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Abstract
Immunosenescence is thought to contribute to the increase of autoimmune
diseases in older people. Immunosenescence is often associated with the
presence of an expanded population of CD4 T cells lacking expression of
CD28 (CD28 ). These highly cytotoxic CD4 T cells were isolated from
disease-affected tissues in patients with rheumatoid arthritis, systemic lupus
erythematosus, multiple sclerosis, or other chronic inflammatory diseases and
their numbers appeared to be linked to disease severity. However, we recently
demonstrated that the common herpes virus, cytomegalovirus (CMV), not
ageing, is the major driver of this subset of cytotoxic T cells. In this review, we
discuss how CMV might potentiate and exacerbate autoimmune disease
through the expansion of CD28  CD4 T cells.
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Autoimmunity is not a rare phenomenon
A degree of autoimmunity that is, reactivity of the immune  
system against our own tissues (‘self’) is found in everybody.  
This is because the immune system’s ability to discriminate 
‘self’ and ‘non-self’ is not perfect. However, this imperfection 
usually is not enough to cause autoimmune disease. It appears 
that autoimmune disease requires “a genetic predisposition and  
environmental factors that trigger the immune pathways that 
lead, ultimately, to tissue destruction”1. This review article was  
prompted by the recent (renewed) interest in CD28null CD4 T 
cell–driven tissue damage and focuses on the adaptive immune  
system. In the following sections, we explore some of these  
factors and a possible environmental trigger for some autoim-
mune diseases. Manifestations of autoimmunity may occur in  
almost any tissue. In someone who has a predisposition to 
autoimmune disease and is exposed to the respective trigger, the  
immune system, however, still has ways of regulating itself in 
order to prevent tissue damage. Some researchers would argue 
that autoimmune disease ultimately results from an imbalance  
between effector and regulatory immune responses (that is,  
between a damaging response and another one keeping it under 
control). This means that immune regulation may still prevent 
the occurrence of autoimmune disease even if an immune  
response against self is present. Disease occurs only if the  
mechanisms preventing tissue damage are no longer sufficient.  
This may happen, for example, if the regulatory response 
for some reason ceases to work or the damaging response is  
boosted.

Predisposition to autoimmune disease
There are many different factors facilitating the develop-
ment of autoimmune disease. Among genetic defects, primary  
immunodeficiencies are often associated with autoimmunity 
and clinical manifestations thereof. Complement deficiencies, 
for example, have long been known to be risk factors for lupus2.  
While infections often are considered the main consequences 
of primary immunodeficiencies, such defects may also interfere 
with immune regulation (for example, in preventing autoreactive  
T cells and B cells from being reined in by regulatory cells). An 
interesting example is a life-threatening autoimmune condition 
known as ‘IPEX syndrome’ (immune dysregulation, polyendo-
crinopathy, enteropathy, X-linked syndrome). It is caused by  
mutations affecting the ‘master regulator’, forkhead box P3 
(FOXP3) gene, an important transcription factor in regulatory  
T cells (Tregs)3. As a result, there is loss of CD4 T-cell regula-
tion, resulting in the production of autoantibodies and tissue 
destruction (the role of Tregs in peripheral tolerance is discussed  
below in the ‘Tolerance versus autoimmunity’ section). An exam-
ple for an acquired predisposition to autoimmune diseases is HIV  
infection. The incidence of rheumatic autoimmune diseases 
observed in HIV infection (which is an acquired immunodefi-
ciency) was relatively low during the era before highly active  
anti-retroviral therapy (HAART). However, following the intro-
duction of HAART, a dramatic increase of conditions linked to an 
increase in CD4 T-cell counts was observed, which underscores 
the important role of CD4 T cells as effectors in such autoimmune  
diseases4,5. A genetic predisposition, importantly, does not have 
to be a defect since many autoimmune diseases are associated 

with major histocompatibility complex (MHC) type. CD4 T cells  
recognise peptide antigens in the context of class II MHC  
molecules, and the mere presence of certain MHC alleles/allele  
groups may predispose an individual to autoimmune disease.  
One explanation for such associations is that MHC molecules 
allow specific, disease-associated peptides to be presented to CD4  
T cells. Such a mechanism, for example, was discovered with 
respect to several HLA-DQB1 (‘DQ2’ and ‘DQ8’) alleles in  
gluten-sensitive enteropathy (‘coeliac disease’). The association  
in this case is so strong that the absence of DQ2 and DQ8  
essentially rules out the disease6. However, it is still only a 
minority of individuals with that tissue type who develop  
autoimmune disease.

Tolerance versus autoimmunity
Tolerance is a state where the immune system tolerates the  
presence of antigens that are recognised by immune cells  
without mounting an attack on the tissues displaying them.  
Whereas passive tolerance (essentially a gap in the immune 
receptor repertoire) is rare and refers to an absence of antigen  
recognition, active tolerance implies that mechanisms oper-
ate that actively down-regulate or suppress an otherwise  
detrimental mechanism. So-called central tolerance (or recessive  
tolerance) is achieved by eliminating all T lymphocytes that 
react with ‘self’ antigens during a rigorous selection process 
in the thymus. T cells bearing T-cell receptors (TCRs) that are  
autoreactive in the context of self-MHC molecules are deleted 
or may be diverted to become Tregs7. However, ‘perfect’ central  
tolerance would require the presence of all relevant self-antigens 
in the thymus in sufficient quantity at the time of TCR selection.  
As this does not seem to be possible, some autoreactive 
cells tend to slip through the selection process8. As a result,  
additional, ‘peripheral’ tolerance mechanisms are required to 
regulate inappropriate activation of autoreactive T cells in the 
periphery. Several different mechanisms contribute to peripheral  
tolerance.

The first important safeguard against the activation of auto-
reactive T cells is the requirement of two signals to induce  
T-cell activation. The interaction of TCRs with MHC/peptide  
complexes on antigen-presenting cells (APCs) (signal 1) alone is 
insufficient to cause T-cell activation. A second, co-stimulatory  
signal is required for full activation. This is usually provided 
by surface ligands called CD80 and CD86 on APCs. These  
interact with the co-stimulatory receptor, CD28, on T cells9–11. 
In the absence of the second signal, T cells become hypo- 
responsive and undergo apoptosis. A second safeguard is  
provided by the expression of the surface receptor molecule,  
cytotoxic T lymphocyte–associated protein 4 (CTLA-4), on  
activated T cells. Its affinity for CD80/CD86 is higher than that 
of CD28 and interaction between the former and CTLA-4 on  
effector T cells dampens down their activity. In addition, CTLA-4 
may remove CD80/86 from APCs. There is strong evidence in  
the literature that regulating CD28-dependent T-cell activation 
is the most important role of CTLA-412. Tregs express CTLA-4  
constitutively and its expression is further stabilised by FOXP3 
expression, a ‘hallmark’ of Tregs. The effect of CTLA-4 liga-
tion on Tregs seems to be an enhancement of suppressor activity.  
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Whether or not the actual signalling through CTLA-4 has any 
role in this process remains controversial. However, suppressor  
activity of Tregs may keep the activation of cytotoxic T cells by 
self-antigens under control13,14.

In some situations, an environmental trigger can breach  
existing tolerance. This can occur by ‘unmasking’ epitopes that 
were not present during selection in the thymus. This is one of 
the postulated mechanisms by which enterovirus infection might  
trigger autoimmune diabetes15. In this review, however, we focus  
on a different virus, cytomegalovirus (CMV), as a possible  
trigger of autoimmune disease. CMV is a common herpes virus. 
The precise mechanisms by which it might trigger autoimmu-
nity have remained obscure but its association with autoimmune  
disease is striking16.

The nature of CD28null T cells
The loss of CD28 associated with cellular senescence is per-
sistent and must not be confused with the short-lived down- 
regulation of CD28 after T-cell activation, which usually reverses 
within 48 hours17. Whereas non-antigen-experienced T cells  
express the co-stimulatory surface receptor, CD28, following 
the encounter of their cognate antigen, antigen-experienced  
T cells proliferate and differentiate along a pathway of increas-
ing maturity that eventually leads to the loss of CD28, at least in  
CD8 T cells. Repeated cell division leads to telomere shorten-
ing down to a critical length below which cells are pushed into  
‘replicative senescence’ and ultimately programmed cell death 
(apoptosis). Cells that have lost part or all of their ability to  
divide are considered senescent. CD28null T cells are ‘terminally 
differentiated’, have shortened telomeres and are often classified 
as senescent. They no longer require CD28 ligation for complete 
activation and at the same time have great cytotoxic potential  
(Table 1). The loss of CD28 expression on both CD4 and CD8 
T cells was long considered to be a consequence of normal  
(immune system) ageing, providing an explanation for accu-
mulations of CD28null T cells in older people18. For example, 
Effros et al. reported that significantly decreased populations 
of CD28+ cells in centenarians compared with younger people 
and a loss of CD28+ T cells in long-term culture appeared 
to indicate that loss of CD28 is a direct consequence of  
immunosenescence19.

Immunosenescence, CD28null CD4 T cells, and 
autoimmunity
Large populations of CD28null CD4 T cells were first identified 
in rheumatoid arthritis (RA) and later found in a wide variety of 
autoimmune diseases ranging from multiple sclerosis (MS) to 
Graves’ disease (GD)20–22. However, the loss of CD28 does not 
seem to indicate ‘anergy’. On the contrary, these cells acquire  
atypical cytotoxic properties resulting in a more rapid response. 
CD28null CD4 T cells have been described to have a memory  
effector phenotype and hence do not require a co-stimulatory 
input to be re-activated23. They are also unusual in having a large  
cytoplasmic store of granzymes and perforins characteristic of  
CD8 T cells and natural killer (NK) cells20. In addition, they 
produce large amounts of pro-inflammatory cytokines such as  
interferon-gamma (IFN-γ) and tumour necrosis factor (TNF),  

which potentially contribute to host tissue damage. Finally,  
CD28null CD4 T cells express NK cell markers such as NKG2D, 
which possibly further contribute to the amplification of the  
pro-inflammatory signals24. These extra receptors also lower the  
threshold for the activation of CD28null CD4 T cells by specific  
and non-specific stimuli25.

Interestingly, CD28null CD4 T cells are resistant to multiple 
forms of regulation. They are resistant to CD4+CD25+Treg- 
mediated suppression, a peripheral tolerance mechanism inhib-
iting proliferation and cytokine production. Tregs were shown 
to be unable to restrict the proliferation of CD28null CD4 T cells  
because of the lack of IL-2 receptor molecules (CD25) on these 
cells26–28. They are also resistant to apoptosis because of the  
down-regulation of the first apoptosis signal Fas receptor  
(Apo-1) and up-regulation of the B-cell lymphoma 2 (Bcl-2) 
apoptosis regulator. Both of these mechanisms contribute  
further to their accumulation29. When CD28null T cells become  
activated, they rapidly express CTLA-4 and generate a pro- 
survival signal by reducing caspase-mediated apoptosis. Anti-
apoptotic resistance is also rendered by B7.1 and B7.2/CTLA-4 
interaction since blocking CTLA-4 increases Fas-FasL-dependent 
apoptosis30. In light of these properties, expansions of CD28null 
CD4 T cells would be expected to be able to drive regulation- 
resistant tissue destruction.

The ‘reversible’ nature of immunosenescence and 
CD28 loss
According to Vallejo et al., persistent loss of CD28 most  
probably depends on repeated or continuous antigen contact17.  
Since CD28 loss on T cells is frequently implicated in the  
development of immunosenescence, it is of interest that others 
have also observed that chronic, persistent antigen stimulation  
(as seen in chronic viral infection or chronic inflammatory/ 
autoimmune disorders) accelerates immunological ageing31,32.  
CMV and HIV infections are prime examples of chronic virus 
infections associated with premature immune senescence33–36 
but hepatitis B virus also appears to be in that category37. These 
observations raise the question as to whether cellular senes-
cence might be reversible if the continuous antigenic stimulation 
were abrogated. And if so, might autoimmunity associated with  
CD28null CD4 T cells be reversible? Warrington et al., back in  
2003, showed that CD28 loss on CD28null CD4 T cells can be 
reversed in vitro by stimulation with IL-1238.

More recently, Akbar et al. reported that cellular senescence 
is an active process that is (at least partly) reversible39. They  
showed that, apart from telomere erosion and DNA damage, a 
nutrient-sensing pathway is also responsible for activating p38  
mitogen-activated protein (MAP) kinase in senescent cells. They 
also showed that small-molecule inhibitors of p38 reconstitute 
proliferation and telomerase activity following T-cell activation39.  
Other studies showed that, in addition to these intrinsic pathways, 
T-cell senescence can be reversed extrinsically by cytokines  
secreted by APCs. A recent study in mice showed that p38  
MAP kinase inhibition in APCs led to an increase in inter-
leukin-12 (IL-12) production, which in turn enhanced T helper 1 
(Th1) responses after vaccination in a mouse model40. It is quite  
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possible that in humans the effect of p38 MAP kinase inhibition  
on cells39 is mediated by IL-12 as well.

The concept that cellular senescence is an active and reversible 
process is very confusing per se, since generally we associate 
the term ‘senescence’ with chronological age (which certainly  
is not reversible). Therefore, it is important to understand that 
senescent cells do not have to be ‘old’ in a chronological sense  
and may occur in young people. The fact that an increase in cells 
with an apparently ‘senescent’ phenotype is often associated 
with older age is explained by the accumulation of antigen- 
experienced cells in older people. Many of these will have been 
exposed to their cognate antigens for a long time and have gone 
through many rounds of proliferation. However, it is important 
to consider that fully functional, terminally differentiated effec-
tor cells would also be expected to produce aggressive cytokines  
(that is, have a secretory phenotype) without necessarily being 
senescent. The CD28null phenotype might include both senescent 
and fully functional effector cells. However, independently  
of these phenotypes, the age of an organism might have an effect 
on cellular function in general. Recent data suggest that, for  
example, naïve T cells in older people already show some signs of 
senescence70.

CD28null CD4 T cells are strongly associated with 
cytomegalovirus infection
Because the prevalence of CMV infection increases with age, it 
was widely believed that CD28null T cells accumulate as a result 
of increasing age71–73. The most conspicuous accumulations of 
CD28null T cells occur in the CD8 compartment. These may be 
found in both young and older people and often constitute 20 
to 80% of CD8 T cells. CD28null CD4 T-cell frequencies are  
generally one if not two orders of magnitude lower than those 
of CD28null CD8 T cells. Interestingly, their frequencies rarely  
exceed 1%, even in very old individuals, unless CMV infection 
is present. Our recent work indeed suggests that CMV infection 
is a major ‘trigger’ for the expansion of CD28null CD4 T cells,  
increasing frequencies more than 10-fold on average. (In CD8 
T cells, the effect was a twofold increase.) However, the mecha-
nisms by which this happens have remained unclear. Our work 
also shows that chronological age has a very small effect on  
CD28null CD4 T-cell expansions and only in CMV+ individuals. 
Likewise, the effect of chronological age on the accumulation of 
CD28null CD8 T cells was found to be quite small. Expansions 
of these cells have long been associated with CMV infection, 
but the strength of the association between large numbers of 
these cells and CMV infection was grossly underestimated. 
Only in the presence of CMV infection do individuals exhibit 
cell numbers typically associated with clinical disease in the lit-
erature (usually several percent)74. A recent publication reported  
that treatment with ganciclovir in CMV+ patients with anti- 
neutrophil cytoplasmic antibody (ANCA)-associated vasculitis  
reduced the number of CD28null CD4 T cells75. This finding seems 
to support both the ideas that these cells are driven by CMV  
infection and that their effects may be reversible when the  
offending antigen is removed75.

According to our results and those of others, many CD28null CD4 
T cells are CMV-specific; however, it remains unclear whether  

other antigens are also recognised; no published report has ever 
convincingly shown the involvement of non-CMV antigens in  
triggering or driving CD28null CD4 T-cell expansions.

Independently of any association with CMV, increased propor-
tions of CD28null CD4 T cells have been implicated in a wide  
range of autoimmune diseases over more than two decades 
but also in atherosclerosis and coronary heart disease. These  
different ‘strands’ of research appear to have existed independ-
ently of each other35. We recently reviewed the literature on 
these topics and found compelling evidence that CMV is in all  
probability a major driver of vascular complications in RA and 
other chronic inflammatory conditions35,76. However, in exten-
sion of that work, we now explore the role of CD28null CD4 T 
cells in autoimmune and chronic inflammatory diseases more 
generally. Our review brings together studies from different  
areas of autoimmunity all of which suggest a role for CD28null 
CD4 T cells in causing or exacerbating disease77. The presence 
of large numbers of CD28null CD4 T cells in such conditions  
suggests a pathogenic role of this subset and indirectly one of 
CMV infection. Please note that most authors have reported  
increased proportions of these cells in various clinical situations 
rather than increased cell counts per unit of volume of blood  
(‘absolute counts’). Since lymphocytes may be redistributed 
between tissue and blood in different ways depending on a range 
of factors, absolute numbers per unit of blood are not necessar-
ily more useful. In a recent publication, we were able to show 
that CMV-specific CD4 T cells drastically increase at older ages 
in both ‘absolute’ and relative terms; however, it also became 
clear that potentially relevant changes in subset proportions 
may be missed if the size of individual subsets is reported in  
‘absolute’ counts78.

Rheumatoid arthritis
RA is a systemic autoimmune disease and the condition in 
which CD28null CD4 T cells were first described and extensively 
studied21,48,49,79. A positive correlation between the presence of  
CD28null CD4 T cells and the extent of extra-articular manifesta-
tions suggested that these cells mediate some of the systemic  
effects of RA48,80. It is unclear in which compartment these 
cells are originally generated. However, up-regulation of the  
chemokine receptor CX3CR1 on CD28null CD4 T cells might 
allow them to reach the synovial fluid thanks to expression of the  
CX3CR1 ligand, fractalkine (CX3CL1), on synoviocytes81. 
Remarkably, they are rarely found in the synovial membrane  
itself82. Fractalkine and its receptor were previously proposed as 
promising candidates for anti-inflammatory interventions in RA 
but also cardiovascular disease and other chronic inflammatory 
conditions83. In agreement with their role in systemic manifesta-
tions of RA, elevated levels of CD28null CD4 T cells were found, 
for example, in inflammatory pulmonary infiltrates where they  
express increased levels of the α4 integrin (alpha4/beta1, CD11b) 
and CD11a20. Expression of these markers likewise is likely to  
facilitate tissue infiltration. The RA-associated HLA-DRB1*04 
allele group was previously linked to an increase in CD28null  
CD4 T cells in both patients with RA and healthy controls23. 
This might indicate that the presence of HLA-DRB1*04 alleles  
facilitates RA but also an increase in CD28null CD4 T cells.  
Carrying HLA-DRB1*04 in that sense represents a predisposition 
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to autoimmunity; as such, autoimmunity could be mediated at  
least in part by CD28null CD4 T cells recognising a CMV epitope 
in this MHC context; however, to our knowledge, no CMV  
peptide presented by HLA-DRB1*04 has been reported to date. 
Our own work suggests that CMV infection is indeed the trigger  
for the expansions of these T cells.

The antigen specificity of CD28null CD4 T cells is an area of 
great interest, but no antigens apart from CMV have been iden-
tified. Reactivity to CMV antigens was demonstrated in several 
studies, both in patients with RA and in healthy controls20,82,84.  
Interestingly, both CMV DNA- and CMV-specific antibodies  
were reported in the synovial fluid of patients with RA85.

This suggests that CMV might have a direct role in CD28null CD4 
T cell–mediated tissue damage in RA. Based on a number of  
publications, we have devised a hypothetical model how this  
might happen (Figure 1).

We hypothesise that CMV-infected synovial fibroblasts directly 
present CMV antigens to infiltrating T cells in a class II MHC 
context. It has been shown that synovial fibroblasts can activate 

CD28null CD4 T cells. However, the exact antigenic determi-
nants remain unclear50. Synovial fibroblasts might also present  
antigens indirectly via the release of non-infectious exosomes 
(NIEs) containing CMV antigens, as such a mechanism has been 
shown in endothelial cells (ECs). CMV-infected ECs release  
NIEs containing many CMV proteins. Following uptake of these 
NIEs by APCs, the CMV antigens are presented by MHC II 
on APCs to tissue-infiltrating CMV-specific CD4+ T cells86,87.  
Recognition of these antigens by the CD4 T cells would result 
in their activation and production of IFN-γ and TNF, both of 
which may up-regulate fractalkine expression on ECs and  
synoviocytes. This in turn would be likely to attract more  
CX3CR1-expressing CD28null CD4 T cells and Tregs to the 
inflamed synovium. In addition, CMV-specific CD28null CD4 
T cells in the synovium might respond to autoantigens (as a 
result of cross-reactivity) and produce cytotoxic molecules like  
perforins and granzymes. CD28null CD4 T cells might also 
activate macrophages to release IL-1 or TNF or both, which  
could stimulate synovial fibroblasts to cause cartilage erosion 
by promoting connective tissue growth factor88. This is only a  
working model and, though speculative, is supported by the cited  
observations.

Figure 1. Potential link between CD28null T-cells, CMV, and Autoimmunity. (1) Endothelial cells (ECs) and synoviocytes can be 
infected by cytomegalovirus (CMV). (2) Synoviocytes may directly present CMV to CD28null CD4 T cells in the context of class II major 
histocompatibility complex (MHC). (3) Synoviocytes may alternatively release non-infectious exosomes (NIEs) containing the CMV antigens 
(as shown for ECs). Antigen-presenting cells (APCs) will take up the NIEs and process the antigens to be presented on class II MHC.  
(4) APCs present CMV antigens to CMV-specific CD28null CD4 T cells. (5) Activated CD28null CD4 T cells produce interferon-gamma (IFN-γ) 
and tumour necrosis factor (TNF). (6) This in turn will up-regulate the expression of CX3CL1 on synoviocytes and ECs. (7) CX3CR1-
expressing CD28null CD4 T cells (and possibly regulatory T cells [Tregs]) travel from the lymph node to the inflamed joint (via the thoracic 
duct). (8) Interleukin-1 (IL-1) and TNF produced by activated macrophages cause tissue erosion and cartilage destruction. (9) Some  
CMV-specific CD28null CD4 T cells may cross-react with self-antigens. (10) Activated CD28null CD4 T cells evade suppression by Tregs and 
hence maintain an inflammatory state in the rheumatoid arthritis synovium.
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Apart from the adaptive immune response, macrophages and 
synovial fibroblasts might produce chemokines like IL-6, granu-
locyte-macrophage colony-stimulating factor (GM-CSF), and  
TNF in response to the presence of Toll-like receptor (TLR)  
ligands such as proteoglycans and, for example, bacterial DNA 
in the rheumatoid synovium89. TLR-activated dendritic cells  
(DCs) migrate to the local lymph node to differentiate the 
primed autoreactive T cells towards different subtypes such as 
TH1 and TH2 (depending on the released cytokines)90. A role of  
cytokines produced by macrophages and fibroblasts in autoim-
mune disease, in particular the role of TNF, has been well  
established. This is witnessed by the clinical success of anti-TNF 
therapies91. Our model was conceived to illustrate one possi-
ble way how CMV infection might worsen the clinical course of  
RA via CD28null CD4 T cells. We are aware that there may be  
other ways to explain the effect of CMV in autoimmune disease 
and a discussion/exploration of all these possibilities is urgently 
needed.

Multiple sclerosis
MS is a debilitating autoimmune disease characterised by  
demyelination and axonal loss92. Myelin-specific T cells have been 
shown to be associated with the neuronal damage in patients with 
MS. In addition, genetic predisposition and other environmen-
tal factors have been identified as contributors. There is a strong 
association of MS with the HLA-DR15 and HLA DQ6 alleles.  
Among the environmental triggers, vitamin D deficiency and 
Epstein–Barr virus have long been associated with the disease93. 
Both CD4+ and CD8+ T cells have been proposed to play a role in 
disease progression.

Cytotoxic CD28null CD4 T cells are indeed found in increased 
proportions in patients with MS. They display up-regulated cell  
adhesion molecules, which probably allow them to infiltrate 
the brain and destroy oligodendrocytes34,41,94,95. Thewissen et al.  
reported that CD28null CD4 T-cell reactivity against myelin basic 
protein (MBP) in patients with MS was limited20. However, in 
another study, cross-reactivity between a myelin peptide (MOG  
35-55) and a CMV antigen UL-86 (981-1003) was observed in  
both rats and non-human primates42.

In a recent publication, CMV seropositivity of patients with 
MS was associated with higher percentages of CD28null CD4  
T cells34. Although no direct evidence of an association of  
CD28null CD4 T cells with MS severity was found in humans, 
the authors observed expansion of CD28null CD4 T cells in  
response to CMV infection in a mouse CMV (MCMV) model. 
There was a direct correlation between the frequencies of  
CD28null CD4 T cells and disease severity in a mouse model 
of MS, referred to as experimental autoimmune encephalitis  
(EAE)34. Infection of EAE mice with MCMV further increased 
the frequencies of CD28null CD4 T cells. In these mouse  
models, CD28null CD4 T cells could also be induced by repeated 
stimulation of T cells with MBP or tetanus toxoid in vitro,  
indicating that the CD28null phenotype of CD4 T cells is not 
strictly antigen-dependent in these animals. Antigens other than  
CMV inducing this phenotype in humans, however, have not 
yet been identified. It is of note that CMV-specific CD8 T cells  
were previously reported in MS lesions96.

Systemic lupus erythematosus
Systemic lupus erythematosus (SLE) affects multiple organs 
and is associated with increased mortality and morbidity. Most  
patients with SLE have sera positive for autoantibodies against 
La protein, which is a small ribonucleoprotein (RNP) associated  
with RNA polymerase. Interestingly, many viruses use La  
protein for their replication. A recent review on CMV infection 
in childhood-onset SLE describes CMV to either be the trigger 
of the disease or be responsible for a flare. This hypothesis is  
based on the association of La autoantibodies and latent CMV 
infection in many patients97. Another study identified antibodies  
against the 47-kD La protein (SS-B) that recognised epitopes 
exhibiting sequence similarity with many herpes viruses,  
including CMV98. Recently, the role of T cells in SLE has been 
recognised; T cells in SLE were shown to have a lower threshold 
for activation. Different mechanisms by which these T cells lower  
their activation threshold were discussed in a recent review 
by Mak and Kow99. T cells in patients with SLE were shown to 
have decreased levels of CD3 ζ-chain (zeta chain) expression,  
measured by anti-CD3-ζ immunoblots, as compared with healthy 
controls. These so-called ‘lupus T cells’ were predominantly  
CD8+ and CD16+100. Decreased levels of CD3 ζ-chain expres-
sion leads to a rewiring of the downstream ZaP-70 signalling  
pathway. This causes an increased calcium flux and greater  
activation of these T cells99. Further work is required to  
characterise these T cells with regard to other co-stimulatory  
molecules, especially CD28, in the context of CMV infection.  
Also, it would be interesting to assess the potential cross-reactivity 
of CMV-reactive T cells with La protein.

Graves’ disease
GD is an autoimmune disease that affects the thyroid glands.  
Anti-thyrotropin-stimulating receptor antibodies were found 
to cause goitre and hyperthyroidism in these patients. A recent  
study found increased levels of CD28null CD4 T cells in GD patients 
compared with healthy controls. The same study found that the 
numbers of CD28null CD4 T cells correlated with the severity of 
the goitre and the ophthalmopathy. In patients with goitre-like  
symptoms, 15% of the total lymphocytes were CD28null CD4  
T cells compared with only 6% in patients without goitre-
like symptoms22. Giving further support to a role of these  
T cells, the percentages of IFN-γ-producing CD28null CD4 T cells  
correlated with those of anti-thyrotropin-stimulating receptor 
autoantibodies (r = 0.4581, P = 0.002).

IFN-γ-producing CD28null CD4 T cells were found not only in 
the circulation but also, in high numbers, in affected tissues such  
as the muscles in the eye and the thyroid59,101. High levels of  
circulating IFN-γ were observed in patients with GD and this  
might drive the destruction of thyroid tissue22,60.

The role of virus infections in GD has been addressed in  
previous studies. For example, antibodies against the capsid 
antigens of Epstein–Barr virus were found at higher titers102.  
However, the sera of these patients were not examined for anti- 
CMV antibodies. Since CMV is the driver of the CD28null CD4 
T-cell population, a possible role for CMV in GD should be  
investigated.
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Therapies targeting CD28null CD4 T cells
The consistent presence of potentially highly pathogenic  
CD28null CD4 T cells across different autoimmune diseases  
potentially makes them an interesting target for immunotherapy, 
and some immunotherapies that are currently in clinical use 
were shown to have effects on this subset, such as reducing its  
frequency or reversing its phenotype by causing re-expression of 
CD28. For example, anti-TNF-α therapy, which is widely used 
in the treatment of RA, was shown to limit the expansion and  
cytotoxic effects of CD28null CD4 T cells32. Discontinuation of 
anti-TNF conversely may increase the risk of disease flares103.  
Methotrexate leads to a reduction of CD28null CD4 T-cell  
levels, whereas infliximab induces the re-expression of 
CD2851. Others have shown re-expression of CD28 by IL-12  
stimulation38. However, it remains unclear at this time what  
effect, for example, re-expression of CD28 might have.

CD28null CD4 T cells are generally considered senescent cells as 
they have lost the ability to proliferate. Senescent cells usually 
have shortened telomeres, which activate the DNA damage repair  
(DDR) pathway. This pathway allows cells to be eliminated  
before they can pose a threat to the organism. (The mechanisms 
of senescence and exhaustion of T cells were reviewed in great  
detail in a recent review104.) However, it appears that therapies  
aiming to reverse the senescence of CD28null CD4 T cells could 
be helpful for improving vaccination results. On the other 
hand, this might carry the risk of generating malignant cells. In  
addition, we believe it cannot be fully excluded that re-activat-
ing senescent CD28null CD4 T cells could worsen some of the  
conditions associated with their expansion. This could be the  
result of allowing even further proliferation of the then ‘reverted’ 
cells which now would be expressing CD28. (This is implying 
that in some situations senescent CD28null T cells could do less  
harm than their CD28+ counterparts.)

Therefore, therapies removing CD28null CD4 T cells might 
be a safer option and more beneficial. In theory, this could be  
achieved by targeting specific molecules on the CD28null CD4 
T subset or by inducing apoptosis specifically of this subset. For 
example, apoptosis of CD28null CD4 T cells has been achieved  

by using the lipid-lowering rosuvastatin in patients with coro-
nary heart disease105. To reduce the tissue-infiltrating capacity of  
CD28null CD4 T cells, Broux et al. have suggested blocking 
CX3CR1 on these cells41. It will be important for the success of 
any of these therapies to characterise CD28null CD4 T cells in 
more detail and to identify both their antigenic specificity and  
molecular markers. Additionally, antiviral therapies such as  
ganciclovir could potentially help to reduce the expansion of the  
CD28null CD4 T cells and hence possibly reduce the severity of 
many of the autoimmune diseases. However, the way in which 
such a strategy might be used clinically is, in reality, far from  
clear.

Conclusion and future perspective
CD28null CD4 T cells are an unusual population of chronically 
stimulated cells. In humans, they appear to accumulate in the  
presence of CMV infection. They are cytotoxic, produce large  
quantities of cytokines (a secretory phenotype associated with 
senescence) and display increased levels of adhesion markers, 
which suggests that they have access to diverse tissues. Their  
mere presence in autoimmune disease does not prove that they 
are actually involved in it or even cause it. However, reports  
indicating a correlation of their frequencies with severity suggest 
direct involvement in causing pathology. Studies in which these 
cells are specifically targeted might show to what extent they 
are involved in disease progression. Understanding the different  
antigenic specificities of these cells is a major challenge but will 
be helpful for developing specific immunotherapies. CMV is the  
clear trigger for the accumulation of these cells. However, we 
still do not know exactly which antigens (apart from CMV) these  
cells recognise. A better understanding of the antigen specificity  
of CD28null CD4 T cells would be a big step forward.
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