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Abstract

Background: Genome-wide association studies (GWAS) have identified several hundred susceptibility loci for type 2
diabetes (T2D). One critical, but unresolved, issue concerns the extent to which the mechanisms through which
these diverse signals influencing T2D predisposition converge on a limited set of biological processes. However, the
causal variants identified by GWAS mostly fall into a non-coding sequence, complicating the task of defining the
effector transcripts through which they operate.

Methods: Here, we describe implementation of an analytical pipeline to address this question. First, we integrate
multiple sources of genetic, genomic and biological data to assign positional candidacy scores to the genes that
map to T2D GWAS signals. Second, we introduce genes with high scores as seeds within a network optimization
algorithm (the asymmetric prize-collecting Steiner tree approach) which uses external, experimentally confirmed
protein-protein interaction (PPI) data to generate high-confidence sub-networks. Third, we use GWAS data to test
the T2D association enrichment of the “non-seed” proteins introduced into the network, as a measure of the overall
functional connectivity of the network.

Results: We find (a) non-seed proteins in the T2D protein-interaction network so generated (comprising 705 nodes)
are enriched for association to T2D (p = 0.0014) but not control traits, (b) stronger T2D-enrichment for islets than
other tissues when we use RNA expression data to generate tissue-specific PPI networks and (c) enhanced
enrichment (p = 3.9 × 10− 5) when we combine the analysis of the islet-specific PPI network with a focus on the
subset of T2D GWAS loci which act through defective insulin secretion.

Conclusions: These analyses reveal a pattern of non-random functional connectivity between candidate causal
genes at T2D GWAS loci and highlight the products of genes including YWHAG, SMAD4 or CDK2 as potential
contributors to T2D-relevant islet dysfunction. The approach we describe can be applied to other complex genetic
and genomic datasets, facilitating integration of diverse data types into disease-associated networks.

Background
The rising prevalence of type 2 diabetes (T2D) represents
a major challenge to global health [1]. Current strategies
for both prevention and treatment of T2D are suboptimal,
and greater insight into the mechanisms responsible for

the development of this condition is a prerequisite for fur-
ther advances in disease management [2].
The identification of human DNA sequence variants

which influence predisposition to T2D provides one of the
most direct approaches for deriving mechanistic insight.
However, current understanding of the genetic architecture
of T2D indicates that the genetic component of T2D pre-
disposition likely involves variation across many thousands
of loci [3, 4]. Close to 500 independent genetic signals for
which there is robust evidence of a contribution to T2D
predisposition have been identified, largely through gen-
ome-wide association studies, supplemented by analysis of
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exome- and genome-sequence data [4–6]. This profusion
of genetic signals has raised questions concerning the ex-
tent to which the inherited susceptibility to complex traits
such as T2D can be considered to occupy finite biological
space [7]. In other words, as the number of loci influencing
T2D risk increases, will the mechanisms through which
these are found to mediate the development of this condi-
tion continue to proliferate, or will they start to converge
around a limited set of pathways?
There are two main challenges in addressing this key ques-

tion. First, whilst a minority of the causal variants underlying
these association signals are coding (and therefore provide
direct inference regarding the genes and proteins through
which they act), most lie in regulatory sequence. This makes
assignment of their effector transcripts a non-trivial exercise
and obscures the downstream mechanisms through which
these variants impact T2D risk [8–10]. This challenge can
increasingly be addressed through the integration of diverse
sources of relevant data including (a) experimental data (e.g.
from studies of cis-expression or conformational capture)
which link regulatory risk variants to their likely effectors
[11, 12] and (b) evaluation of the biological evidence con-
necting each of the genes within a GWAS-associated region
to the disease of interest. In the present study, focussing on a
set of approximately 100 T2D risk loci with the largest ef-
fects on T2D predisposition, we use a range of information
to derive “positional candidacy” scores for each of the coding
genes mapping to T2D-associated GWAS intervals.
The second challenge lies in the requirement to define

functional relationships between sets of candidate effector
transcripts in ways that are robust and, in particular, orthog-
onal to the data used to assign candidacy in the first place
[13, 14]. Solutions for the second challenge are less
well-developed but generally involve some type of network
analysis (e.g. weighted gene correlation network analysis
[WGCNA]) and application of the “guilt-by-association”
framework to infer function [15–17]. However, recourse to
co-expression information or functional pathway enrich-
ment methods to generate and evaluate such networks runs
the risk of introducing circularity, given that information on
expression and function typically contributes (whether expli-
citly or not) to assignments of effector transcript candidacy.
The use of protein-protein interaction data provides one
possible solution to this conundrum [18]. In the present
study, we make use of external protein-protein interaction
data from the InWeb3 dataset [19, 20] to evaluate and char-
acterise the connectivity of the T2D candidate effector tran-
scripts in terms of their ability to nucleate empirically
confirmed interactions between their encoded proteins.

Methods
Positional candidacy score derivation
We developed a framework to score the candidacy of
genes mapping to GWAS association signals which

aggregated data from multiple sources. The information
collected fell into two categories. First, we used
regression-based approaches to link disease-associated
variants (most of which map into non-coding sequence
and are therefore presumed to act through transcrip-
tional regulation of nearby genes) to their likely effector
transcripts, using a combination of variant-based anno-
tations and expression QTL data [21]. We combined the
two measures to generate a “positional candidacy score”
(PCS) for each gene. We applied this framework to 1895
genes located within a 1Mb interval around the lead var-
iants from 101 T2D GWAS regions. These represent the
loci with the largest effect sizes for T2D, as identified in
European subjects as of early 2017 [4, 6, 22] (Add-
itional file 1: Table S1).

Mapping effector transcripts to GWAS signals
At each of the 101 loci, we collected summary T2D
case-control association data (−log10 p values) for all 1000
Genomes variants in the 1-Mb interval surrounding the
lead variants [6]. We then annotated the most associated
variants in each interval using gene-based annotations for
all genes in the interval from several sources. First, we col-
lected relevant discrete annotations for all protein coding
genes in GENCODE (version 19) [23] within the interval
including (a) coding exon location, (b) promoter location
(defined as 1-kb region upstream of the transcription start
site [TSS]) and (c) distal regulatory elements correlated
with gene activity from DNAseI hypersensitivity (DHS)
data (ENCODE version 3) [24]. We assigned each variant
a binary value based on whether it overlapped one of the
discrete annotations for a gene in the interval (exon, pro-
moter, distal element). Second, we collected summary
statistic expression QTL (eQTL) data from liver, skeletal
muscle, whole blood, subcutaneous adipose and visceral
adipose (GTEx version 6) [21] and pancreatic islets [11].
We assigned each variant the −log10 p value of eQTL as-
sociation for each cell type for each gene in the interval.
Third, we calculated the distance of each variant to the
TSS of each gene in the interval and assigned each variant
the inverse TSS distance for each gene (i.e. variants closer
to the TSS have higher values). Variants without values in
the eQTL datasets were removed from the analysis.
We then performed feature selection for each T2D locus

separately using elastic net regression (R package glmnet)
with the T2D p values as the outcome variable and binary
genomic annotations (exon, promoter, distal element), dis-
tance to TSS and cell type cis-eQTL p values for each gene
in the interval as the predictor variables. We also included
minor allele frequency and imputation quality of each vari-
ant at the locus as predictor variables. We obtained the ef-
fects of features selected from the resulting model. We
applied a 10-fold scaling factor to coding exon features,
based on known enrichment of T2D variants in coding
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exons [25, 26]. Where multiple features were selected for
the same gene (e.g. distal DHS site and tissue eQTL), we
summed the effects for that gene. We considered the
summed effects of features for each gene as the “variant
link score” in subsequent analyses.

Semantic mapping of gene functional annotations
We also derived a second score of the T2D relevance for
each gene within the 101 GWAS intervals based on the an-
notations for each within data from Gene Ontology (GOA,
version 157), the Mouse Genome Database (MGD, version
6.08), and biological pathways (KEGG) (version 83.1), com-
piling these annotations into a single document per gene.
We also created a query document of empirically compiled
terms we considered relevant to T2D pathophysiology
(listed here: https://github.com/kjgaulton/gene-pred/blob/
master/res/T2D.query.manual.txt). Both gene documents
were converted into a word matrix. We calculated the total
number of unique words across all documents N, after
removing a list of commonly used “stop” words from
PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) and
stemming the remaining words. We weighted each word w
for each gene document g using “term frequency (TF)”
minus “inverse document frequency” defined as:

TF ¼ f g;w

IDF ¼ log
N
nw

� �

where nw is the number of documents containing word
w. We defined the value (gw) of word w in gene docu-
ment g as:

gw ¼ TF� IDF

and applied latent semantic analysis (LSA) using singular
value decomposition of the weighted matrix M

M ¼ TSDT

where T is the left singular vector matrix of terms, D is
the right singular vector matrix of documents, S is the
diagonal matrix of singular values, and the number of
dimensions was determined by the function dimcalc_-
share from the lsa package [27]. We used the resulting
matrices to identify genes with functional attributes that
indicated relevance to the T2D pathogenesis. For each
gene document vector g, we calculated similarity scores
Si,q using the dot product between the gene vector and
the T2D query vector q

Sg;q ¼ g∙q

From these data, we extracted similarity scores for the
1895 genes of interest, which we considered the “seman-
tic score” in subsequent analyses.

Combining gene scores
For each of the 1895 genes, we scaled scores from these
two analyses to the sum of scores for each of the x genes
at each locus resulting in a semantic score sg and variant
link score vg. To calculate a positional candidacy score
(PCS), we averaged the two scores and rescaled across
all x genes at each locus.

CSg ¼ sg þ vgPx
i¼1si þ vi

Network modelling
Selection of the “seed node set”
At each GWAS locus, we defined the sets of genes that,
after ranking the genes for each locus by decreasing PCS,
generated a cumulative PCS exceeding 70%. This reduced
the set of 1895 genes of interest to 451 “seed” nodes for
subsequent network analysis. We performed network ana-
lyses using an updated version of InWeb3, a previously de-
scribed comprehensive map of protein-protein interactions,
containing 169,736 high-confidence interactions between
12,687 gene products compiled from a variety of sources
[19, 20]. We updated the version used in [20], by updating
outdated gene symbols and restricting interactions to those
deemed “high confidence” (score > 0.124).

Prize-collecting Steiner tree formulation
We formulated the task of examining the connectivity of
GWAS positional candidates (the set of 451 “seed” genes)
within protein-protein interaction space as an asymmetric
prize-collecting Steiner tree (APCST) problem. APCST-like
approaches have been widely used to solve network-design
problems [28–30]. The APCST seeks to connect “seed”
nodes (in formal nomenclature, “terminals”) to collect
“prizes”, using confirmed protein-protein interactions as
edges. Prizes are weights added to seed nodes: in our ana-
lysis, these correspond to the PCS values for each “seed”
gene, derived from the -omic integration approach. “Link-
ing” (formally, “Steiner”) nodes (that is, proteins/genes not
included in the seed set) can be introduced into the net-
work, where necessary. Network expansion is controlled by
the balance between the benefits of adding a particular
node (increased connectivity between seed genes, driven by
the collection of prizes) vs. the costs of adding additional
edges (based on a function which penalises expansion of
the network). In mathematical terms, we defined the
APCST as follows: given a directed graph G = (V, A), arc
costs c: A ℝ ≥ 0, node prizes p: V ℝ ≥ 0 and a set of
fixed terminals Tf, the goal is to find an arborescence S
= (Vs, As) G that spans Tf such that the following func-
tion is maximised:
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P Sð Þ ¼ β
X
i∈Vs

pi−
X
i; jð Þ∈As

ci; j

In this formulation, we reward the inclusion of nodes
i ∈Vs with higher prizes (that is, higher PCS values) (first
term of equation) whilst paying costs for including edges
(second term of equation). The parameter, β, scales the
importance of node prizes versus edge costs in the
optimization and can be used to titrate the size of the gen-
erated network. We tested different values of β (between 4
and 30) and selected β = 8. This value had the property
that it produced a manageable network size (~ 130 genes),
included > 25% of the seed node set, and that at least 80%
of the solutions (even though based on computation with
a heuristic component) were deemed optimal compared
to exact analyses based on running the dapcst algorithm
for each of the seed genes (Additional file 2: Figure S1).
Although this problem is NP-hard (nondeterministic

polynomial time-hard) [31], the APCST algorithm is effi-
cient in calculating exact and proximal solutions
(DIMACs 11th challenge, http://dimacs11.zib.de/). The
branch-and-bound algorithm, implemented in dapcst al-
gorithm (https://github.com/mluipersbeck/dapcstp) and
using default parameters, was used to find the optimal
(or near optimal) APCST solution.

Generation of networks using the dapcst algorithm
We used a particular variation of the ACPST (“roo-
t-ACPSTP”) where the search for the optimal solution
starts in a specific node. This allowed us to force each
seed node in turn to be included in the network, in con-
trast to the default APCST method which initialises net-
work construction from the nodes with higher weights.
For the main T2D analysis, therefore, the algorithm was
run 451 times, once for each “seed” node. Runs generat-
ing a network of > 10 nodes (353 networks, median 155
nodes) were combined to form an ensemble network
from the union of all 353 networks. This was reprojected
onto the InWeb3 interactome to recover missing con-
nections across nodes. As this final network represents a
superposition of many different networks, linking nodes
may sometimes appear at the periphery.
We assessed the specificity of each node in the final

network by running the algorithm 100 times with the
same parameter settings, but with random input data.
We define specificity in this context as the complement
of the percentage with which a given seed or linking
node from the final network appears in runs generated
from random input data. For each random run, we se-
lected, from the InWeb3 interactome, random seed
nodes matching the binding degree distribution of the ob-
served set of seeds, and assigned them the same prize
value as the original. Using the final parameter settings,
we found that the included linking nodes were highly

specific to our particular data, with 80% of them having a
specificity higher than 75% (Additional file 3: Figure S2).

Testing network for enrichment in the GWAS signal
To evaluate the extent to which the PPI network provided
functional connectivity between positional candidates
across loci, we measured the enrichment of the linking
nodes for T2D association signals. This avoided the circu-
larity of using co-expression or functional data to evaluate
connectivity (as both contributed to the PCS determin-
ation). We generated gene-wise p values using the PASCAL
method [32] from large-scale GWAS across a set of 33
traits (using data extracted from public repositories) includ-
ing a recent meta-analysis of T2D GWAS data from ~
150,000 Europeans [6]. We mapped these gene-wise associ-
ation p values to linking nodes and converted them to Z
scores using the standard normal cumulative distribution,
Zi =ϕ−1(1 − pi). We then quantified GWAS enrichment by
aggregating the Z scores using Stouffer’s method:

Zm∼

Xk
i¼1 Ziffiffiffi

k
p

where Zi is the Z score for the gene-wise p value for
linking node i and k is the number of linking nodes in
the network. Then, by permuting the InWeb3 network
using a node permutation scheme, we compared the ob-
served enrichment in GWAS signals to a random ex-
pectation, allowing us to calculate a nominal p value as:

Nominal p valueð Þ pn ¼
# Z > Zmð Þ

# total permutationsð Þ

where pn is the permuted p value generated in the permu-
tation scheme. In this last step, the binding degree of all
genes in the network is taken into full consideration (i.e.
they all have the same binding degree as provided by the
APCST network). To minimise bias arising from the co-
localisation of genes with related functions (which is a fea-
ture of some parts of the genome), in each of these per-
mutations, we only considered proteins whose genes
mapped outside a 1-Mb window around the lead SNP for
any significant GWAS association for that trait.

APCST model clustering
To aid interpretation of the PPI networks, we used a
community clustering algorithm that maximises network
modularity and which breaks the full APCST model into
smaller sub-networks [33].

GTEx and islet RNA-Seq datasets
The InWeb3 PPI network we used is generated from em-
pirically confirmed interactions but nevertheless includes
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many interactions that, owing to restricted tissue-specific
expression, are unlikely to be biologically relevant. We used
tissue-specific RNA expression data to filter the overall
InWeb3 network and thereby generate in silico “tissue-spe-
cific” PPI networks, using TPM counts from GTEx (version
7: https://www.gtexportal.org/home/, last accessed 21 Oct
2017), complemented by human pancreatic islet data from
[11]. Proteins with mRNA TPM counts < 0.1 in over 50%
of samples for that tissue were removed from the InWeb
network, allowing us to generate in silico PPI networks for
46 tissues. As an alternative strategy, we also attempted to
generate tissue-specific PPI networks de novo from the
subsets of genes transcribed in each tissue (as opposed to
the strategy of filtering the overall PPI network). For the
subset of tissues for which we generated such de novo
tissue-specific networks, network content and topology was
similar to that of the filtered approach (Jaccard index of
similarity between 0.72 and 0.94 between paired analyses).
For clarity and simplicity, we therefore used the filtered
approach for all subsequent analyses described in the
manuscript.

Functional enrichment analysis
Gene set enrichment (GSE) of networks and sub-networks
was assessed with ClueGO [34] using GO terms and
REACTOME gene sets [35]. The enrichment results were
grouped using Cohen’s Kappa score of 0.4 and terms were
considered significant when Bonferroni adjusted p value <
0.05 provided that there was an overlap of at least three
network genes in the relevant GO gene set when calculat-
ing GO enrichment. For the pathway selection (REAC-
TOME), we set a threshold that the network genes should
represent at least 4% of the pathway. These values were
applied given they are the recommended defaults when
running ClueGO [34]. Cohen’s Kappa statistic measures
the gene-set similarity of GO terms and REACTOME
pathways and allowed us to group enriched terms into
functional groups that improve visualisation of enriched
pathways.

Results
Prioritising positional candidates at T2D risk loci
We implemented a framework to derive positional can-
didacy scores (PCSs) for genes within T2D GWAS loci
through the aggregation of two main types of data (Fig. 1;
Methods). First, we used regression-based approaches to
link disease-associated variants (most of which map to
non-coding sequence and are therefore presumed to act
through transcriptional regulation of nearby genes) to
their likely effector transcripts, using a combination of
variant-based annotations and expression QTL data.
Second, we scored each of the genes in these GWAS re-

gions for disease-relevant biological function using seman-
tic mapping of gene functional annotations from Gene

Ontology, Mouse Genome Database and KEGG. We com-
bined the evidence from both approaches, normalised
across all genes at each GWAS locus, to generate the PCS
for each gene.
We applied this method to score 1895 genes mapping

within a 1-Mb interval around the lead variant at 101
T2D GWAS regions. This list of 101 T2D loci was as-
sembled from a series of recent large-scale T2D GWAS
[4, 6, 22] and represents the largest-effect T2D GWAS
loci identified as of early 2017. The 1-Mb interval was
selected to capture the majority of cis-acting regulatory
effects (95% of cis-eQTLs map within 445 kb of the lead
SNP [21]) and is therefore also likely to encompass most
potential effector genes [36]. We observed only a weak
correlation between the semantic and risk variant link
scores for the 1895 positional candidates (r2 = 0.05, p =
0.01), indicating that these provide distinct information
(Additional file 4: Figure S3).
Most (71%) of the 1895 genes had minimal evidence

linking them to a causal role in T2D pathogenesis (PCS
< 0.05) (Additional file 4: Figure S3). However, 95% of
T2D loci included at least one gene (median, 3) with
PCS > 0.10, and at 70% of loci, there was at least one
gene with PCS > 0.20 (Additional file 4: Figure S3). The
top-scoring genes across the 101 loci (such as IRS1
[PCS = 0.69], SLC30A8 [PCS = 0.77], HNF1B [PCS =
0.54]) include many of the genes with the strongest prior
claims for involvement in T2D risk, prior claims which
arise in part from data used to generate the PCSs. For
example, these genes each contain rare coding variants
directly implicated in the development of T2D (or re-
lated conditions): these rare variants are independent of
the common variant GWAS signals, but their relation-
ship to diabetes is likely to have been captured through
the semantic mapping. The PCS also highlighted several
other highly scoring candidates with known causal roles
in relation to diabetes and obesity such as MC4R (PCS
= 0.43), WFS1 (0.41), ABCC8 (0.37), LEP (0.27), GCK
(0.24) and HNF1A (0.23). At other loci, these analyses
highlighted candidates that have received scant attention
to date; for example, CENPW (PCS = 0.83) scored highly
both in terms of semantic links to T2D-relevant pro-
cesses and an adipose cis-eQTL linking the T2D GWAS
SNP to CENPW expression [21].
To define the seed genes for subsequent PPI analyses,

we gathered the sets of genes that, after ranking the
transcripts for each locus by decreasing PCS, cumula-
tively accounted for at least 70% of the candidacy score
for each locus. For example, at the TP53INP1 locus,
where the gene-specific PCSs range from 0.01 to 0.16
across a total of 17 mapped genes, the seed-gene set in-
cludes the first six (Additional file 5: Figure S4). This fil-
ter identified a total of 451 positional candidates across
the loci, reducing the median number of genes per locus
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from 19 to 6 (Additional file 5: Figure S4). This filtering
mostly removes genes with low PCS values: the propor-
tion of genes with PCS < 0.05 falls from 71 to 12%,
whilst most genes with PCS > 0.1 or > 0.2 are retained
(Additional file 4: Figure S3).
This prioritisation process ensures that genes with the

strongest combined causal evidence are favoured for net-
work modelling, resulting in sets of seed genes that are
more extensive than selection based on proximity alone
(such as “nearest gene” approaches that seek to generate
networks from only the genes mapping closest to the
lead variants) but smaller than those which consider all
regional genes of equal weight (“all gene” approaches).
Note that our strategy does not require complete

ascertainment of all true causal genes within this set of
451 genes: true effector genes excluded from the priori-
tised set of 451 genes (e.g. because they map more distal
to the lead variant than 500 kb, or because low semantic
scores reflect limited prior biological evidence) could
still be available for “discovery” through the network
modelling described below.

Building a T2D-relevant protein-protein interactome
We set out to test whether this list of prioritised candi-
dates could be used to characterise the functional rela-
tionships between genes (and proteins) implicated in
T2D pathogenesis. Because the PCS used to prioritise
the genes already incorporated (explicitly or otherwise)

Fig. 1 Overview of the data integration pipeline. We collected variants in the 1-Mb interval surrounding index variants at each of the 101 T2D
GWAS loci along with relevant annotations for all protein coding genes in GENCODE including coding exon location, promoter location, distal
regulatory elements correlated with gene activity from DNAseI hypersensitivity (DHS) data and summary statistic expression QTL (eQTL) data from
T2D-relevant tissues. This, combined with information at the gene level from a semantic similarity metric, allowed us to define positional candidacy
scores (PCS) for each gene in the GWAS intervals. PCS confers “weights” to the genes in the 1-Mb window based on biological candidacy, in contrast
to “nearest” approaches, where the closest gene to the GWAS signal gets a weight of 1 and others a 0, or the “equal” approach where all genes in the
window have the same weight. Genes with cumulative PCS > 0.7 were projected into the InWeb3 dataset using a Steiner tree algorithm to define a
PPI network that maximises candidate gene connectivity. This network was further analysed to find processes, pathways and genes implicated in the
T2D pathogenesis

Fernández-Tajes et al. Genome Medicine           (2019) 11:19 Page 6 of 14



diverse types of functional and expression data, biasing
any assessment of connectivity in these domains, we
focused the network analysis around protein-protein
interaction (PPI) data. To do so, we projected these 451
genes onto externally derived, empirically driven PPI re-
sources (InWeb3) [19, 20] using an established network
modelling strategy (the asymmetric prize-collecting Stei-
ner tree (APCST)) (Fig. 1; Methods). In this analysis, the
451 positional candidates represent “seed” nodes which
are used by the APCST algorithm to generate PPI net-
works which seek (with appropriate penalties to prevent
frivolous propagation) to connect as many seed nodes as
possible to each other, either directly, or using other
(non-seed) proteins as links (“linking” nodes). The net-
work topology is dependent only on the PCS values of
the “seed” genes which are carried forward as weights
into the APCST analysis, the confidence scores for each
of the empirical PPI interactions in InWeb3, and the
beta value used to tune the overall size of the PPI net-
work generated (see Methods).
We operationalised the PPI network as follows (see

Methods). Using each “seed” gene in turn, we used
InWeb3 data to generate a PPI network that maximised
the connectivity to other seed genes within the constraints
of the APCST model. Of the 451 seed genes, 98 failed to
produce a network exceeding 10 nodes. The remaining
353 networks had a median of 110 seeds and 45 linking
nodes and were combined into an ensemble network,
which was again projected into the InWeb3 interactome
to recover missing connections between nodes. The final
network contained 705 nodes (431 seed nodes, 274 linking
nodes) and 2678 interactions (Fig. 2). Based on random
networks generated with the same algorithm (see
Methods), 80% of the linking nodes have a specificity for
membership of the final network exceeding 75%, indicat-
ing that these linking nodes do not simply reflect generic
hubs in the PPI space (Additional file 3: Figure S2).

The T2D PPI network is enriched for T2D associations
If the final network truly provides novel insights into the
functional relationships between genes thought to be medi-
ating T2D predisposition, we reasoned that the “linking”
genes (those brought into the network purely on the basis
of external data indicating their protein-level interaction
with seed genes) should be enriched for other seed gene
characteristics. To avoid circularity arising from validation
using data types that had contributed to the generation of
the original PCS weights, including measures of gene func-
tion (e.g. GO, KEGG) or RNA expression data, we turned
to T2D GWAS data, looking for empiric evidence that the
genes encoding the linking proteins were themselves
enriched for T2D association signals. For this, we used
T2D association data from a set of ~ 150,000 European
T2D case-control subjects imputed to 1000 Genomes [6].

Briefly, the linking nodes were mapped to gene-wise asso-
ciation p values generated from the GWAS results using
PASCAL [32]. The significance of the collective enrich-
ment of these gene-wise p values was obtained by
permuting the observed set of linking nodes with
equivalent sets of “random” nodes from the InWeb3
database, matched for binding degrees (see Methods).
To minimise the prospects of picking up false signals
arising from the combination of local LD and the
non-random genomic location of functionally related
genes, we excluded all genes from the 1-Mb window
around the 101 lead variants from these analyses.
Compared to the distribution of scores in the permuted

background, the gene-wise p values for linking genes in the
empirical reconstructed network demonstrated significant
enrichment of T2D association (p = 0.0014). To confirm
that this enrichment was specific to T2D, we repeated the
analysis, retaining the same PPI final network, but instead
using GWAS data (and PASCAL-derived gene-wise p
values) from 33 different traits across a wide range of
disease areas. The only other traits displaying evidence of
GWAS enrichment within the linking nodes of the T2D
PPI network were those for anthropometric traits with
known relevance to T2D pathophysiology (Additional file 6:
Figure S5).
To gain insights into how the linking nodes of

our final network contribute to T2D biology, we
used the DisGeNET database [37], which collates
gene-disease information from public data as well
as from literature via natural language processing
tools. We focused on the 274 linking nodes in-
cluded in our model to avoid circularity arising
from using the seeds, and identified 92 (~ 33%) with
known links to T2D (Additional file 1: Table S2).
Examples include as follows: (a) NEUROD1 which
encodes a transcription factor that is involved in
the development of the endocrine cell lineage and
has been implicated in monogenic diabetes [38], (b)
PRKCB involved in insulin resistance [39] and (c)
GNAS, implicated in beta-cell proliferation [40]. For
this last gene, mouse knockouts have been shown
to produce phenotypes concordant with diabetes
[41]. These examples demonstrate the potential of
these analyses to draw in “linking” nodes as related
to T2D even when they are not located within
genome-wide association signals.

The T2D PPI network captures biological processes
relevant to disease pathogenesis
To increase biological interpretability, we next
sought to split the large final PPI network of 705
nodes into smaller sub-networks of closely interact-
ing proteins (“communities”). Using the algorithm
proposed by [33], we identified 18 such communities
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(each containing between 2 and 186 nodes) (Fig. 2). We
performed enrichment analyses on each community using
GO and REACTOME datasets, this time including both
seed and linking nodes. We observed that the individual
sub-networks were enriched for processes including “glu-
cose homeostasis” and “insulin receptor signalling cascade”
(sub-network 1), “Wnt” and “NIK/NF-kappaB signalling
pathways” and “cellular response to stress” (sub-network 2),
“COPII vesicle coating” and “Wnt ligand biogenesis and
trafficking” (sub-network 3), “regulation of insulin secre-
tion” (sub-network 8) and “glucagon signalling in metabolic
regulation” (sub-network 12) (Fig. 2, Additional file 1: Table
S3). This pattern of functional enrichment is broadly con-
sistent with existing knowledge regarding aspects of T2D
pathogenesis [42–44]. We saw no evidence in support of
certain processes that have been proposed as contributors
to T2D pathogenesis such as mitochondrial function or
oxidative phosphorylation [45, 46], in line with the paucity
of evidence linking these processes to T2D risk in standard
gene-set enrichment analyses [4, 22].

Information on tissue specificity enhances the model
The APCST model described above was constructed from
a generic, tissue-agnostic PPI network. As a result, it fea-
tures edges that, whilst they may be supported by the em-
pirical data used to generate the InWeb3 database, are
unlikely to be pathophysiologically relevant, due to mutu-
ally exclusive tissue-specific expression patterns. We
hypothesised that the use of tissue-specific interactomes,
focused on T2D-relevant tissues, would allow us to refine
the reconstructed PPI network and might enhance the
GWAS enrichment signal. In the absence of empirical PPI
data for all relevant tissues, we generated these tissue-spe-
cific PPI networks by filtering on RNA transcript abun-
dance. Starting from the generic final APCST network, we
removed, for each tissue, all nodes (and their correspond-
ing edges) with little or no transcriptional activity (see
Methods). In all, we generated tissue-specific PPI
networks, using RNA-Seq data sourced from 46 different
tissues, 45 (including fat, liver and skeletal muscle) from
GTEx (v7) [21][www.gtexportal.org] (median number of
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Fig. 2 APCST final network. The final PPI network generated from the T2D GWAS interval genes includes 431 seed nodes and 274 linking nodes
connected by 2678 interactions. We divided this network into 18 sub-networks (communities) using a community clustering algorithm that maximises
network modularity [33], and highlighted enrichment of specific biological processes contained within these based on Gene Ontology terms and
REACTOME pathways. Nodes are coloured according to their PCS with grey nodes representing linking nodes. Coloured nodes represent seed nodes,
whereas grey nodes represent linking nodes. The size of the nodes is proportional to the network parameter neighbourhood connectivity. These
networks are available in cytoscape and edge list format at [https://github.com/jfertaj/T2D_data_integration]
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individuals = 235) together with a set of human islet
RNA-Seq data (n = 118) [11], which had been reprocessed
through a GTEx-aligned pipeline.
We then repeated the T2D GWAS signal enrichment

analysis (“linking” nodes only; 100,000 permutations)
across each of these 46 tissue-specific PPI networks. We
detected broad enrichment for T2D association in linking
nodes across many of these tissue-specific networks: this
likely reflects the fact that these tissue-specific networks
remain highly overlapping (Additional file 7: Figure S6).
Nonetheless, with the exception of whole blood, the stron-
gest enrichment signal for T2D GWAS data was observed
in the islet-specific PPI network (Fig. 3). This enrichment
was less significant (p = 0.019) than that observed in the
full network (p = 0.0014), but this, at least in part, reflects
the reduction in the number of linking nodes in the
islet-specific network (from 274 to 229). Other tissues im-
plicated in T2D pathogenesis such as adipose, skeletal
muscle or liver generated more limited evidence of enrich-
ment (Fig. 3). This pattern of enrichment (favouring islets
and, to a lesser degree, adipose) mirrors equivalent obser-
vations for other tissue-specific annotations (including
cis-eQTL signals and active enhancers) with respect to
T2D association data [10, 11].

Further enhancement of model using GWAS locus subsets
To further refine the analysis, we took account of the
multi-organ nature of T2D and, specifically, of evidence

that it is possible, using patterns of association across
T2D-related quantitative traits such as BMI, lipids and
insulin levels, to define subsets of T2D GWAS loci
which impact primarily on insulin secretion and those
that perturb insulin action [47–49]. We reasoned that
the former would be expected to show preferential en-
richment within the islet-filtered PPI network. Accord-
ingly, we built APCST networks (both generic and
filtered for expression in islets exactly as above) formed
from the sets of high-PCS seed genes mapping to each
of seven T2D GWAS locus subsets defined in two recent
publications [48, 49] (Fig. 4; Additional file 8 : Figure
S7).
In both the islet-specific (Fig. 4; Additional file 9: Fig-

ure S8) and the generic network (Additional file 8: Fig-
ure S7), the strongest signals for GWAS enrichment
were seen for loci in the three subsets (beta cell [BC] in
[48]; acute insulin response [AIR] and peak insulin re-
sponse in [49]) comprised of T2D GWAS loci which in-
fluence T2D risk primarily through a detrimental effect
on insulin secretion (Fig. 4; Additional file 9: Figure S8;
Additional file 8: Figure S7; Additional file 10: Figure
S9). In particular, there was striking enrichment in the
islet-specific PPI network for linking nodes in the ana-
lyses of the BC (p = 3.9 × 10− 5) and AIR (p = 1.9 × 10− 4)
T2D GWAS locus subsets.
As before, we were interested to see whether this

marked convergence of PPI signal (as assessed by the

Fig. 3 GWAS signal enrichment in tissue-specific interactomes. RNA-Seq data was used to filter the overall InWeb3 network and generate in silico
tissue-specific networks that maximise connectivity between GWAS interval genes. Linking nodes within these networks were then tested for
enrichment for GWAS signals using a permutation scheme. Each dot in the figure depicts the −log10 p value for enrichment for signals in a given
GWAS dataset, for each of the 46 tissues. Dot colours reflect the GWAS phenotypes with T2D in the larger red colour. The dotted red line
represents the nominal value of significance (p = 0.05), calculated as the empirical estimate of the null distribution from which the p value has
been drawn. Islet showed the second strongest enrichment signal for T2D
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enrichment of T2D association signals in linking nodes)
was T2D-specific. We therefore repeated the enrichment
analysis using GWAS data from 33 additional traits. For
each trait, we took the APCST networks generated using
the seven T2D locus subsets and assessed the “linking”
nodes in those networks with respect to enrichment for
respective gene-wise association p values. We found broad
levels of enrichment for association signals for T2D-re-
lated phenotypes including (quantitative) glycemic traits,
lipid levels, anthropometric and cardiovascular traits,
which are consistent with known GWAS signal overlap.
However, we saw very limited enrichment for other (non--
diabetes related) traits. Furthermore, the patterns of

enrichment were consistent with underlying physiological
expectation: GWAS enrichment for anthropometric and
lipid phenotypes was most marked in the APCST net-
works generated from the insulin-resistant subset of T2D
loci (category “insulin response” in [48]), whilst T2D
remained the most enriched phenotype for the subsets
related to insulin secretion (Fig. 4; Additional file 10:
Figure S9).
These analyses demonstrated that parallel efforts to re-

fine the phenotypic impact of T2D GWAS loci, and the
tissue-specificity of the underlying PPI dataset used to
generate the APCST network, resulted in progressive, bio-
logically appropriate, improvement of the enrichment

Fig. 4 GWAS signal enrichment in an islet-specific network derived from T2D GWAS subsets. We built APCST networks filtered for islet RNA
expression for each of the subsets of T2D GWAS loci defined by shared mechanistic mediation (refs [48, 49]). Number of seed genes for each of
the subsets is displayed below the name of the phenotype. Enrichment in GWAS signals for linking nodes only was tested using a permutation
scheme. Each dot in the figure depicts the −log10 p value of enrichment for association signals in a particular GWAS analysis. The results for T2D
GWAS enrichment for the APCST networks built around the different T2D GWAS subsets are also represented (large red dots). The dotted red line
represents nominal significance (p = 0.05) calculated as the empirical estimate of the null distribution from which the p value has been drawn.
The strongest enrichment for T2D GWAS data in islet-filtered PPI data is observed for subsets of loci acting through reduced insulin secretion. The
central network depicts the intersection of the seven networks created from the seven T2D GWAS locus subset categories. Nodes are coloured
according to their PCS with grey nodes representing linking nodes. For the other networks, we have only named the nodes that are exclusive to
each of the seven T2D GWAS locus subset category networks to ease interpretation. These networks are available in cytoscape and edge list
format at [https://github.com/jfertaj/T2D_data_integration]
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signal observed at the “non-seed” proteins represented
within the network.

Validation and biological insights
To better understand the biological function of the highly
enriched PPI network generated by the intersection of
islet-specific expression, and the subset of T2D GWAS
loci acting through reduced islet function (henceforth, the
“islet network”), we performed a gene set enrichment ana-
lysis using GO and REACTOME terms (Additional file 1:
Table S4). Captured pathways included well-known bio-
logical processes of “glucose homeostasis” (p = 1.5 × 10− 4),
“regulation of WNT signalling pathway” (p = 8.9 × 10− 3),
“response to insulin” (p = 6.2 × 10− 4) and “pancreas devel-
opment” (p = 3.0 × 10− 5).
We also considered the extent to which it was possible to

validate some of the genes highlighted within the network.
The islet network identified many “seed” genes with a high
T2D PCS (Fig. 4; Additional file 9: Figure S8) as candidate
functional genes, including SOX4 ([PCS = 0.62] at the locus
usually named for CDKAL1) and ATXN7 ([PCS = 0.57] at
the locus named for ADAMTS9). In the former case, our
prioritisation of SOX4 has been validated by subsequent
experimental studies which have demonstrated a direct
relationship between perturbation of SOX4 and insulin
secretion and beta-cell proliferation ([50, 51]).
Several other high-PCS candidate genes, such as PAM

[0.54], ADCY5 [0.63], ZMIZ1 [0.22] or THADA [0.29],
that were also included in the islet-specific network have
also been validated by studies that (crucially) did not
contribute to the original PCS determination. For ex-
ample, the association signal near PAM has been convin-
cingly localised to coding variants in PAM [5], which
have been directly linked to defects in insulin content
and secretion in human beta-cell models and islets [52].
At ADCY5, several groups ([10, 53]) have provided com-
pelling experimental data that links the non-coding sig-
nals in the region to perturbation of the expression of
ADCY5 in islets, validating our assignment of candidacy.
A systematic assessment of the extent to which the net-

work approach we have developed can robustly identify
genes with a direct impact on the function of diabetes-rele-
vant tissues, will have to await global perturbation studies
(such as pooled CRISPR screens) that are currently under-
way. In the meantime, we looked for further examples of
validation within the more limited perturbation screen per-
formed by Thomsen and colleagues [13]. This analysis con-
sidered the phenotypic consequences, in a human beta cell
line, of silencing approximately 300 genes which mapped to
T2D GWAS regions that are largely overlapping with those
considered in this paper. Selection of the 300 target genes
was based on an earlier iteration of the PCS pipeline: conse-
quently, the set is enriched for genes with a high PCS (me-
dian PCS of 0.18), limiting the extent to which the dataset

could provide an independent readout of the relationship
between PCS and function. Nevertheless, these data valid-
ate several more of our PCS assignments: for example, si-
lencing of ZMIZ1 was shown to significantly reduce insulin
secretion, whilst THADA silencing has the opposite effect.
Some of the T2D GWAS loci we considered (e.g. TLE4,

CAGE1 and GCK) are represented by a single “seed” be-
cause the PCS for the highest-ranking gene exceeded 0.70.
At other loci, this islet network does not include the gene
with the highest PCS for the respective GWAS signal, but
instead features an alternative gene from the same locus
on the basis of its better connectivity within the network.
Examples such as the gene TBS [PCS = 0.21] at the
ZBED3 locus, and THRB [PCS = 0.43] at the UBE2E2
locus, demonstrate how the PPI data provides information
additional to that used to derive the PCS. Neither of these
genes was included in the published beta-cell screen [13],
and further assessment of the functional impact of these
and the other genes at these loci will be dependent on
large-scale perturbation studies currently in progress.
Finally, several of the linking nodes introduced into this

islet network through their PPI connections represent in-
teresting candidates for a role in T2D pathogenesis, and
there are several examples where external data provides
validation of those assignments. An interesting example
involves the gene GINS4 which maps at the ANK1 locus.
Though this gene generated a low PCS [0.03] and was not
included in the set of seed genes for this locus, GINS4
knock-down has an impact in a human beta-cell line [14].
In addition, cyclin-dependent kinase 2 (CDK2) has been
shown to influence beta-cell mass in a compensatory
mechanism related to age- and diet-induced stress,
connecting beta-cell dysfunction and progressive
beta-cell mass deterioration [54]. YHWAG is a mem-
ber of the 14-3-3 family, known to be signalling hubs
for beta-cell survival [55], and disruption of SMAD4
drives islet hypertrophy [56].

Discussion
In this study, we set out to overcome two challenges that
have impeded efforts to synthesise the biological informa-
tion that is captured in the growing number of association
signals emerging from GWAS. In the case of type 2
diabetes, for example, there are now well over a hundred
independent common variant signals [6, 22], but most of
these map to regulatory sequence, and the molecular
mechanisms whereby these, individually and/or collect-
ively, contribute to differences in T2D predisposition
remain largely unresolved. A key question, of direct
relevance to the opportunities for translational use of this
information, is the extent to which, as the number of loci
expands, there will be “saturation” or “convergence” of the
biological mechanisms through which they operate, or
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whether, on the contrary, the range of networks and
pathways implicated will continue to proliferate.
The first challenge concerns the identification of the

effector transcripts through which the T2D predispos-
ition effects at each of the GWAS signals (most obvi-
ously those that are regulatory) are mediated. We
approached this challenge by integrating, for each of the
genes within each of the GWAS signals, two types of
data, one based around the fine-mapping of the causal
variant, and the use of cis-eQTL data (in the case of
regulatory variants) or direct coding variant inference to
highlight the most likely effectors, and the other making
use of diverse sources of biological information concern-
ing the candidate effector genes and their protein prod-
ucts. Using this framework, we were able to assign
candidacy scores to each regional gene, and then to de-
ploy these scores as summaries of diverse sources of data
that could be propagated into subsequent network ana-
lyses. Nevertheless, we recognise that, given the sparse
nature of the data used, not all such candidacy assign-
ments will be accurate, and the scaling of the PCSs at
each locus means that candidacy scores are diluted at
loci with high local gene density. However, these scores
provide a principled and objective way of synthesising
current knowledge, and the framework allows for itera-
tive improvements in candidacy assignments as add-
itional sources of relevant data become available. These
are likely for example, to include further refinements in
fine-mapping, additional links from associated variants
to their effectors arising from chromatin conformation
analyses, detection of rare coding variant signals through
exome sequencing and genome-wide screens of tran-
script function.
The second challenge relates to the objective evalu-

ation of the extent to which the strongest positional can-
didates at these GWAS loci occupy overlapping
biological space. Standard approaches to network ana-
lysis applied to GWAS data—such as gene-set enrich-
ment [32] or co-expression analyses—were not an
option for this study since source data relevant to these
had already been factored into the assessments of pos-
itional candidacy. Instead, we focused on the relation-
ships between positional candidates as revealed by
protein-protein interaction data, which we considered to
be independent of the data in the earlier stages. We used
the enrichment of T2D association signals in linking
nodes (i.e. proteins included in the network which did
not map to known GWAS loci) as our principal metric
of network convergence.

Conclusions
Applying our data integration approach, we were able to
uncover a highly interconnected network associated with
T2D, which was built around proteins involved in

processes such as autophagy, lipid transport, cell growth
and insulin receptor signalling pathways. We were able
to show that this signal of enrichment was enhanced
when we constrained the generic PPI network to reflect
only genes expressed in pancreatic islets, and, concomi-
tantly, limited the set of GWAS loci to those at which
the T2D predisposition was mediated by defective islet
function. These analyses reinforce the importance of the
pancreatic islet as a critical tissue for the development of
T2D and highlight multiple proteins (both those that
map within GWAS loci, and those that fall outside) that
are represented within this core islet network. These
findings provide compelling hypotheses that can be ex-
plored further through direct experimental study, and
also highlight the need to generate tissue-specific
protein-protein interaction data. They also provide evi-
dence to support a convergence of the mechanisms me-
diating predisposition across diverse T2D association
signals.
Finally, these analyses demonstrate a valuable ap-

proach for the interrogation of large-scale GWAS data
to capture biologically plausible disease-specific pro-
cesses, one which can readily be applied to other com-
plex diseases.
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