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Pancreatic stone protein/
regenerating protein is a potential 
biomarker for endoplasmic 
reticulum stress in beta cells
Stephen Stone   1, Damien Abreu2,3, Jana Mahadevan2,9, Rie Asada2,8, Kelly Kries2, Rolf Graf4, 
Bess A. Marshall   1,5, Tamara Hershey   6 & Fumihiko Urano2,7

Endoplasmic reticulum (ER) stress in beta cells is an important pathogenic component of both type 
1 and type 2 diabetes mellitus, as well as genetic forms of diabetes, especially Wolfram syndrome. 
However, there are currently no convenient ways to assess ER stress in beta cells, raising the need for 
circulating ER stress markers indicative of beta cell health. Here we show that pancreatic stone protein/
regenerating protein (PSP/reg) is a potential biomarker for ER stressed beta cells. PSP/reg levels are 
elevated in cell culture and mouse models of Wolfram syndrome, a prototype of ER stress-induced 
diabetes. Moreover, PSP/reg expression is induced by the canonical chemical inducers of ER stress, 
tunicamycin and thapsigargin. Circulating PSP/reg levels are also increased in some patients with 
Wolfram syndrome. Our results therefore reveal PSP/reg as a potential biomarker for beta cells under 
chronic ER stress, as is the case in Wolfram syndrome.

Diabetes mellitus is a global epidemic, affecting an estimated 30.3 million people in the United States1. It causes 
heavy financial burdens at both the personal and the public health level due to the longitudinal medical care 
and self-management education required to properly control this disease2. Regardless of its etiology, diabetes is 
characterized by an absolute or relative deficiency in insulin production by pancreatic beta cells. As the major 
site of insulin biosynthesis, the endoplasmic reticulum (ER) is particularly important for beta cell function. The 
ER is responsible for proper protein folding and sorting as well as calcium signaling and storage. Perturbations 
to ER homeostasis have direct implications for determining between cell life and death3,4. Accordingly, ER dys-
function, or ER stress, is directly involved in the beta cell pathogenesis of both type 1 (T1DM) and type 2 dia-
betes (T2DM)5–9. In both forms of diabetes, a combination of genetic and metabolic insults to ER homeostasis 
result in a complex cellular response that drives calcium efflux from the ER and activates the unfolded protein 
response4. Depending on the severity and duration of the stress, these responses by the ER can culminate in beta 
cell death4,10,11.

Wolfram syndrome (OMIM 222300) is considered a prototype of human ER stress disease12. As a monogenic, 
neurodegenerative form of diabetes, stemming from ER dysfunction, Wolfram syndrome is a prime model for 
studying the pathophysiology of ER stress in beta cells. Most cases of this rare autosomal recessive disorder are 
caused by mutations in the WFS1 gene, which encodes an ER transmembrane protein13. While the function of 
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this protein is still not clear, accumulating evidence suggests that disease-causing alleles promote chronic, unre-
solvable ER stress in neural and endocrine tissues. This leads to cellular dysfunction and ultimately cell death, 
which typically first manifests as juvenile-onset diabetes mellitus, followed by bilateral optic nerve atrophy14. 
Animal and cell models of Wolfram syndrome are increasingly recapitulating the aspects of ER stress-induced 
beta cell pathology that lead to disease. More specifically, upregulation of ER stress markers, reduced beta cell 
mass, and defects in glucose-stimulated insulin secretion are observed in whole body and beta cell-specific WFS1 
knockout mice, as well as rodent beta cell models of WFS1 depletion15,16. It is therefore clear that by leveraging 
our understanding of Wolfram syndrome as a monogenic disorder of ER stress, we can identify novel biomarkers 
and molecular pathways pertinent to more common diseases resulting from ER dysfunction. Such biomarkers 
will be very useful as researchers pursue clinical trials for Wolfram syndrome and other metabolic disorders in 
which beta cell ER stress is an integral component.

This study aimed to identify differentially expressed proteins in rodent models of Wolfram syndrome that 
could serve as biomarkers of ER stress in beta cells. It then evaluated the potential of one of the candidate pro-
teins, pancreatic stone protein/regenerating protein (PSP/reg), as a clinical biomarker in subjects with Wolfram 
syndrome. There are several genes in the PSP/reg family, and PSP/reg has various alternative names including: 
regenerating protein 2, lithostathine-2, pancreatic thread protein, and protein-X17. These studies examine the 
PSP/reg1 family, where there is closest homology between mouse Reg2 and rat Reg118.

Results
Loss of Wfs1 leads to induction of PSP/reg.  Beta cells respond to ER stress through the activation of 
transcriptional and translational programs aimed at resolving the stress19. We hypothesized that beta cells in 
Wolfram syndrome would activate signaling pathways that could be utilized as clinical biomarkers of beta cell ER 
stress. In order to test this hypothesis, we measured differentially expressed proteins in a mouse model of Wolfram 
syndrome, a genetic model of chronic beta cell ER stress. Two-dimensional gel electrophoresis was used to resolve 
the proteomes of islets derived from two 17-week-old Wfs1 beta cell-specific male knockout mice and two age-
matched littermate control male mice. Due to the relatively small amount of protein that can be isolated from the 
mouse islets, we chose to combine islets from 2 mice in order to obtain enough protein to peform proteomics 
via mass spectroscopy. Of the approximately 450 spots analyzed in the molecular mass range of 5–110 kDa, 72 
protein spots showed a difference of 1.5-fold or greater between Wfs1 knockout islets and control islets. As only 
2 mice were used in each condition, we were unable to calculate statistical significance on these results. To refine 
our search for potential biomarkers of ER stress, the top 11 most upregulated spots in Wfs1 knockout islets were 
subjected to mass spectroscopy, resulting in the identification of 7 unique proteins (Supplementary Fig. 1a and 
Supplementary Table 1). Several of the peptide fragments were predicted to be the same protein, likely represent-
ing different post-translational modification states of those proteins.

Notably, many of the proteins identified are digestive enzymes (Supplementary Table 1). This includes chy-
motrypsinogen B, trypsin 4 precursor, trypsinogen 7 precursor, and chymotrypsin-like elastase. Pancreatic 
alpha-amylase plays a role in carbohydrate metabolism. In keeping with our hypothesis, we found protein 
disulfide isomerase to be 3.72-fold higher in Wfs1 knockout islets compared to control islets. Protein disulfide 
isomerase is an ER resident protein involved in protein folding by catalyzing the formation of disulfide bonds20. 
The upregulation of protein disulfide isomerase in Wfs1 beta cell-specific knockout islets suggests that ER stress 
leads to adaptive changes that promote proper protein folding via the formation of disulfide bonds21.

Pancreatic stone protein (PSP/reg) was the most upregulated protein in WFS1 knockout islets identified by 
our analysis. Two isoforms of PSP/reg were detected: a higher molecular weight isoform, which was upregulated 
3.98-fold compared to wild-type (WT) islets, and a lower molecular weight isoform, which was upregulated 
3.55-fold (Supplementary Fig. 1b). This was of particular interest to us because PSP/reg is a small secreted peptide 
(approximately 16 kDa) that has been studied primarily for its role in islet regeneration, suggesting that PSP/reg 
may have properties that promote beta cell health and adaptation to ER stress17,22.

Given that PSP/reg was elevated in islets isolated from beta cell-specific Wfs1 knockout mice, we hypothesized 
that PSP/reg would co-localize with beta cells in the islet. To test this hypothesis, we performed immunohisto-
chemistry on pancreatic sections obtained from 3 whole body Wfs1-knockout mice and 3 wild-type control mice. 
As demonstrated in previous publications, PSP/reg is strongly expressed in acinar tissue23. Insulin and PSP stain-
ing co-localized within both Wfs1+/+ and Wfs1−/− islets. Some of the Wfs1−/− islets demonstrated a subtle 
increase in PSP/reg staining (Supplementary Fig. 1c).

Given our proteomic data showing that PSP/reg protein levels increase in Wfs1 knockout islets, we hypothe-
sized that Wfs1 depletion would also increase PSP/reg expression at the transcriptional level. To test this hypoth-
esis, we monitored gene expression of PSP/reg in a rat insulinoma (INS-1 832/13) cell line expressing small 
interfering RNA (siRNA) directed against Wfs1. Consistent with our islet data, cells depleted of Wfs1 expressed 
a 5-fold increase in Reg1 compared to the control cells (Fig. 1A). This suggests that PSP/reg expression may be 
negatively regulated by WFS1.

PSP/reg is induced by ER stress.  WFS1 has been shown to negatively regulate ER stress24,25. We therefore 
anticipated that loss of Wfs1 expression would lead to induction of canonical ER stress marker genes such as Bip, 
Chop and Txnip. To test this hypothesis, we measured expression levels of these ER stress markers by quantitative 
real-time PCR (qRT-PCR) using siRNA directed against Wfs1 in INS-1 832/13 cells. As expected, BiP expres-
sion was increased in Wfs1-knockdown cells compared to control cells (Fig. 1B). Expression of Chop and Txnip 
was also mildly induced by Wfs1-knockdown, although it did not reach statistical significance (Fig. 1C and D).  
BiP is an ER stress-inducible molecular chaperone whose upregulation indicates activation of signaling path-
ways to restore cellular homeostasis26. Conversely, Chop and Txnip are ER stress-inducible molecules whose 
chronic activation leads to apoptosis27,28. Taken together, our findings suggest that transient knockdown of Wfs1 
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stimulates a baseline induction of ER stress in beta cells. These results are consistent with previous reports of Wfs1 
loss-of-function models in which beta cells exhibit heightened ER stress and thus increased susceptibility to ER 
stress-mediated cell death12,16.

Figure 1.  PSP/reg is induced by endoplasmic reticulum stress. (A–D) INS-1 832/13 cells were transfected 
with siRNA directed against WFS1 (siWFS1) or control scrambled siRNA (siScr). Quantitative real-time PCR 
was used to measure gene expression of (A) Reg1, (B) Bip (C) Chop, and (D) Txnip. Knockdown of WFS1 
increased Reg1 expression 5-fold. Bip expression was increased by ~70%, Chop expression by ~25%, and Txnip 
expression by ~25%, relative to control. (E–H) INS-1 832/13 cells were treated with two chemical inducers of 
ER stress, tunicamycin (TM) and thapsigargin (TG), at the doses specified. DMSO was used as a vehicle control. 
Quantitative real-time PCR was used to measure gene expression of (E) Reg1, (F) Bip (G) Chop, and (H) Txnip. 
The expression of Reg1 was significantly increased by TM and TG after 8 hours of treatment. As expected, TM 
and TG treatment led to upregulation of Bip, Chop and Txnip. *p < 0.05, **p < 0.01. Statistical significance was 
determined by an unpaired two-tailed t-test between a treated condition and its corresponding control condition.
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Since levels of PSP/reg expression were elevated in animal and cell models of Wolfram syndrome, and 
Wolfram syndrome is itself a model of ER stress disease, we hypothesized that PSP/reg would also be broadly 
inducible by ER stress. If true, other known endoplasmic reticulum stressors would increase the expression of 
PSP/reg genes. To test this hypothesis, we treated INS-1 832/13 cells with tunicamycin (TM) and thapsigargin 
(TG), two well-known chemical inducers of ER stress. TM causes ER stress by inhibiting N-linked glycosyla-
tion in the ER, thus disrupting protein folding29. TG elicits ER stress by irreversibly inhibiting the sarcoplasmic/
endoplasmic reticulum calcium ATPase (SERCA), thus disrupting calcium homeostasis through ER calcium 
depletion29,30. To assess the dynamics of PSP/reg induction by ER stress, we performed a time course experiment 
in which we treated INS-1 832/13 cells with TM (10 µg/mL), TG (100 nM), or DMSO (control). We found that 
both TM and TG lead to significant upregulation of Reg1 over the span of 8 hours, but not over 4 hours. This sug-
gests that the induction of Reg1 may be part of a late phase response to ER stress. Additionally, TG elicited a much 
stronger induction of Reg1 expression compared to TM, suggesting that Reg1 may be more sensitive to changes 
in calcium homeostasis than disruptions in protein folding (Fig. 1E). As expected, both TM and TG treatment 
increased the expression of the canonical ER stress genes Bip, Chop and Txnip. Notably, the induction of these 
genes occurred within 4 hours, further indicating that ER stress-induced Reg1 expression is slow in comparison 
to other canonical, early ER stress response genes (Fig. 1F–H).

PSP/reg levels in human subjects with Wolfram syndrome.  Since the expression of PSP/reg was 
elevated in mouse and cell models of Wolfram syndrome, we were interested in determining whether PSP/reg 
might be elevated in patients with Wolfram syndrome. Accordingly, we measured circulating PSP/reg levels in the 
serum of all of the available subjects attending the 2014 Wolfram syndrome research clinic. This included 28 sub-
jects with Wolfram syndrome, and 28 control subjects (parents or siblings of subjects with Wolfram syndrome). 
The mean PSP/reg level in the Wolfram syndrome group was 23.1 ng/mL (SD 29.9), compared to 15.1 ng/mL (SD 
10.2) in the control group. The median PSP/reg level in the Wolfram syndrome group was 12.2 ng/mL (interquar-
tile range 10.4–18.1 ng/mL), compared to 12.9 ng/mL (interquartile range 10.6–17.7 ng/mL) in the control group. 
(Fig. 2)

Despite the similarities between both groups, we noted that 3 subjects with Wolfram syndrome had relatively 
elevated levels of PSP/reg. We carefully evaluated the medical history of these 3 subjects for age, gender, spe-
cific WFS1 gene mutations, and the age of onset for the major clinical components of Wolfram syndrome. This 
included diabetes mellitus (DM), optic atrophy (OA), hearing loss, and diabetes insipidus (DI). We compared the 
PSP/reg level to their fasting glucose and c-peptide levels (Table 1).

Subject WU.WOLF-03 is male subject who was 22 years old at the time of the study. He carries two dele-
tions in the WFS1 gene. The first WFS1 allele is a 4 base pair deletion, resulting in a frameshift and a premature 
stop codon, resulting in a truncated protein (c.1230_1233_CTCT; p.V412fs*440_∗). The second WFS1 allele 
is a 3-base pair deletion. This mutation eliminates a valine at position 415 (c.1243_1245delGTC; p.V415del). 
WU.WOLF-03 was diagnosed with diabetes mellitus at age 5. He was diagnosed with optic atrophy, hearing loss, 
and diabetes insipidus at age 6. He had a relatively elevated PSP/reg level, 94.7 ng/mL. His fasting glucose was 
279 mg/dL, and fasting c-peptide was 0.65 ng/mL. This subject’s mother, WU.WOLF-03 (mother), was also an 
outlier amongst the control group. Her PSP/reg level was 60.2 (ng/mL). It is possible that the maternally inherited 
allele may be particularly deleterious and effective at inducing PSP/reg.

Subject WU.WOLF-11 is a male subject who was 12 years old at the time of the study. He carries a missense 
mutation and a nonsense mutation of the WFS1 gene. The first WFS1 allele carries a G to A mutation, resulting 
in an alanine to threonine mutation at position 126 (c.376G>A; p.A126T). The second WFS1 allele carries a G 
to A mutation, resulting in a premature stop codon at position 613 (c.1838G>A; p.W613X). WU.WOLF-11 was 

Figure 2.  Serum Levels of PSP/reg in Human subjects with Wolfram Syndrome. PSP/reg levels were obtained 
from all available subjects attending the 2014 Wolfram syndrome research clinic. This included 28 subjects with 
Wolfram syndrome, and 28 control subjects (parents or siblings of subjects with Wolfram syndrome). The mean 
PSP/reg level in the Wolfram group was 23.1 ng/mL (SD 29.9), compared to 15.1 ng/mL (SD 10.2) in the control 
group. The median PSP/reg level in the Wolfram group was 12.2 ng/mL (interquartile range 10.4–18.1 ng/mL), 
compared to 12.9 ng/mL (interquartile range 10.6–17.7 ng/mL). Despite the similarities between the Wolfram 
and control groups, we noted that 3 subjects with Wolfram syndrome had relatively elevated levels of PSP/
reg (WU-WOLF-03, WU-WOLF-11, WU-WOLF-12). From the control group one subject (WU-WOLF-03 
(Mother)), also had relatively elevated levels of PSP/reg.
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diagnosed with diabetes mellitus and optic atrophy at age 7. He was diagnosed with diabetes insipidus at age 8, 
and hearing loss at age 9. WU.WOLF-11 had the highest measured PSP/reg level, 126.8 ng/mL. His fasting glucose 
was 278 mg/dL, and fasting c-peptide was 0.65 ng/mL.

Subject WU.WOLF-12 is a male subject who was 26 years old at the time of the study. He carries two missense 
mutations in the WFS1 gene. The first WFS1 allele carries a G to A mutation, this results in a glycine to glutamine 
mutation at position 107 (c.320G>A; p.G107E). The second WFS1 allele carries a C to T mutation, resulting in 
an arginine to tryptophan mutation at position 629 (c.1882C>T; p.R629W). His PSP/reg level was elevated at 
67.3 ng/mL. His fasting glucose was 195 mg/dL, and his fasting c-peptide was 0.14 ng/mL. This subject underwent 
a mixed-meal tolerance test. At 30 minutes, his glucose was 207 mg/dL, and his c-peptide was 0.3 ng/mL.

We hypothesized that serum PSP/reg levels may be positively correlated to disease severity in Wolfram syn-
drome. Therefore, we compared serum PSP/reg levels to fasting C-peptide levels obtained from the 28 subjects 
participating in the 2014 Wolfram syndrome clinic. We noted that the 3 subjects with relatively high serum PSP/
reg all had lower levels of fasting C-peptide (0.14–0.65 ng/mL). However, there were several subjects within the 
same range of fasting C-peptide who had normal PSP/reg levels (Supplementary Fig. 2a). We also compared 
serum PSP/reg levels to the age of onset for the major clinical components of Wolfram syndrome, including 
diabetes mellitus, optic nerve atrophy, hearing loss, and diabetes insipidus. We did not identify any clear correla-
tion between the age of onset of these conditions and serum PSP/reg levels (Supplementary Fig. 2b–e). We also 
compared the serum PSP/reg levels to the Wolfram Unified Rating Scale (WURS)31 obtained from these subjects 
during the 2014 Wolfram syndrome clinic. We did not identify any clear correlation between serum PSP/reg 
levels and the total, physical, or behavioral WURS scores (Supplementary Fig. 2f–h). Anecdotally, however the 
clinical providers at the Wolfram syndrome clinic felt that the subjects with the highest PSP/reg were some of the 
more severely affected subjects in the cohort.

Discussion
ER stress is increasingly recognized as a significant pathologic component of beta cell dysfunction and beta cell 
death in diabetes5–8. Yet there are currently no effective therapies for mitigating beta cell pathology that tar-
get the ER. Furthermore, there are no convenient ways to monitor ER health in-vivo. Wolfram syndrome is a 
rare, monogenic form of diabetes that stems from beta cell ER dysfunction. As such, animal and cell models of 
Wolfram syndrome serve as unique tools for identifying biomarkers of ER dysfunction. Our results demonstrate 
the proteomic alterations that occur in islets undergoing ER stress. More specifically, our data identify PSP/reg as 
a novel secreted protein that may serve as a biomarker for beta cells experiencing ER dysfunction, as in Wolfram 
syndrome. We propose that ER stress, whether genetic or environmental, results in homeostatic alterations to the 
ER that result in increased expression, translation, and secretion of PSP/reg. PSP/reg likely exerts its downstream 
effects in both an autocrine and a paracrine fashion to counterbalance the effects of ER stress by promoting beta 
cell proliferation and pro-survival pathways (Fig. 3).

In this study, we applied a proteomic profiling technique involving two-dimensional gel electrophoresis fol-
lowed by protein identification with mass spectrometry to islets derived from Wfs1 beta cell-specific knockout 
mice. This approach allowed us to identify islet-specific proteins upregulated under chronic ER stress through an 
unbiased approach. Of the differentially expressed proteins identified, special attention was placed on secreted 
molecules due to their potential to serve as biomarkers of beta cell ER stress.

This proteomic screen identified PSP/reg as a highly upregulated secretory molecule in Wfs1 knockout islets. 
PSP/reg is a small (16 kDa) secreted protein that is part of the regenerating protein superfamily and is primarily 
expressed in the pancreas, and to a lesser extent, in the gastric mucosa and the kidney32. It functions as a C-type 
lectin and thus contains a carbohydrate-binding protein domain that requires calcium for its activity33. While the 
exact function and mechanisms of PSP/reg activity in beta cells remains unclear, previous reports have demon-
strated that PSP/reg is abundant in islets regenerating after partial pancreatectomy22. Intriguingly, more recent 
studies of diabetic murine models are also beginning to highlight PSP/reg as a molecule of interest in the pancreas 
under diabetic states.

Pérez-Vázquez et al. recently published a proteomics study of db/db mouse pancreata, where they found 
increased expression of PSP/reg, chymotrypsinogen B, and pancreatic alpha-amylase34. In this report, PSP/
reg was increased by 2.5-fold in db/db mice. Qiu et al. published a similar study examining the pancreata of 
diet-induced diabetic mice and found PSP/reg to be upregulated by 1.2- to 4.6-fold in diabetic animals35. In our 
proteomic study of Wolfram syndrome, PSP/reg was increased by 3.5- to 4-fold in WFS1 beta cell specific knock-
out islets compared to controls. Collectively, these proteomic studies suggest that there are common pathways 

Subject Age Gender
PSP/reg 
(ng/mL)

Fasting WFS1 Age of disease onset

Glucose 
(mg/dL)

C-peptide  
(ng/mL) Allele 1 Allele 2 DM OA

Hearing 
loss DI

WU.WOLF-03 22 M 94.7 279 0.65 c.1230_1233delCTCT; 
p.V412fs*440

c.1243_1245delGTC; 
pV415del 4 6 6 6

WU.WOLF-11 12 M 126.8 278 0.4 c.376G>A; p.A126T c.1838G>A; p.W613* 7 7 8 8

WU.WOLF-12 26 M 67.3 195 0.14 c.320G>A; p.G107E c.1882C>T; p.R629W 6 7 7 15

Table 1.  Clinical Data Regarding 3 Subjects with Wolfram Syndrome with the Highest Levels of PSP/reg. 
Subject number, age, gender, and genotype of these subjects. Age (years) of clinical onset of DM (diabetes 
mellitus), OA (optic atrophy), hearing loss, DI (diabetes insipidus). Also listed is the subjects fasting PSP/reg, 
glucose, and C-peptide levels.
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activated in islets under diabetogenic conditions that converge on increased PSP/reg expression. ER stress is the 
likely culprit. The fact that PSP/reg is upregulated across three different diabetic mouse models in which ER stress 
is strongly implicated indicates that PSP/reg may serve as a signal of ER-stressed beta cells in diabetes36,37. Indeed, 
induction and secretion of PSP/reg may be part of a common pathway activated by islet perturbations associated 
with ER dysfunction.

We hypothesize that PSP/reg is of broader significance to diseases involving ER stress beyond Wolfram 
syndrome. Accordingly, our data demonstrate that PSP/reg is induced by two mechanistically distinct ER 
stress-inducing agents (i.e. tunicamycin and thapsigargin). Although this is consistent with our understanding of 
Wolfram syndrome as a prototype of ER stress disease, the fact that PSP/reg exhibits slower temporal induction 
dynamics than canonical ER stress genes such as BiP, Chop and Txnip suggests that PSP/reg may function in a 
different capacity, and towards a different goal, than these other genes. Given that PSP/reg is a secreted molecule, 
it is possible that its induction at later stages of prolonged ER stress may serve a dual purpose. In addition to 
signaling ER dysfunction to other cells, beta cell induction and secretion of PSP/reg may also contribute to a cell 
autonomous adaptive response. Curiously, we found Reg1 to be induced more robustly by thapsigargin than tuni-
camycin. This indicates that PSP/reg expression is particularly sensitive to cellular calcium fluctuations, which 
is consistent with PSP/reg being a C-type lectin with calcium-dependent activity. Further studies are required to 
determine the targets of PSP/reg’s activity.

Initially, PSP/reg was suggested to be a marker of pancreatic injury and recurrent pancreatitis38. Serum PSP/
reg is robustly increased in patients with acute or chronic pancreatitis, with some potential for false positives in 
patients with chronic renal failure under hemodialysis, malignancies of the digestive system or hepatic dysfunc-
tion39. Elevated levels of PSP/reg have also been recently reported in ventilator-associated pneumonia, chronic 
obstructive pulmonary disease exacerbation and post-traumatic sepsis40. At baseline, however, PSP/reg is mostly 
secreted by pancreatic acinar cells, while islets appear to only produce PSP/reg under pathologic conditions17,41. 
Bonner et al. recently demonstrated that beta cells undergoing apoptosis induce PSP/reg expression in surviving 
neighboring beta cells, suggesting that PSP/reg signals in a paracrine fashion to promote survival42. Additionally, 
administration of recombinant PSP/reg peptide has been shown to be protective against the development of 
autoimmune diabetes in non-obese diabetic mouse models43. This protective effect may be tied to findings from 
Okamoto et al., which show that PSP/reg is induced by IL-6 and glucocorticoids, thereby inducing beta cell rep-
lication through activation of the cell cycle via Cyclin D144. Our study extends these findings to a new model of 
monogenic diabetes and demonstrates that ER stress also leads to increased expression of PSP/reg in pancreatic 
beta cells.

Due to these properties, we proposed that PSP/reg could serve as a clinically useful circulating biomarker of 
beta cell ER stress, in Wolfram syndrome. Unfortunately, there was no significant difference between subjects 
with Wolfram syndrome and parental or sibling controls. PSP/reg is secreted by both the pancreatic islets and 
the surrounding acinar tissues. The islets only comprise 1–2% of the pancreatic mass, and receive about 10–15% 
of the pancreatic blood flow45. There is no way to discriminate islet derived PSP/reg from its acinar counterpart. 
Therefore, detecting PSP/reg elevations in the serum of subjects with diabetes or Wolfram syndrome is chal-
lenging. With these important caveats in mind, we identified 3 subjects in our cohort with remarkably elevated 
levels of PSP/reg. These patients had relatively severe symptoms of Wolfram syndrome. It is possible that serum 
levels of PSP/reg may rise according to disease severity and that longitudinal levels of PSP/reg may reflect disease 
progression. When performing univariate analysis on the serum PSP/reg data, we observed that subjects with 
higher PSP/reg levels tended to have lower fasting C-peptide levels. However, we did not find any clear correla-
tions to the age of onset of diabetes mellitus, optic nerve atrophy, hearing loss, diabetes insipidus, or the Wolfram 
Unified Rating Scale. This is not altogether unexpected, given the variability in the phenotypic presentation that 
is typical in Wolfram syndrome. However, in simpler genetic models of WFS1 loss of function, PSP/reg is clearly 
upregulated.

Evaluating the correlation between serum PSP/reg and clinical severity in Wolfram syndrome is unfortunately 
complicated by the rarity of the disease. Given Wolfram syndrome’s prevalence of 1/500,000 people worldwide, 

Figure 3.  Proposed Model of PSP/reg in the ER stress response. ER stress either via genetic (loss of WFS1) 
or environmental (treatment with tunicamycin or thapsigargin), results in homeostatic alterations in the 
ER. In turn, this results in increased expression, translation, and secretion of PSP/reg. PSP/reg likely exerts 
its downstream effects in both an autocrine and paracrine manner. We hypothesize that PSP/reg likely 
counterbalances the effects of ER stress by simultaneously promoting beta cell proliferation and pro-survival 
pathways.

https://doi.org/10.1038/s41598-019-41604-4


7Scientific Reports |          (2019) 9:5199  | https://doi.org/10.1038/s41598-019-41604-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

it is difficult to obtain a patient sample size sufficiently large enough to assess the relationship between PSP/reg 
levels and disease progression. This question has, however, been evaluated in other diabetic cohorts with larger 
affected populations. Recent studies have demonstrated that serum PSP/reg levels are elevated in type 1 and type 2 
diabetes, both of which have well-documented ER stress-mediated pathophysiologic components46,47. In addition, 
a study by Bacon et al. revealed that PSP/reg levels are elevated in human subjects with HNF1A-MODY, another 
genetic form of diabetes associated with increased beta cell ER stress48. Altogether, these studies suggest that islet 
injury secondary to beta cell ER stress may lead to elevated serum levels of PSP/reg. Therefore, continued longi-
tudinal measurement of PSP/reg in patients with Wolfram syndrome will help provide clinical correlations and 
also help determine which patients would benefit most from this this testing.

Our findings provide new evidence that beta cell ER stress alone is sufficient to induce PSP/reg expression in 
pancreatic beta cells. As PSP/reg is a small secreted peptide, it holds promise as a biomarker of beta cell ER stress 
in the pathogenesis of both monogenic and common forms of diabetes.

Materials and Methods
Animal experiments.  The WFS1 beta cell specific knockout mouse was generated by crossing floxed WFS1 
exon 8 animals with mice expressing Cre recombinase under the control of a rat insulin promoter (RIP2-Cre)16,49. 
129S6 whole body Wfs1-knockout mice were a kind gift from Dr. Sulev Kõks. This results in a deletion of amino 
acids 360–890 of the Wfs1 protein50. The Institutional Animal Care and Use Committee at Washington University 
School of Medicine (A-3381-01) approved all animal experiments performed in this study. All methods were 
performed in accordance with the relevant guidelines and regulations.

Isolation of mouse islets.  Pancreatic islets were isolated from WFS1 beta cell specific knockout mice and 
age matched, littermate, Cre-negative, control mice. Mice were anesthetized and pancreata were incubated for 
13 min at 37 °C and shaken 30 times. Undigested acinar tissue was removed by using a 70-μm screen and the 
recovered tissues were washed twice with ice-cold Hanks balanced salt solution followed by centrifugation at 
250 × g for 2 min. Islets were handpicked and preincubated in RPMI 1640 medium containing 10% FBS and 
penicillin streptomycin (Sigma) before experimentation.

Proteomic analysis.  Protein extraction and 2-dimensional differential in-gel electrophoresis (2-DIGE) 
were performed at Applied Biomics (Hayward, CA), as described51. Pancreatic proteins were extracted and con-
centrations standardized between 3 and 8 mg/mL. Control samples were labeled with Cy2 and WFS1 knockout 
samples were labeled with Cy5. Image scans were carried out using Typhoon TRIO and analysis performed using 
ImageQuant-5.0; in-gel and cross-gel analyses were performed using DeCyder-6.0 to obtain the ratio change of 
the protein differential expression (GE, Schenectady, NY). Proteins of interest were selected based on a cutoff 
ratio more than or equal to 1.5 in the WFS1 knockout samples. Selected spots were identified by Ettan Spot Picker 
after DeCyder analysis; protein spots were subjected to in-gel trypsin digestion, peptides extraction, and desalting 
followed by matrix assisted laser desorption/ionization-time of flight analysis to determine their identity. Proteins 
of interest were identified using database search (Ingenuity Systems, Redwood City, CA; and PubMed).

Tissue culture.  Rat insulinoma cells (INS-1 832/13) were a gift from C. Newgard (Duke University Medical 
Center, Durham, North Carolina). INS-1 832/13 cells were cultured in RPMI 1640 containing 10% fetal bovine 
serum (FBS), 1% penicillin and streptomycin, 1% sodium pyruvate and 50 µM β-mercaptoethanol. ER stress 
induction was achieved through 4- or 8-hour treatments with thapsigargin at 100 nM (Sigma) or tunicamycin at 
10 µg/mL (Sigma). DMSO (Sigma) was used as a vehicle control.

siRNA Transfection.  The Wfs1 gene was silenced with short interfering RNA (siRNA) using the TransIT-X2 
dynamic delivery reagent from Mirus Bio LLC according to the manufacturer’s protocol. The siRNA directed 
against Wfs1 was predesigned and inventoried by Origene (catalog no. SR504899).

Quantitative real-time PCR.  Total RNA was extracted by RNeasy kits (Qiagen, Venlo, Netherlands). The 
RNA was used to prepare cDNA using random primers, and reverse-transcribed with a High-Capacity cDNA 
Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA). Quantitative RT-PCR was performed by 
monitoring in real-time the increase in fluorescence of the SYBR green dye (Bio-Rad Laboratories, Hercules, 
CA) as described using the Viaa™ 7 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA)52,53. Gene 
expression was calculated using the ΔΔCt method and data are expressed as fold change ± SEM. To calculate gene 
expression, Ct values were first normalized to rat 18S rRNA to calculate the ΔCt, then normalized to the appropri-
ate control (e.g. siScr for siRNA experiments, or corresponding DMSO timepoint for ER stress induction exper-
iments) for calculation of the ΔΔCt. Fold change was calculated as 2−∆∆Ct. All qPCR reactions were performed 
in replicates of four. The primers used in this study were: rat Reg1a, 5′-CTGCCAGGATCACTTGTCCA-3′ and  
5′-AGCACTGACACCAAGTAGCC-3′; rat Chop, 5′-AGAGTGGTCAGTGCGCAGC-3′ and 5′-CTCATTCTCCTG 
CTCCTTCTCC-3′; rat BiP, 5′-TGGGTACATTTGATCTGACTGGA-3′ and 5′-CTCAAAGGTGACTTCAATCT 
GGG-3′; rat Txnip 5′-CAAGTTCGGCTTTGAGCTTC-3′ and 5′-ACGATCGAGAAAAGCCTTCA-3′ rat 18S 
rRNA, 5′-AGGTTTGTGATGCCCTTAGATGTC-3′ and 5′-CACACGCTGAGCCAGTCAGT-3′.

Immunohistochemistry.  After the mice were sacrificed, whole pancreata were fixed overnight in 10% neu-
tral buffered formalin (Fisher Scientific), serially dehydrated in ethanol, and processed into paraffin block. The 
paraffin blocks were cut into 5 µm sections. Pancreatic sections were subjected to antigen retrieval in 10 mM 
sodium citrate (pH 6). The sections were permeabilized in 0.1% Triton X, blocked in 2% BSA and 10% nor-
mal serum54. Incubation occurred overnight with goat anti-PSP/reg (Gift from Dr. Rolf Graf) and guinea pig 
anti-insulin (Cell Signaling). The slides were washed with PBS and incubated with CF™ 594 conjugated donkey 
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anti-goat (Sigma-Aldrich) and Alex Fluor 488-conjugated rabbit anti guinea pig (Fisher Scientific) for 1 hour and 
mounted in prolong gold antifade mounting medium containing DAPI (Thermo Fisher Sicentific). Florescence 
was observed via fluorescent microscopy (Leica DM4000 B and DFC350 FX).

PSP/reg enzyme-linked immunosorbent assay.  Enzyme linked immunosorbent assay (ELISA) to 
quantify human PSP/reg was performed utilizing anti-sera from rabbits and guinea pigs that were immunized 
against recombinant human PSP/reg protein42,55. Serum was prepared by centrifugation. IgG was then purified 
by affinity chromatography on protein A columns. A sandwich ELISA was designed on 96-well plates. Guinea pig 
antibody was used to coat the bottom of the ELISA plates. Subsequently, the plates were blocked with BSA, and 
aliquots of serum were incubated for 2 h. After washing, the wells were incubated with rabbit antibody. Then a 
phosphatase-coupled anti-rabbit IgG was used56. A multiplate reader (Dynatech) was used to monitor the reac-
tion of the phosphatase with the substrate. A relative standard curve using recombinant human PSP/reg protein 
was used to quantify the subject’s PSP/reg levels57.

Clinical information.  Clinical data was collected as part the Tracking Neurodegeneration in Early Wolfram 
Syndrome (TRACK) study at Washington University (ClinicalTrials.gov # NCT02455414). Wolfram syndrome 
patients were recruited through the Washington University Wolfram Syndrome International Registry and 
Clinical Study (https://wolframsyndrome.dom.wustl.edu/). All experimental protocols were approved by the 
Washington University Human Research Protection Office (IRB ID 201107067 and 201104010). All methods 
were carried out in accordance with relevant guidelines and regulations. Informed consent was obtained from 
all subjects or, if subjects are under 18, from a parent and/or legal guardian. Natural history of the symptoms of 
Wolfram syndrome was collected including age, gender, age of onset of diabetes mellitus, optic atrophy, hearing 
loss, and diabetes insipidus. WFS1 gene sequencing was also performed58,59. Fasting serum samples were drawn 
to determine glucose and c-peptide. This serum was also used for purposes of biomarker testing. These samples 
were obtained during the 2014 Wolfram syndrome research clinic. Parents and siblings were used as unaffected 
controls.

Statistical analyses.  To determine whether any treatment was significantly different from the control, 
Graphpad Prism was used to conduct two-tailed paired Student’s t-tests on the ∆∆Ct values calculated, prior 
to log transformation. A p value less than 0.05 was considered statistically significant. Box and whisker plot for 
human PSP/reg data was generated utilizing BoxPlotR online software (http://shiny.chemgrid.org/boxplotr/)60.
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