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Key Points

• TCR clones can be
followed throughout the
disease course with
deep NGS sequencing
of the TCR Vb CDR3
and STAT3.

T large granular lymphocyte leukemia (T-LGLL) is a clonal lymphoproliferative disorder

that can arise in the context of pathologic or physiologic cytotoxic T-cell (CTL) responses.

STAT3 mutations are often absent in typical T-LGLL, suggesting that in a significant fraction

of patients, antigen-driven expansion alone can maintain LGL clone persistence. We set

out to determine the relationship between activating STAT3 hits and CTL clonal selection

at presentation and in response to therapy. Thus, a group of patients with T-LGLL were

serially subjected to deep next-generation sequencing (NGS) of the T-cell receptor (TCR) Vb

complementarity-determining region 3 (CDR3) and STAT3 to recapitulate clonal hierarchy

and dynamics. The results of this complex analysis demonstrate that STAT3 mutations

produce either a sweeping or linear subclone within a monoclonal CTL population either

early or during the course of disease. Therapy can extinguish a LGL clone, silence it, or adapt

mechanisms to escape elimination. LGL clones can persist on elimination of STAT3

subclones, and alternate STAT3-negative CTL clones can replace therapy-sensitive CTL

clones. LGL clones can evolve and are fueled by a nonextinguished antigenic drive.

STAT3 mutations can accelerate this process or render CTL clones semiautonomous and

not reliant on physiologic stimulation.

Introduction

Characterized by an increased number of circulating clonal cytotoxic T cells (CTLs), large granular
T lymphocyte leukemia (T-LGLL) is frequently accompanied by neutropenia, anemia, or thrombocy-
topenia, but it often develops silently, without pathologic features or clinical symptoms.1-5 Many lines
of evidence indicate that LGL clonal expansion evolves in the context of physiologic (viruses, tumor
surveillance) or pathologic responses (autoimmune conditions) to antigens that drive excessive clonal
expansions.6 This view has been supported by studies of T-cell receptor (TCR) rearrangement and
TCR Vb complementarity-determining region 3 (CDR3) deep sequencing, which has frequently
demonstrated extreme expansion of a single immunodominant T-cell clone or multiple codominant
clones.7-10 Discovery of activating STAT3 mutations in a significant proportion of patients with LGL
suggested that such mutations initiated a clonal process yielding a spectrum of hematologic
pathologies dependent on the specificity of the transformed/expanded CTL clones. Vb CDR3
sequences acting as biological bar codes can be used to identify and quantify these expansions and
to diagnose LGL.11-17

Deep TCR repertoire sequencing can precisely identify and assess CDR3 diversity and quantify
immunodominant expansions. Using it in conjunction with next-generation sequencing (NGS) of STAT3
allows serial monitoring of clonal burden and reconstruction of the process that culminates in LGL.
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We used this approach to recapitulate the dynamics of clonal CTL
expansions and interactions between individual clones in a large
cohort of patients with T-LGLL followed over extended periods of
time. Our goal was to determine whether poly- and subsequently
oligoclonal immune responses are “anchored” by STAT3 muta-
tions, most likely occurring in the most proliferative clones, or
whether the responses were driven by somatic hits in STAT3 as
the ancestral event.We also set out to characterize the plasticity of
the underlying immune response during the course of treatment,
including mechanisms of resistance or relapse.

Methods

DNA samples

Blood samples were obtained from patients with LGL seen at
the Cleveland Clinic, according to protocols approved by the
Cleveland Clinic institutional review board and the Declaration of
Helsinki (for diagnostic criteria, see supplemental Table 1).15,18

DNA was extracted from blood mononuclear cells; the same sample
was used for both sequencing methods. Samples were collected
from a total of 207 patients with LGL seen at the Cleveland
Clinic, 92% T-LGLL, and 8% natural killer LGL. Most patients
presented with anemia (46%) and/or neutropenia (46%). Vb
expansion (by Vb flow cytometry) was present in 94% of cases,
with an average LGL count of 2317 k/mL. Clinical features are
described in detail in supplemental Table 2.

Deep STAT3 NGS

All patients with LGL were deep sequenced for the presence of
a mutation in exon 21 of STAT3, the protein-protein interaction
domain.12 The average coverage was 7500 6 5700 reads, and
hits more than 1% were positive. A STAT3 mutation was found
in 38% of patients in 4 common hotspots: 42% Y640F, 34%
D661Y, 11% D661V, and 8% N647I. STAT3MT VAF was followed
over multiple points for 44% of the total cohort. Multiple STAT3MT

were found in 4% of patients. Whole-exome sequencing was

performed for some patients, but no recurrent somatic mutations
beyond STAT3 were found.

Deep TCR sequencing

TCR Vb was sequenced using the Immunoseq assay (Adaptive
Biotechnologies), which targets the TCRb CDR3 region using a
multiplex polymerase chain reaction library preparation.8 Libraries
were sequenced on the MiSeq (Illumina), with an average of 40 7736
35 667 productive templates. The nucleotide and predicted amino
acid sequences, along with the rearranged VDJ regions, were
available for every unique CDR3 sequence. TCR deep sequencing
was performed on 23% of patients, 10% of which were sequenced
at more than 1 point. The diversity of the same represents how
monoclonal or polyclonal a sample is as previously defined; values
approaching 0 reflect extreme monoclonal samples.8

Results

Compared with healthy control patients, the diversity of patients with
LGL is much smaller, and they have a higher average max Vb clone
size, suggesting they are more monoclonal (Figure 1). Starting from an
initial cohort of 207 patients with LGLL, we selected a representative
18 T-LGLL cases to deep sequence both STAT3 and TCRB CDR3
longitudinally (Table 1). Patients were sequenced for an average of 4
times (range, 2-8 times). In approximately half the patients, we were
able to detectSTAT3MT in previously described canonical positions.13-15

In all patients, deep TCR NGS identified at least 1 clonotype that was
immunodominant over most other clonotypes, with multiple immuno-
dominant subclonotypes identified in about half the patients. For
control purposes, we also longitudinally sequenced 2 patients with
natural killer LGL; major TCR clonotypic expansions could not be
detected in 1 patient with a STAT3 mutation, but 2 immunodominant
T-cell clones were identified in the other patient, consistent with sting
antigenic drive also involving T-cell responses (supplemental Figure 1).

In mutant patients, STAT3 clonal expansions and contractions paralle-
led those of TCR clones. In some illustrative cases, the TCR clonal
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Figure 1. Characterization of LGL and healthy control patients by deep TCR Vb sequencing. A diversity value of 1 represents a polyclonal sample.
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burden of the dominant clone was higher than that of STAT3MT,
suggesting that STAT3MT is not the ancestral event for clonal
expansion (see patients CCF1, CCF2, CCF7, CCF8, and CCF9).
Our findings imply that the STAT3 hit occurs as a secondary event
within the preexpanded immunodominant clone. However, in other
patients, the clonal burden of both the TCR and STAT3MT clone were
similar (patients CCF3, CCF5, andCCF6), indicating that theSTAT3MT

may contribute to autonomous antigen-independent clonal expansion.

Serial samplings illustrated clonal dynamics in response to therapy.
More than half of patients with T-LGLL were treated with 1 or more
immunosuppressive therapy (IST) regimens, leading to hematologic
response in 40% of those treated. Distinct patterns of clonal dynamics
were seen after treatment and are illustrated as fish plots (Figure 2).
Samples were not available at the first appearance of a clone, but the
clonal expansion can be speculated based on samplings at other
points. In some patients (4/18), both the STAT3MT (if present) and
major TCR clone decreased in response to treatment (patients CCF1,
CCF3, CCF5, and CCF10). In others (3/18), the clones persisted
despite a hematologic response (patients CCF2, CCF4, andCCF17),
suggesting major clones were functionally silenced in their ability to
inhibit/destroy specific hematopoietic progenitors. We also observed
a common phenomenon of TCR “clonotype switching” in many
patients (6/18), wherein therapy contracts 1 major clonotype while
another previously “minor” clonotype expands (patients CCF6,
CCF11, CCF12, CCF14, CCF16, and CCF18), likely because of
its relative therapy insensitivity. Interestingly, all newly emerging clones
were STAT3WT (wild type), and half the patients with “switching” were
resistant to IST therapy. Multiple clonotypes were present at initial

sampling in a few patients without STAT3MT and persisted at the
same rate in subsequent samplings, precluding identification of a truly
immunodominant clonotype (4/18). It is thus possible that a small
but highly pathogenic clone may have been missed in our initial
analysis. Predictably, a stable or increasing clonal burden of both
STAT3MT and VB CDR3 sequence was seen in nonresponders to
IST (28%; patients CCF7, CCF9, CCF13, CCF15, and CCF17).

Discussion

Our results demonstrate that STAT3MT can arise either within an
already preexpanded clonotype, or simultaneously with the clonal
expansion of the immunodominant TCR Vb clonotype. This leads
us to believe that the STAT3MT mutation is selected among the
originally triggered (responding) T-cell clones, and thus make
the response more autonomous by either more persistence or less
defendant on accessory signaling while not making the clone totally
autonomous. The dynamics of both the STAT3MT and the TCR Vb
clonotype can be assessed over the course of the disease and in
response to treatment regimens, and may demonstrate additional
clinical utility when applied to larger prospective clinical trials
(supplemental Figure 2). The difficulty in finding a direct correlation
between response to a specific IST and a decrease in TCR Vb clonal
burden and STAT3MT may be a result of variability in time frames
between samplings, IST regimens used, and the quality of response.
Some large clonotypesmay also be asymptomatic/not pathogenic, and
thus may be overshadowing signals from smaller truly pathogenic
clonotypes. Associations of remission with elimination of immunodo-
minant clonotypes remain unclear. Our results suggest that pathogenic
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clones can be contracted to manageable clonal burdens and/or
functionally silenced/tolerated. Thus, clonal elimination may not be
needed for a complete clinical response.
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