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Abstract

Information about functional connections between genes can be derived from patterns of coupled 

loss of their homologs across multiple species. This comparative approach, termed phylogenetic 

profiling, has been successfully used to infer genetic interactions in bacteria and eukaryotes. Rapid 

progress in sequencing eukaryotic species has enabled the recent phylogenetic profiling of the 

human genome, resulting in systematic functional predictions for uncharacterized human genes. 

Importantly, groups of co-evolving genes reveal widespread modularity in the underlying genetic 

network, facilitating experimental analyses in human cells as well as comparative studies of 

conserved functional modules across species. This strategy is particularly successful in identifying 

novel metabolic proteins and components of multi-protein complexes. The targeted sequencing of 

additional key eukaryotes and the incorporation of improved methods to generate and compare 

phylogenetic profiles will further boost the predictive power and utility of this evolutionary 

approach to the functional analysis of gene interaction networks.

Significant similarity between two DNA or amino acid sequences is used to infer shared 

ancestry, or homology, of the DNA elements or proteins being compared. A high degree of 

sequence similarity between homologs strongly indicates a conserved biological function, a 

cornerstone of comparative genomics that has been used to provisionally assign functions to 

thousands of human genes based on decades of detailed experiments in vertebrate and 

invertebrate model systems. However, the differences in sequence between (or the complete 

loss of) homologs evolving independently in separate lineages encode information as well: a 

close functional coupling between unrelated genes (or non-coding genetic elements) often 

manifests itself in correlated patterns of sequence similarity across species (de Juan et al., 

2013), a fact that can be exploited to discover novel functional links. Specifically, the 

inference of functional connections between protein-coding genes based on shared binary 

patterns of homolog presence and loss is termed phylogenetic profiling (Figure 1A) 

(Pellegrini et al., 1999).
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Phylogenetic profiling exploits a specific evolutionary scenario, namely one in which a pair 

or larger group of genes are functionally coupled in such a way that the loss of one 

component leads directly or indirectly to the loss of the others (Figure 1A). While this 

scenario can only apply to a subset of all possible genetic interactions, a close correlation 

between binary phylogenetic profiles is frequently associated with them being part of the 

same physical protein complex, metabolic cascade or regulatory module (Pellegrini, 2012), 

providing a powerful approach to predict functions for unknown genes and define 

interdependent genetic modules. This perspective focuses primarily on novel functional 

insights that can be gained by phylogenetic profiling applied to the human genome (for a 

general overview of comparative genomics, see Alföldi and Lindblad-Toh, 2013).

Phylogenetic profiling already showed much promise as a predictive tool during its first 

application to bacterial gene sets just before the end of the millennium (Pellegrini et al., 

1999), but the first fully sequenced genome for a multicellular eukaryote had only just been 

released (The C. elegans Sequencing Consortium, 1998). The 15 years since have seen an 

unprecedented increase in the number of eukaryotic genomes driven by plummeting 

sequencing costs. This led to the successful application of phylogenetic profiling to a 

genome-wide analysis of S. cerevisiae (Marcotte et al., 1999), the discovery of novel 

Drosophila cilia genes (Avidor-Reiss et al., 2004), a screen for novel small RNA pathway 

components in C. elegans (Tabach et al., 2013a), and multiple components of a key 

mitochondrial uniporter (Baughman et al., 2011; De Stefani et al., 2011). In recognition of 

the method’s utility, web servers for comprehensive phylogenetic profiling continue to be 

developed (Cheng and Perocchi, 2015) and coevolution metrics have been incorporated in 

some major interactome databases (von Mering et al., 2005; Szklarczyk et al., 2015).

Three recent studies have systematically investigated the utility of phylogenetic profiling in 

revealing genetic interactions between human genes (Dey et al., 2015; Li et al., 2014; 

Tabach et al., 2013b). Tabach et al. mapped hundreds of co-evolving human gene sets 

(identified using correlated homology scores) and disease annotations (Tabach et al., 2013b), 

a valuable dataset subsequently utilized to identify novel components of the mammalian 

meiotic methylation program (Schwartz et al., 2013). Li et al. used statistical inference to 

expand groups of correlated human phylogenetic profiles into larger modules, generating 

predictions for approximately 150 cellular pathways and complexes (Li et al., 2014). A 

recent approach taken by our group extended phylogenetic profiling to ‘orthogroups’ of 

homologous human genes and calculated a genome-wide matrix of all pairwise co-evolution 

scores, identifying a much larger set of modules (Dey et al., 2015). Experiments in our study 

as well as subsequent studies have validated a subset of functional predictions related to 

primary cilium function and novel interactors of the WASH complex (Phillips-Krawczak et 

al., 2015). The success of these studies in driving empirical discovery is of particular 

relevance to biomedical science given the large proportion of the human protein-coding 

genome that remains poorly characterized (Dey et al., 2015).

This article focuses on how to build on these recent successes and effectively leverage the 

growing pool of available genome sequences. We argue that sequencing more free-living 

protists is a vital step in the accurate reconstruction of eukaryotic gene histories. We discuss 

a role for phylogenetic profiling in the investigation of human cellular function through 
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comparative biology. Finally, we examine the modular architecture retained for some, but 

not all, cellular processes across diverse ecological and cellular niches through millions of 

years of eukaryotic evolution.

Optimizing predictive phylogenetic profiling

Use of hierarchical groups of orthologs.

Generating a phylogenetic profile for a human gene involves first identifying its orthologs in 

other species (homologs derived vertically from a common ancestor and expected to share 

the same function; Koonin, 2005). Orthology inference is a mature field, with a large 

number of graph-based (clustering based on sequence similarity scores, e.g. BLAST) and 

tree-based (reconciliation of gene trees, inferred from sequence similarity, with the species 

tree) algorithms (Huerta-Cepas et al., 2014; Li et al., 2003; Powell et al., 2014; Schreiber et 

al., 2014; Tatusov et al., 1997; Vilella et al., 2009). Even straightforward graph-based 

methods like the best bidirectional hit (BBH; orthology is assigned if the top-scoring 

homolog in a second species returns the original query gene in a reciprocal similarity search) 

sometimes outperform more complex tree-based approaches in comparative analyses 

(Kristensen et al., 2011; Trachana et al., 2011). Moreover, it should be noted that incomplete 

genome annotation and low homology scores at large evolutionary distances generate 

algorithm-independent errors; the latter can be partially addressed by using sensitive search 

methods like PSI-BLAST (Altschul, 1997) or delta-BLAST (Boratyn et al., 2012) that 

leverage additional information derived from conserved domains or secondary structure.

The scalability and easy implementation of graph-based approaches make them attractive for 

phylogenetic profiling, with some studies directly using homology thresholds (Li et al., 

2014). However, even a single gene duplication can introduce a conceptual challenge: now, 

some species only carry a single gene with homology to two separate human genes (Figure 

1B). Each time a gene is duplicated, the daughter genes, now capable of evolving 

independently, can diverge by acquiring new functions (neofunctionalization) or sharing the 

function of the parent (subfunctionalization) (Conant and Wagner, 2003; Conant and Wolfe, 

2008). Thus, neither daughter gene is (by itself) a true functional ortholog of the non-

duplicated gene found in lineages that branched off prior to the duplication event. 

Problematically, using homology thresholds will generate near-identical phylogenetic 

profiles for both daughter genes despite their possible functional independence (Figure 1B), 

and the BBH criterion can cause mismatches in species that branched off before the 

duplication event (Figure 1B) (Dalquen and Dessimoz, 2013).

While this challenge can be circumvented by eliminating all human genes with detectable 

human homologs (co-orthologs) from the analyzed set (Li et al., 2014; Tabach et al., 2013b), 

this represents only a partial solution because an overwhelming fraction of human genes are 

derived from historical duplication events (Cotton and Page, 2005; Dey et al., 2015). First, 

the vertebrate lineage carries clear signatures of two genome-wide duplications (Blomme et 

al., 2006). Second, many human gene families of fundamental importance to cell biology 

have a demonstrated history of broad expansion coupled with functional divergence (Gu et 

al., 2002; Lespinet et al., 2002): GPCRs (Bjarnadóttir et al., 2006), small GTPases (Boureux 

et al., 2007), and kinases (Shiu and Li, 2004), to name just a few.
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A more inclusive solution is to sequentially group co-orthologs in the same genome into 

‘orthogroups’ (Figure 2A). Each orthogroup represents the extent of sequence space (and 

implied functionality) that the daughter genes have explored after duplication. Other 

genomes can then be queried for a reciprocal match to any of the coorthologs within the 

group (Figure 2A). Consequently, methods that generate a separate phylogenetic profile for 

each orthogroup (Dey et al., 2015; Wapinski et al., 2007) enable a comprehensive 

exploration of the functional prediction space without excluding gene families from analysis.

Optimizable measures of coevolution.

In principle, since independent losses in multiple lineages are good indicators of functional 

coevolution (Figure 2B; case 2 represents a higher likelihood of functional co-evolution than 

case 1), the most rigorous way to compare phylogenetic profiles involves modeling gene 

gains and losses on each branch of the complete species tree. Parsimony and maximum 

likelihood methods have been used successfully in the past for small numbers of bacterial 

and fungal genomes (Barker and Pagel, 2005; Barker et al., 2007). Most recently, Li et al. 

developed an algorithm to generate statistical models for gene gain and loss from pre-

selected seed groups already annotated to be part of the same pathway, and search the human 

genome for additional genes conforming to the model (Li et al., 2014). Though statistically 

rigorous, their approach relies on pre-existing pathway annotations and is insensitive to co-

evolution at the scale of individual gene-pairs, making it unsuitable in its current form for an 

unbiased genome-wide analysis in humans.

The alternative is to use a heuristic score, which comes with the advantages of rapid 

optimization against functional interaction resources and the ability to scale with both 

genome complexity and the number of genomes. Unfortunately correlation scores that give 

each species equal weight produce artifacts, as a single gene loss event can result in 

drastically different ortholog distributions depending on where it occurs within the tree 

(Figure 2B) (Kensche et al., 2008). This effect can be partially neutralized by sampling an 

even distribution of species (Tabach et al., 2013a), though with the caveat of assuming a 

uniform probability of gene gain/loss across lineages that encounter widely varying 

ecological niches and selective pressures.

One effective strategy that combines the strengths of both approaches listed above involves 

using shared ‘runs’ (Cokus et al., 2007) or transitions (Dey et al., 2015) in phylogenetic 

profiles to indicate independent loss events (Figure 2B). These scoring schemes incorporate 

information from the species tree without requiring full models of gain and loss, making 

them easy to optimize and scale up to thousands of genes across hundreds of species. 

Drawing inspiration from tree-based methods, further heuristic constraints derived from 

evolutionary logic and parsimony (penalties for unlikely losses and down-weighting the 

influence of parasite genomes, for example) could reduce false positive rates and increase 

the sensitivity of predictions.

Leveraging eukaryotic diversity

As more and more species get sequenced, it is increasingly clear that almost a quarter of 

human genes can be traced to the earliest eukaryotes (Koonin, 2010) and have since been 
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lost in many plant, fungal and parasitic protist lineages. This number was initially 

underestimated, largely because many supposedly early-branching species in a “crown-

group” model of the eukaryotic tree were assigned erroneous positions caused by fast rates 

of genome evolution and parasitic lifestyles (Stiller and Hall, 1999). Far from being 

‘primitive’ pre-mitochondrial organisms, parasites such as Giardia lamblia actually represent 

the results of reductive evolution from a complex ancestor that possessed fully functional 

mitochondria (Embley and Martin, 2006). In contrast, the genome of the recently sequenced 

free-living Naegleria gruberi (Fritz-Laylin et al., 2010, 2011) is much closer to that ancestral 

state, encoding complete actin and microtubule skeletons, complex transcriptional and 

signaling machinery (including GPCR, histidine kinase modules and twice as many 

adenylate/guanylate cyclases as humans), as well as thousands more spliceosomal introns 

than its parasitic relative Trypanosoma brucei (Siegel et al., 2010).

The unanticipated degree of conservation of ancient eukaryotic machines revealed by these 

analyses opens up new possibilities for systematic comparative biology (Box 1). 

Importantly, the many distinct lineages (Burki, 2014) of unicellular protists represent a huge 

reservoir of genomic diversity that can play a major role in informing phylogenetic profiles. 

Figure 3 illustrates this argument by highlighting the overall contribution of ortholog losses/

absences in individual species to the representative phylogenetic profiles of evolutionary 

modules of human genes (Figure 3A and 3B) (Dey et al., 2015). The protists exhibit a two-

fold dynamic range of shared gene content: some species such as the free-living Naegleria 
gruberi have more orthologs for human genes than any fungi or plants while others, 

particularly parasites, have undergone severe reductive evolution (Figure 3C). This diversity 

in gene loss greatly increases the likelihood of observing informative and unique 

phylogenetic profiles, explaining why losses in protists contribute to over a third of all 

coevolving modules identified (Figure 3B).

We have a long way to go: approximately 80% of all existing or ongoing eukaryotic genome 

projects are restricted to opisthokonts (fungi, animals and choanoflagellates) and 

multicellular plants, with very little coverage of the other major, diverse eukaryotic 

supergroups (Dawson and Fritz-Laylin, 2009). Of the few protists that have been sequenced, 

most are parasites. This clear shortfall has led to a call by some groups for a concerted effort 

to sequence more aquatic free-living protists (Dawson and Fritz-Laylin, 2009; Keeling et al., 

2014), and we emphasize here the relevance of such projects for functional predictions in 

humans. Though not without its challenges (primarily the difficulty of growing many such 

species in pure laboratory culture), metagenomics anchored by high-quality reference 

genomes can help accelerate this process (Heywood et al., 2010).

Discovering evolutionary modularity

Evolutionary cohesion.

Biological networks are widely considered to be intrinsically modular, consisting of sub-

networks isolated chemically or spatially from the rest of the network and carrying out 

discrete functions. However, there are many ways to partition complex systems, and 

distilling modules from cellular networks has been an important focus of research in many 

different fields for many years, including developmental biology (Bolker, 2000), metabolism 
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(Jeong et al., 2000; Segrè et al., 2005), signaling (Atay and Skotheim, 2014; Bhattacharyya 

et al., 2006; Lauffenburger, 2000; Meyer and Teruel, 2003), evolutionary biology (Roth, 

1991; Wagner, 1996) and bioengineering (Alon, 2007). Modules are often defined 

empirically (Tanay et al., 2004) - a set of protein interactions restricted to a single 

subcellular compartment, a transcriptional circuit only active during a specific 

developmental stage, or a set of metabolic enzymes linked through a linear chain of 

substrates and products.

However, developing computational strategies to infer functional modules has become a 

priority (Alon, 2007) with the advent of comprehensive interactome maps (Rolland et al., 

2014). Drawing on principles of circuit design and real-world scale-free networks (Alon, 

2007; Barabási and Oltvai, 2004), studies have focused on the identification of characteristic 

topological ‘motifs’ (Milo et al., 2002; Shen-Orr et al., 2002). While powerful, these 

methods can be confounded by the characteristic hierarchical organization of many 

regulatory features (Papin et al., 2004), and also simply by errors, incomplete coverage and 

the absence of dynamical measurements in most high-throughput data sets (Alexander et al., 

2009).

In search of a complementary strategy, it is perhaps instructive to note that the very 

definition of modularity in some early papers was based on conservation of homologous 

structures across species (Roth, 1991; Wagner, 1996). Although there has been considerable 

debate over the specifics of how modularity itself might evolve (Espinosa-Soto and Wagner, 

2010; Kashtan and Alon, 2005; Wagner et al., 2007; Wang and Zhang, 2007), it is 

nonetheless clear that genes can exhibit “evolutionary cohesion”-be gained and lost together 

in genomes encountering different environments (Campillos et al., 2006; Snel and Huynen, 

2004)- and exert constraints on the evolution of their components (Chen and Dokholyan, 

2006). Modules identified by phylogenetic profiling, a generalization of the cohesion 

principle, represent a functional coupling maintained across tissue, species and 

environmental context—an integrated ‘experiment’ across hundreds of experimental 

conditions impossible to recreate in the laboratory. It is notable that different approaches to 

human phylogenetic profiling converged on a highly overlapping set of functional modules 

distinct from those found using other methods (Dey et al., 2015; Li et al., 2014) and 

predicted novel sub-functions for protein complexes or pathways that merit empirical 

follow-up. For example, we identified a module containing FANCI, FANCD2 and FANCL 

that represent proteins belonging to two separate and well-characterized physical complexes 

involved in the Fanconi Anemia DNA damage sensing pathway (Figure 4A) (Dey et al., 

2015; Moldovan and D’Andrea, 2009).

Constraints on network evolution.

As highlighted earlier in this perspective, modules identified through phylogenetic profiling 

conform to an evolutionary model where the components of the module are interdependent 

and relatively isolated from the rest of the network: phylogenetic profiling results in 

functional predictions for approximately 10–15% of the human genome (Dey et al., 2015). 

Interestingly, however, in all three human profiling studies (Dey et al., 2015; Li et al., 2014; 

Tabach et al., 2013b), the highest scoring pairs or modules were enriched for metabolic, 
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transport and structural functions, and depleted of canonical signaling proteins and 

regulators of transcription.

To illustrate this point with an example, we contrast the phylogenetic profiles of members of 

the EGFR signaling cascade (Figure 4B, top) with 6 enzymes involved in heme biosynthesis 

(Figure 4B, bottom). Similar trends have also been highlighted by bacterial phylogenetic 

profiling studies (Campillos et al., 2006), strongly suggesting the existence of generalizable 

constraints. Biological networks evolve through the gain and loss of nodes (gene duplication 

and loss) and the gain, loss and exchange of edges (new, lost or rewired functional links 

between proteins). However, not all edges are identical: there are more ways to alter (or 

generate) a kinase-substrate interaction or a transcription factor-binding site interaction than 

the specificity of an enzyme or binding interactions within a physical complex. This is 

reflected in the observation of pervasive rewiring in kinase and transcription factor 

interactions (Baker et al., 2012; Pearlman et al., 2011), at a faster rate than in metabolic and 

PPI networks (Shou et al., 2011). It might be expected that in these networks pervasive edge 

changes would lower the likelihood of modular gene loss occurring under selective pressure 

or following duplication events, leading to a depletion of signaling and transcriptional 

regulators from sets of correlated phylogenetic profiles. On the other hand, modular gene 

gain and loss might dominate the phylogenetic signal from stoichiometric physical 

complexes or metabolic cascades. These arguments support the existence of powerful 

constraints on network evolution revealed through the analysis of evolutionary modules that 

can be incorporated into future topological investigations of large-scale interactome maps.

Conclusion

Only a small fraction of the human genome encodes proteins, and major projects have been 

undertaken to investigate the function and evolution of non-coding regulatory elements on a 

genome-wide scale (Boyle et al., 2014; Gerstein et al., 2012). The massive scale of these 

projects has drawn attention away from the fact that the majority of protein-coding genes 

still remain completely or partially uncharacterized. With comparative genomics entering the 

mainstream and a 1000-dollar human genome becoming an imminent reality, there has never 

been a better time to leverage information from sequence coevolution to study human 

protein-coding genes and their interactions. In particular, phylogenetic profiling has the 

potential to mature as a powerful tool for human gene function discovery, especially with 

further technical refinements and the sequencing of key protist genomes. As highlighted in 

this article, despite its conceptual simplicity, analyzing the human genome through the lens 

of gene gain and loss has broad consequences for our understanding of eukaryotic genetic 

diversity, modular constraints on the evolution of genetic networks, and the capacity to drive 

evolutionary cell biology approaches to studying fundamental cellular functions across 

diverse experimental systems.
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Box 1.

Evolutionary cell biology.

Experimental cell biology informed by genomics and evolutionary theory (evolutionary 

cell biology) has the potential to provide powerful new insights into complex cellular 

functions (Lynch et al., 2014). From the human perspective, this could involve comparing 

and contrasting function of a conserved module, regulatory motif or protein across 

multiple species, but also the parallel investigation of a complex intracellular feature in a 

potentially reduced or more ancestral environment.

A striking example is provided by the flagellum of the green alga Chlamydomonas 
reinhardtii, a structure that bears striking structural and functional similarities to the 

mammalian cilium (Kozminski et al., 1993; Rosenbaum and Witman, 2002). Enabled by 

the ease of laboratory culture, classical genetics and the generation of non-lethal flagellar 

mutations, experiments in Chlamydomonas have resulted in deep insights into ciliary 

function in mammalian health and disease, and helped define a minimal set of genes 

required for cilium function dating back to the earliest eukaryotesall this from a 

unicellular alga separated from humans by 10^9 years of evolution (Li et al., 2004; 

Pazour et al., 2005; Silflow and Lefebvre, 2001). Recent phylogenetic profiling studies 

have only served to further reinforce the extent of the functional coupling of cilia 

components across these two species (Avidor-Reiss et al., 2004; Carvalho-Santos et al., 

2011; Dey et al., 2015; Li et al., 2014).

The case of the cilium raises the question of how such an evolutionary perspective can be 

systematically extended to other cellular modules. The advent of adaptable genome-

editing technology, super-resolution imaging, and the abundance of high quality genome 

data make it possible to generalize this approach to species drawn from across the 

eukaryotic tree and other domains of life, developing novel experimental systems on 

reasonable timescales. In doing so, we might choose to complement studies in vertebrates 

and mammals by investigating splicing in Giardia lamblia (Nixon et al., 2002), sperm 

development in Nematostella vectensis (Putnam et al., 2007), GPCR signaling in 

Naegleria gruberi (Fritz-Laylin et al., 2010), and the origins of the nervous system in 

comb jellyfish (Moroz et al., 2014). Phylogenetic profiling can help to guide this 

approach by providing a comprehensive map of orthologs across species but also a set of 

core functional interactions that have been preserved across evolutionary timescales.
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Figure 1. Phylogenetic profiling and its challenges.
(A) This schematic illustrates the method of phylogenetic profiling using homologs 

(orthologs) mapped across 8 species that are related through the accompanying species tree. 

Protein 1 and 2 interact functionally and share identical homolog (ortholog) distributions, 

with each potential ortholog represented in a binary phylogenetic profile with a 1 (black) if 

present or a 0 (white) if absent. Inferred gene loss events are highlighted on the tree. The 

correlated phylogenetic profiles for Proteins 1 and 2 can be used to predict the conserved 

functional interaction. (B) Challenges to phylogenetic profiling. In this illustration, an 

ancestral protein duplicates once (box inset), leading to a complex distribution of orthologs 
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in different extant species. The graph below the species tree represents a theoretical 

distribution of similarity scores (e.g. BLAST) generated against human protein 1. Each point 

(a putative ortholog in each species) is color-coded in accordance with its reciprocal best 

match in the human genome (BBH; best bidirectional hit). Species branching off before the 

duplication event contain only one homolog resulting in an artifact-prone BBH match (red 

arrows). The dotted line represents a suitable homology threshold. Phylogenetic profiles are 

generated using either this homology threshold (top) or a best bidirectional hit criterion 

(BBH, bottom) in each species. Errors in the phylogenetic profiles resulting from each 

method are highlighted with red dotted lines.
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Figure 2. Improvements to phylogenetic profiling.
(A) The schematic illustrates the use of an orthogroup strategy to resolve a single gene 

duplication event. First, phylogenetic profiles are generated for Daughter 1 and Daughter 2 

using a BBH criterion in species that branched off after the duplication event. Next, an 

orthogroup (group of co-orthologs or sister genes) is created that contains the two human 

proteins Daughter 1 and Daughter 2. A third phylogenetic profile can now be generated that 

assigns an ortholog to a species that contains a BBH match to either Daughter 1 or Daughter 

2. (B) Schematic to illustrate the strengths and weaknesses of common algorithms used to 

quantify the strength of coevolution between phylogenetic profiles using two different 
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evolutionary scenarios (Case 1 and 2) for Gene 1 and Gene 2. In both scenarios, 

phylogenetic profiles for Gene 1 and Gene 2 are being compared across 18 species related 

through the accompanying species tree. The total number of shared profile presence calls 

(13) and absence calls (5) are identical in each case. Case 2 contains more inferred loss 

events (red stars) and shared transitions between phylogenetic profiles (red wedges). Blue 

text indicates the relative strength of coevolution assessed by linear, model-based and runs-

based algorithms for these two scenarios.
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Figure 3. Species contributing to informative phylogenetic profiles.
(A) Schematic illustrating the generation of co-evolving modules. Phylogenetic profiles of 

all human genes and orthogroups (Dey et al., 2015) were clustered using an agglomerative 

algorithm to generate 334 modules containing 3 or more components (illustrated using two 

modules containing 3 and 4 components respectively with phylogenetic profiles in gray). An 

averaged binary phylogenetic profile was generated for each module (black).

(B) Averaged module phylogenetic profiles spanning 177 eukaryotic species ordered by 13 

major branches, represented using text labels as well a color bar (the complete list of species 

can be found in Figure S1 of Dey et al., 2015). Each binary profile represents the consensus 
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(averaged, 1:black, 0:white) for each one of the 334 strongly coevolving modules. (C) The 

fraction of modules missing or lost in each species, estimated from (A). Each point 

represents 1–(sum of column in (A)), color coded in accordance with the species tree. 

Groups of species populating the same branch with a mixture of low and high loss fractions 

(big spread on y-axis) contribute strongly to the identification of coevolving modules 

through informative lineage-specific gene losses.
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Figure 4. Evolutionary modularity.
(A) Left, schematic illustrating the components of two interacting physical complexes 

involved in the Fanconi Anemia pathway. Right, phylogenetic profiles for each protein in the 

two complexes 1:black, 0:white). Data from Dey et al. 2015. A red font is used to illustrate 

the coevolving phylogenetic module. Abbreviations for species branches: M: Mammals, V: 

Other Vertebrates, LT: Lancelets/Tunicates, EH: Echinoderms/Hemichordates, A: 

Arthropods, N: Nematodes, C: Cnidaria, SP: Sponges/Placozoa, CF: Choanoflagellates, F: 

Fungi, AB: Amoebozoa, P: Plantae, PR: Other protists. (B) Top, phylogenetic profiles for 6 

proteins/ protein families involved in canonical EGFR signaling. Bottom, phylogenetic 
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profiles for 6 enzymes involved in heme biosynthesis. Data from Dey et al. 2015. Species 

ordered as in (A).
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