’ and TB IV vs. TB II’. Overall significance of the two models were evaluated with the likelihood 
ratio test, Wald test and score log-rank test. This last analysis was performed together with the computation of 
the associated Kaplan Meier curves in R (Version 3.3.2) using the survival package (Version 2.39–5) and the sur-
vminer package (Version 0.4.3).

Ethical approval and informed consent.  Ethical approval for this study was obtained from the NHS 
Lothian Tissue Governance Unit (Ethical status/approval ref: 10/S1402/33), conforming to protocols approved by 
East of Scotland Research Ethics Service (REC). Patient material was surplus to diagnosis and no further consent 
was required.

Data Availability
To enable the replication of the statistical analysis and results, the computed tumour budding features are availa-
ble for each patient together with the corresponding survival information and clinical features (see Supplemen-
tary Material M1). We also provide the reader with the tiff images corresponding to fields of view used for vali-
dation of the segmentation and detection algorithm (see Supplementary Materials M4–M7). The current cohort 
being still under investigation, the raw image data is not available at this stage. The software platform Definiens 
Developer XD is commercially available.
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