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Lung Repair and Regeneration in ARDS

Role of PECAM1 and Wnt Signaling
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ARDS is an acute inflammatory pulmonary process triggered by severe pulmonary and systemic

insults to the alveolar-capillary membrane. This causes increased vascular permeability and the

development of interstitial and alveolar protein-rich edema, leading to acute hypoxemic res-

piratory failure. Supportive treatment includes the use of lung-protective ventilatory strategies

that decrease the work of breathing, can improve oxygenation, andminimize ventilator-induced

lung injury. Despite substantial advances in supportive measures, there are no specific phar-

macologic treatments for ARDS, and the overall hospital mortality rate remains about 40% in

most series. The pathophysiology of ARDS involves interactions among multiple mechanisms,

including immune cell infiltration, cytokine storm, alveolar-capillary barrier disruption, cell

apoptosis, and the development of fibrosis. Here we review some new developments in the

molecular basis of lung injury, with a focus on possible novel pharmacologic interventions

aimed at improving the outcomes of patients with ARDS. Our focus is on platelet-endothelial cell

adhesion molecule-1, which contributes to the maintenance and restoration of vascular

integrity following barrier disruption. We also highlight the wingless-related integration site

signaling pathway, which appears to be a central mechanism for lung healing as well as for

fibrotic development. CHEST 2019; 155(3):587-594

KEY WORDS: endothelial injury; mechanical ventilation; platelet-endothelial cell adhesion molecule;
pulmonary fibrosis; ventilator-induced lung injury; wingless-related integration site
ARDS is a very severe form of acute
hypoxemic respiratory failure associated
with an intense inflammatory pulmonary
edema. Clinically, it is characterized by
bilateral pulmonary infiltrates on chest
imaging and severe hypoxemia (as assessed
by PaO2/FIO2 ratio) that is refractory to
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oxygen therapy.1 The most common disease
processes causing ARDS are sepsis and
pneumonia. Despite advances in the general
treatment and ventilatory support of patients
with ARDS, there are no specific
pharmacologic therapies to treat ARDS and,
according to recent observational studies, the
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overall hospital mortality rate remains about 40%.2 Most
patients with ARDS die as a result of multisystem organ
failure and not due to lung failure (hypoxemia) per se.3

The pathophysiology of ARDS is multifactorial and
includes inflammation, barrier disruption, interstitial
and airspace edema, cell injury, and cell death.4

Diffuse alveolar damage is the pathologic hallmark of
ARDS. As ARDS progresses through the exudative and
proliferative phases, lung injury can increase, potentially
leading to a fibrotic phase and worsening lung function.
Lung-protective mechanical ventilation along with other
adjunctive approaches (eg, prone position, judicious use
of neuromuscular blocking agents) has been shown to
decrease mortality.4 Over the past two decades there has
been intense—but to date, unsuccessful—research to
develop pharmacologic therapies to treat ARDS.

In this short review, we discuss some new mechanistic
insights at the molecular level that may have clinical
implications for the development of novel therapies to
modulate ventilator-associated damage and improve
outcomes of patients with ARDS. We have chosen to
focus on platelet-endothelial cell adhesion molecule-1
(PECAM1) since it is essential for maintaining
endothelial cell junctions, and on wingless-related
integration site (Wnt) signaling since it appears to be
key to tissue remodeling and wound closure. We
postulate that pharmacologic manipulation of these two
molecules has great potential in maintaining the
integrity, or repairing the alveolar-capillary membrane.
Specifically, we will discuss the role of PECAM1 in the
modulation of alveolar-capillary permeability and the
production of inflammatory mediators; and the effects of
Wnt signaling in the modification of cell death, fibrosis,
and lung repair and regeneration.

Targeting the Integrity of Lung Endothelium in
ARDS
In patients with ARDS there is injury to the alveolar-
capillary membrane,5-7 leading to increased permeability
and pulmonary edema.8,9 Movement of plasma across
the lung vascular bed results in the accumulation of
protein-rich edema fluid in the pulmonary interstitium
and the airspaces, even at normal pulmonary vascular
pressure and without physical rupture of these
structures.

The search for biomarkers of alveolar-capillary barrier
damage has been a challenging journey.7,10 The alveolar-
capillary barrier contains proteins that form tight and
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adherent junctions. CD31, also termed platelet-
endothelial cell adhesion molecule-1 (PECAM1), is a
130-kDa transmembrane protein that is a member of the
immunoglobulin superfamily of adhesion molecules
constitutively expressed and localized at endothelial cell-
cell junctions.11 Synthesis of PECAM1 is tightly
regulated within the vasculature. There is increasing
evidence that PECAM1 contributes to the maintenance
of vascular integrity in resting cells, as well as playing a
role in restoration of vascular integrity following barrier
disruption.12 Blood flowing through the pulmonary
vasculature during ventilatory-induced repetitive cyclic
opening and closing of alveoli inflicts shear stress on
pulmonary capillary endothelial cells (Fig 1). The force
generated is transmitted through cytoskeletal elements
to sites of cell-cell adherence, where PECAM1 responds
by activating downstream signaling pathways, including
Src family kinase members, STAT-3 (signal transducer
and activator of transcription-3), and integrins on the
basal membrane of the cells.13,14 Extreme mechanical
stress causes progressive changes in the shape and leads
to loss of functional PECAM1.15

PECAM1 can be cleaved from endothelial cells by a
number of mechanisms including shear stress,16

resulting in a secreted, shed form of protein (sPECAM1)
that is soluble and can be released into the circulation,
exerting proinflammatory effects.17-19 Inflammatory
cells that have been activated can undergo shedding of
the PECAM1 extracellular domain, which leads to loss
of cell-cell adherence17 and contributes to the increase in
circulating sPECAM1.18 Thus, circulating sPECAM1
levels may be measured as a biomarker to identify and
monitor the development of ARDS and ventilator-
induced lung injury (VILI), and persistently high
sPECAM1 levels may indicate ongoing injury. Using a
clinically relevant experimental model of ARDS and
VILI in animals with or without sepsis, Villar et al20

showed that expression of PECAM1 in the lungs is
modulated by mechanical ventilation. Their data
strongly suggested that loss of PECAM1 contributes to
increased barrier permeability with subsequent edema
formation, leukocyte infiltration, and severe hypoxemia.
Deficiency in the murine endothelial PECAM1 gene
impedes repair of vascular integrity21 and prolongs
bleeding times.22 Heterogeneous expression of PECAM1
has been reported in the pulmonary vessels of patients
who died of ARDS23 and in the lungs of children who
received prolonged mechanical ventilation for
bronchopulmonary dysplasia.24
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Figure 1 – Proposed platelet-endothelial cell adhesion molecule-1 (PECAM1) and Src signaling pathway activation in ARDS and in ventilator-induced
lung injury. The combined effects of inflammatory mediators and repetitive opening and closing of alveoli during mechanical ventilation inflict shear
stress on the endothelial cells of the pulmonary capillary blood vessels. The resultant mechanical force is transmitted through cytoskeletal elements to
sites of cell-to-cell adhesion, where a transmembrane protein, known as PECAM1, responds by activating downstream signaling pathways, including
those involving Src and signal transducer and activator of transcription-3 (STAT-3). The STAT-3 transcription factor may play a role in initiating the
inflammatory response seen in ventilator-induced lung injury.
There is experimental evidence implicating mechanical
ventilation in pulmonary and distal organ endothelial
activation and inflammation.25 Recovery from acute
lung injury requires restoration of an intact endothelial
barrier to ensure appropriate removal of pulmonary
edema fluid. Since PECAM1 is essential for
reestablishing endothelial integrity, it is an interesting
target for the treatment of ARDS, sepsis, and VILI. In a
mouse model of septic shock, Maas et al26 transplanted
bone marrow cells expressing PECAM1 into mice that
were deficient in PECAM1. Transplanted animals were
resistant to endotoxic shock, and the integrity of the
vascular barrier was better maintained after endotoxin
challenge. Thus, there might be great potential for
innovative therapies using genetically modified
mesenchymal stromal cells expressing PECAM1 to
chestjournal.org
reassemble the endothelial cell junctions in the
treatment of ARDS and VILI.27 We propose that
upregulation of PECAM1 and/or reducing sPECAM1
through extracorporeal removal28 or pharmacologic
inhibition29,30 might be a novel therapeutic strategy in
ARDS and VILI.
Attenuation of Lung Fibrosis to Enhance Lung
Repair and Regeneration
As diffuse alveolar damage progresses in patients with
ARDS, severe abnormal repair of alveolar epithelium
and pulmonary capillary endothelium can develop into a
fibrotic phase, resulting in poor lung function and
death.5 The fibroproliferative process observed in
patients with ARDS is characterized by migration of
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mesenchymal cells, and deposit of connective tissue in
the alveolar airspace and vascular wall. Survival from
ARDS depends on the alveolar epithelium being
repaired, a process initiated by proliferation and
migration of endogenous progenitor alveolar epithelial
type II cells (AECII), with their subsequent
differentiation into alveolar type I cells (AECI).31

Meanwhile, lung fibroblast proliferation and migration
occur and are important for lung repair after injury.32,33

However, repetitive or/and sustained injury to the
alveolar epithelium can lead to loss of ventilated alveolar
units and a vigorous fibroblastic response, as a result of
uncontrolled deposition of extracellular matrix (ECM)
and collagen, leading to destruction of lung parenchymal
architecture.33,34

Pulmonary fibrosis is a pathologic response in patients
with ARDS, independent of the underlying inciting
event that caused the initial lung injury. The tissue repair
Figure 2 – Proposed molecular Wnt signaling pathway in lung fibrosis durin
family receptor. To facilitate Wnt signaling, coreceptors such as lipoprotein rec
the receptor, Axin is removed from the receptor complex and activates b-caten
DNA, and activates transcription of target genes. Wnt ¼ wingless-related in
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process includes coordinated cellular infiltration along
with deposition of ECM and reepithelialization. In
addition, the use of injurious ventilatory strategies plays
a potential and additive role to further accelerate ECM
remodeling,33,35 contributing to lung fibrosis and loss of
lung function during ARDS.36-38

Among other molecules and pathways, b-catenin-
mediated Wnt signaling appears to be an important
mechanism in the context of pulmonary repair and
fibrosis.39-41 b-Catenin protein is a central component of
the endothelial adherens junctional complex, plays an
important role in regulating microvascular permeability
by its direct linkage to vascular endothelial cadherin, and
plays an essential role in the wingless/Wnt signaling
pathway.42 Although the precise cellular and molecular
mechanisms by which b-catenin regulates endothelial
permeability in health and disease are not well
understood, overexpression of b-catenin protects against
g ARDS. Wnt signaling begins when a Wnt protein binds to a Frizzled
eptor-related protein (LRP) and others may be required. On activation of
in. b-Catenin moves into the nucleus, binds to a transcription factor on
tegration site.
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endothelial dysfunction and increased microvascular
permeability.

Wnt proteins attach to cell surface receptors of the
Frizzled family,41 as well as to other transmembrane
proteins (eg, lipoprotein receptor-related protein), which
leads to cytosolic accumulation of b-catenin. This then
leads to translocation to the nucleus, where it
participates in gene transcription and subsequent
regulation of various genes, including Axin2 and Lgr5
(Fig 2). Axin2, also known as axis inhibition protein-2 or
conductin, is thought to play an important role in
stabilizing b-catenin in the Wnt signaling pathway.43

The leucine-rich G protein-coupled receptor-5 (LGR5)
belongs to a glycoprotein hormone receptor superfamily,
and it modulates signaling through the Wnt pathway
after binding to its cognate ligand R-spondin.44 Wnt
signaling pathways, which are mediated by either
paracrine or autocrine mechanisms, are regulated at
multiple points.45 Wnt signaling stimulates tissue
remodeling through matrix metallopeptidases (MMPs)
as well as other gene products such as cyclin D1 and
vascular endothelial growth factor (VEGF).40,46,47

The Wnt signaling pathways comprise a family of highly
evolutionarily conserved secreted glycoproteins, which
trigger many signaling pathways that control a number
of processes including cell proliferation, differentiation,
and migration.40 Three Wnt signaling pathways have
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Figure 3 – Schematic depicting proposed pathway for the generation of proxim
pluripotent stem cell (iPSC)-derived airway epithelium via Wnt signaling.
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been characterized: the canonical Wnt pathway, the
noncanonical planar cell polarity pathway, and the
noncanonical Wnt/calcium pathway. The distinction
of canonical and noncanonical Wnt signaling
pathways is subject to debate, and a combined Wnt
pathway has been suggested.48 Expression of the nuclear
transcriptional factor b-catenin can be decreased in
AECII when there is destruction of alveolar walls and/or
abnormal repair processes associated with deposition of
ECM, such as in patients with COPD.49 Reduced
canonical Wnt/b-catenin signaling is linked to decreased
lung repair as a result of a shift from canonical to
noncanonical Wnt signaling.50

Wnt-5A is a macrophage-derived molecule that is highly
specific for macrophage activation, and is thought to play a
role in pulmonary disorders.51 Villar et al37,52 investigated
whether Wnt/b-catenin signaling is activated early in
experimental animals exposed toVILI and acute lung injury,
as well as in patients with ARDS. They assessed lung protein
levels of Wnt-5A and target genes (eg, MMP7, cyclin D1,
VEGF) implicated in profibrotic alterations of injured
tissues.52 They used a clinically relevant experimentalmodel
of sepsis-induced ARDS, and found marked collagen
deposition and increasedWnt-5AandMMP7protein levels.
Similar findings were observed in lung biopsies of patients
who died early of sepsis-related ARDS. These results
reinforced the concept thatWnt-5A and b-catenin pathway
contribute to early repair of the lung.40,53 This is in accord
rway progenitors
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al or distal epithelial lineages in the lung on activation of human induced
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with increasing clinical evidence of fibrotic changes in
patients in the early stages of ARDS.54 Investigators have
recently demonstrated that inhibition of Wnt-5A in a
murine model of COPD attenuated lung tissue damage,
improved lung function, and reestablished expression of
alveolar epithelial cell surface markers.55 Wnt-5A signaling
is also involved in a process termed the epithelial-
mesenchymal transition,51,56 in which cells switch to a
fibroblast-like phenotype from an epithelial phenotype.

Wnt signaling is a double-edged sword. Early activation of
Wnt signaling during septic-induced ARDS or VILI may
represent a signal from damaged epithelium to
regenerate.37,52,56,57 Thus, the Wnt signaling pathway
represents a possible therapeutic target for patients with
ARDS, since the development of pulmonary fibrosis is
associated with poor clinical outcomes in these patients.36

MMPs, which are regulated byWnt signaling, are required
for proteolytic degradation of the ECM. Although it is not
clear why resolution of ARDS is associated with fibrosis in
some patients but not in others, the selective regulation of
the Wnt/b-catenin signaling pathway can have
antiinflammatory and antifibrotic effects.58

In mammalian organisms, multiple tissues, including the
lung, are constantly undergoing regeneration, with older
cells constantly dying, and new cells being regenerated.
Normally, cellular proliferation in the lung is low
compared with other organs. However, lung injury
causes activation of stem/progenitor cell populations59

(Fig 3). The Wnt signaling pathway participates in stem
cell activity and is involved in stem cell control, as a
proliferative and self-renewal signal60,61 giving shape to
tissues, as cells are proliferating. Resident pluripotent
stem cells differentiate into mesoderm and endoderm
progenitor cells via Wnt signaling.62 Reprogramming to
induce the generation of pluripotent stem cells
represents a very interesting approach for repair.
McCauley et al63 demonstrated that Wnt signaling is a
potent regulator of proximal and distal epithelial
patterning in both mouse and human induced
pluripotent stem cells. These progenitor cells can
differentiate into endothelial and vascular smooth
muscle cells. Inhibition of the Wnt pathway markedly
decreases tissue regeneration. Thus, Wnt signals can be
exploited to enable propagation of stem cells as self-
renewing lung epithelial and endothelial cells.
Conclusions
In patients with ARDS there is increased alveolar-
capillary permeability with protein-rich edema
592 Translating Basic Research Into Clinical Practice
formation as a result of endothelial damage. PECAM1 is
a transmembrane protein that connects adjacent
endothelial cells and plays a role in the regulation of
inflammation, leukocyte migration, and vascular
responses during sepsis. We propose that upregulation
of membrane PECAM1 may be a novel therapeutic
strategy in ARDS and VILI.

Injury to alveolar epithelial cells activates pulmonary
fibroblasts, inducing their transformation into matrix-
producing myofibroblasts. The Wnt signaling pathways
coordinate lung repair after injury, and hence the
therapeutic manipulation of Wnt signaling in
endogenous stem cells may be exploited for tissue
renewal and regeneration during early ARDS.
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