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+e aim of this work was to study the application of resin filling containing nanomaterials for the potential treatment of caries.
Zinc nanoparticles (ZnO@NP, 50 nm) were chosen for their antimicrobial capacity against aerobic bacteria, and here, they have
proved to be bactericidal against anaerobic bacterial strains (Streptococcus mutans, Streptococcus mitis, and Lactobacillus spp.).
Potential mechanism of action is proposed based on microbiological assays and seems to be independent of oxidative stress
because the nanoparticles are effective in microaerophilic conditions. +e loading of nanoparticles on the demineralized dental
surface and their infiltration power were significantly improved when ZnO@NP were carried by the resin. Overall, this material
seems to have a high potential to become a one-step treatment for caries lesions.

1. Introduction

Caries is a multifactorial disease characterized by the mul-
titissue destruction in the tooth as a consequence of the
demineralization caused by the acids generated by bacterial
plaque. +e bacteria produce these acids as a by-product of
their metabolism of carbohydrates and then diffuse into
dental hard tissues and dissolve their mineral contents leading
to decalcification. Ultimately, this process usually results in
the formation of a cavity in the tooth [1]. In this infectious
disease, the enamel and dentin are also largely affected by
demineralization due to the acids [2]. Caries is one of themost
prevalent diseases in humans, and it remains a challenge to
the medical and dental profession [3]. Despite the overall
decline in caries prevalence in developed countries, this
disease continues to be an important problem in the adult
population of both developing and industrialized countries

[4]. Nowadays, the treatment of caries (or root decay) consists
of several phases, and therefore, patients tend to quit it before
a full restoration is achieved. +e first step in the “root canal
treatment” (RCT) is the elimination of the infection, followed
by filling of the cavity and reconstruction of the affected
dental piece so that it recovers its functionality completely.
Resin composites emerged as a good option for this last part
due to their aesthetics and direct filling capabilities. However,
they have one unsolved issue. +e resin porous easily accu-
mulates new bacterial plaque, leading to recurrent infections
and, even worse, to more invasive treatment to remove it.
Because caries at the restoration margins or surface is very
often found, it would be highly desirable for the composite to
have antibacterial and remineralization power [5]. Recent
studies indicate that nanotechnology could provide novel
strategies in the prevention and treatment of dental caries [6].
Several attempts have beenmade tomodify the resins in order
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to provide antibacterial effects. In most of the experiments,
antibacterial agents were incorporated into filling materials in
order to inhibit the microbial attachment and dental plaque
accumulation on their surfaces [7]. Moreover, nanomaterials
have shown great potential for the inhibition of the de-
mineralization process, remineralization of the dental
structure, and the death of the pathogens involved in the
caries lesion. +is antibacterial effect is mainly attributed to
the high surface area to volume ratio. In addition, the small
size of these particles makes penetration through bacteria
membranes easier resulting in higher antimicrobial activity
[8]. Metal nanoparticles (i.e., silver and zinc) have gained
significant interest over the years due to their remarkable
antimicrobial properties. Silver nanoparticles are among the
most used antibacterial agents incorporated into resin filler
materials; however, the discoloration caused by the reduction
of silver ions to metallic silver has been considered a major
problem. Recently, new nanoantibacterial agents as zinc oxide
nanoparticles (ZnO@NP), have been introduced, which
theoretically will not cause discoloration, are nontoxic, and
are biocompatible which make them suitable for use in
humans [9, 10].+e aim of this work was to assess the effect of
ZnO@NP incorporated into resin composite for the potential
one-step treatment of caries lesion.

2. Experimental

2.1. Bacterial Strains. Streptococcus mutans, Streptococcus
mitis, and Lactobacillus spp. were acquired from the Strain
Collection of the Special Bacteriology Service (CCBE), INEI-
ANLIS from Instituto Malbrán (Buenos Aires, Argentina).

+ese strains were always handled and kept in micro-
aerophilic conditions using an anaerobic jar and were grown
in thioglycollate broth with a colorimetric indicator or blood
supplemented agar, according to the experiments needs.

2.2. Nanoparticles and Bacterial Media. Spherical ZnO@NP
(CAS N° 1314-13-2) in the form of a white powder were
purchased from Sigma Aldrich and used without modifi-
cations, size <50 nm. DMEM and brain-heart infusion were
from Britania Lab.

+ioglycollate broth was also purchased from Britania
Lab and freshly made and sterilized; also, it was heated in a
mild water bath every time prior to use until its color in-
dicates no oxygen dissolved in the liquid. Icon® resin was
purchased from DMG Chemisch-Pharmazeutische Fabrik,
Hamburg (composition based on methacrylate resin matrix,
not fully disclosed by the manufacturer), and used straight
from its syringe applicator. Blood-supplemented agar Petri
dishes were purchase from Britania Lab.

2.3. Stability of ZnO@NP Suspensions. An equal amount of
nanoparticles (2mg/mL) was added to DMEM, brain-heart
infusion, thioglycollate broth, and Icon® resin. Nano-
particles suspensions were kept at 37°C in a microaerophilic
jar and were visually checked for aggregation or changes at
t� 0, 2, 4, 6, 12, 24, 48, 72 h.

2.4. Antibacterial Activity. A large range between 0.2 to
2.2mg/mL of ZnO@NP (in thioglycollate broth) was ana-
lyzed through the microdilution method (in a 96 well plate)
against a bacterial initial inoculum (106CFU/mL) freshly
prepared (also in thioglycollate broth) from a single colony.
All samples and controls (broth alone, ZnO@NP+broth,
bacterial suspension alone) were conducted by triplicate,
and the experiment was completely reproduced twice. +e
incubation of bacterial suspension with different nano-
particles concentration was made for 18 h at 37°C inside an
anaerobic jar properly set for this purpose. After this period,
10 μL aliquots of the samples with less and no turbidity (and
controls) were dropped on blood agar Petri dishes to be
incubated in the same conditions for 18 h. Finally, CFU
counting was performed. Gram staining was done at the
beginning and the end of the experiment to assure strains
were not contaminated during the process.

2.5. ZnO@NP & Dental Surface Interaction Analysis.
Completely developed third molars were obtained from the
tooth bank for research proposes (Facultad de Odontoloǵıa,
Córdoba, Argentina—Faculty of Dentistry of the National
University of Cordoba, Argentina—Ethical Committee In-
stitutional doc N°3/2016). +ey were conserved in distilled
water at 4°C and further processed for this study. 5mm slices
were cut from the Coronal Medium dentin region using a
Buehler ISOMET Low-Speed Saw (origin: Alemania). +e
samples were polished with an abrasive disc and covered,
except for a small window (3× 3mm) with purple nail polish
as shown in Figure 1.

2.6. ZnO@NP Infiltration in Dental Samples. +e afore-
mentioned third molars slices, treated with ZnO@NP sus-
pensions, were cut in half (90° to first cut). New slices were
observed through SEM in order to discover the infiltration
capacity of the nanomaterial carried in saline solution and
Icon® resin.

2.7. SEM/EDS Analysis. Treated dental slices were treated
with chromium for SEM/EDS observation (Lamarx Lab,
Universidad Nacional de Córdoba, Argentina).

2.8. Statistical Analysis. All experiments were performed in
triplicate, and numerical data are presented as means with
error bars representing standard deviations.

3. Results and Discussion

Generally, bacteria are delimited by a cell membrane and cell
wall. +e outer border, the cell wall, is mainly constituted of
peptidoglycan and is the one that keeps the osmotic pressure
of the cytoplasm and the characteristic morphology [11].+e
main difference between Gram-positive and Gram-negative
bacteria is that the first ones have a multilayered membrane
of peptidoglycan and the last ones have only one (of two)
membranes composed of a thin peptidoglycan layer.
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+e overall exterior charge of both types of bacteria is
negative; therefore, a better interaction is expected for
positively charged drugs. +e ZnO@NP employed in this
study were chosen because they have an average size <50 nm
(Figure 2) and a global positive zeta potential >35mV. +ey
are among the smallest and more stable one in acidic pH
values, which is the media inside the mouth [12]. A good
electrostatic interaction between bacteria and the selected
nanoparticles is anticipated due to their global exterior
charge. Particularly, this work assesses the effect of ZnO@NP
on the caries producing anaerobic strains previously men-
tioned. All three of them are Gram-positive acid lactic
producers. +ey produce a huge amount of this corrosive
acid from food sugar. For all these reasons, evaluation of
antibacterial agents must be done in sugar-rich acid bacteria
culture media, with very low oxygen concentration. +e
ZnO@NP were more stable in thioglycollate broth than they
were in brain-heart broth, so it was chosen to conduct the
microbiology experiments. +is could be because the last
one has less concentration of salts that could promote
nanoparticle aggregation. Great stability was also observed
in DMEM and the resin (for interaction and infiltration
tests). +is could be due to the interaction of the ZnO@NP
with acids groups from the media, which are known to act as
stabilizers.[13].

Different methods have been adopted to investigate in
vitro the antibacterial activity of nanoparticles although not

all of them take into account the special requirements of
these strains neither the nanomaterial properties [14]. For
instance, the most frequently used one is the agar diffusion
method, which is an indirect evaluation. In fact, there are
multiple factors that determine the size of a zone of in-
hibition in this assay, including drug solubility, concen-
tration in the disk and its diffusion rate through agar, and
the thickness of the agar medium. Interpretation of the
Kirby-Bauer disk diffusion assay provides only limited
information on susceptibility and resistance to the drugs
tested because all the abovementioned factors are not
standardized. Even more important, the assay cannot
distinguish between bacteriostatic and bactericidal ac-
tivities. Kirby-Bauer disk diffusion methodology is not the
right one to evaluate the antibacterial activity of ZnO@
NP, considering the lack of solubility in water and low
diffusion in agar. Other literature reports tell about how
ZnO@NP conferred significantly decreased bacterial
growth and proliferation [15, 16], which concurs with the
experimental data of the present study. However, the
turbidity method was usually applied alone, which it has
its deficiencies as it examines both death and alive bac-
teria. In contrast, in the present study, measurements of
bacterial suspensions’ optical density (compared to
controls with only nanoparticles suspension) were taken
as an indication of growth inhibition; chosen samples
were later seeded for further CFU counting. In this way,

(a) (b)

(c) (d)

Figure 1: Experimental preparation of dental slices and ZnO@NP+ resin treatment. +at window was treated with a demineralizing
solution (pH� 4.5, for 72 h with fresh solution every 24 h at 37°C) to produce the artificial caries lesion zone. Demineralizing solution
composition: C3H6O3 (0.1M), CaCl2 (3mM), K2HPO4 (1.8mM), carboxymethylcellulose 1%. Aliquots of ZnO@NP suspensions (1mg/mL
in H2O, saline 2 solution, and resin) large enough to cover the demineralized window were added dropwise and left to absorb for 5minutes.
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the MIC concentration for each strain was double
checked, overcoming the disadvantages of individual
methodologies.

+eMICof ZnO@NPwas 1.2mg/mL for S.mitis and as low
as 0.6mg/mL for S. mutans and Lactobacillus, but some effect
could be observed at concentrations of just 0.2mg/mL (Fig-
ure 3). +ese values are even lower than the ones depicted by
Hojati et al. [17] probably because the several factors that in-
fluence the methodology they used, in fact, did not found any
inhibition zone when doing agar diffusion but proved the effect
of direct contact through.

+e data presented here also support the antibacterial
effect and provide an accurate value of the minimum in-
hibition concentration. Moreover, after checking the viability
of the nanoparticles treated cultures by CFU counting, it can
be assured that ZnO@NP are bactericidal for the tested
strains. Importantly, the experimental setup allows demon-
strating that they are bactericidal even in microaerophilic
conditions, which are the actual conditions inside the caries
cavity. One of the suggested antibacterial mechanisms for
ZnO@NP is that they produce reactive oxygen species such as
peroxide radical, which interfere in microbial growth. +is
could be true in an aerobic environment, but the results
presented here show that this antimicrobial capacity is in-
dependent of the oxygen availability. Furthermore, there is no
need to explore the photocatalytic activity of ZnO@NP, since
they kill the anaerobic bacteria without any irradiation. +is
effect under dark has been observed by other researchers as
well, but has never been tested in microaerophilic culture
conditions [18, 19].+e antibacterial mechanism of ZnO@NP
in dark is credited partially to the modification of the cell
membrane activity after an electrostatic interaction [20]. At
the same time, Zn2+ ions leaching in the growthmedia disrupt
essential sugar metabolism and displace the magnesium ions
which are essential for the bacterial enzyme systems [8]. All
this combined could explain the effectiveness of this anti-
bacterial agent.

Besides the antibacterial power, a potentially positive
role on tissue regeneration is expected for ZnO@NP because

Larsen and Auld [21] showed that zinc helps to stabilize
proteins and has a protective effect when bonded to collagen
regions that are sensitive to metal proteinase cleavage. +ey
showed that zinc, forming zinc mono hydroxide, links catalytic
ions to the lateral chain in the active site of carboxypeptidase A
and inhibits it. Apparently, zinc acts as a matrix metal-
loproteinase (MMP) competitive inhibitor and decrease col-
lagen degeneration in a single-bond hybrid layer and had no
adverse effect on the bond strength [22]. Finally, SEM mi-
crograph together with EDS measurements in treated dental
slices (Figure 4) revealed that the loading of nanomaterial was
22 times higher (wt.%: 42.9± 1; Figure 4(c)) in dental samples
treated with ZnO@NP carried in resin than in those treated
with ZnO@NP at the same concentration in saline solution
(wt.%: 1.9± 1; Figure 4(b)). +e nanoparticles were measured
by the quantitative EDS microanalysis in SEM, where the mass
fractions or weight percents of the elements present in the
sample are calculated. In contrast, no interaction at all was
observed when the nanoparticles were suspended in water
alone (Figure 4(a)). Interestingly, previous studies reported that
the incorporation of nanoparticles into resin composites does
not affect their adhesive properties but has indeed a positive
effect on their mechanical characteristics. Alteration of resin
properties is a common worry when adding nanoparticles, but
ZnO@NP have no negative impact on the methacrylate ma-
terial whatsoever. +ese nanoparticles conferred antimicrobial
properties to the resin without altering the shear bond strength
[2]. Another concern prior to clinical application is the toxicity
level to human cells. Fortunately, they do not seem to be toxic
at very low concentrations [1].

In addition to those benefits, ZnO@NP carried in resin
showed better infiltration capacity than those in saline so-
lution (Figure 5). As can be observed, Zn indicative of ZnO@
NP could be found as deep as 1020 μm from the dental
surface when the methacrylate resin is used as a carrier. On
the contrary, there is no Zn penetration when the nano-
particles are suspended in phosphate buffer saline (PBS).
+is ability to penetrate the dental sample is fundamental to
reach deep bacterial infectious focuses.

(a) (b)

Figure 2: TEM images of ZnO@NP used for the experiments. Average size <50 nm. Scale bar: 100 nm.
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Figure 4: SEM/EDS micrographs of demineralized dental samples treated with ZnO@NP (in (a) H2O, (b) PBS, (c) Icon® resin).
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4. Conclusions

With the evolution of caries lesion treatment shifting to
“minimally invasive” techniques, restorative materials are
endowed with increasing expectations for therapeutic ef-
fects. Current materials replace the missing volume of the
tooth cavity although it would be useful for future restorative
materials to not only replace the missing volume but also be
bioactive and have beneficial therapeutic properties.

+e nanotechnology is developing a new generation of
bioactive therapeutic materials as an innovative concept for
the development of materials with anticaries potential, ca-
pable of producing synergistic effects. Incorporation of
nanoparticles into dental composites and adhesives proved
to have multiple benefits: antibacterial capability and
remineralization of tooth lesions. Although most of the
studies on a new generation of antimicrobial, therapeutic,
and bioactive resins are in vitro, in vivo studies are still
needed. On the other hand, it is necessary to determine
whether antibacterial resins induce bacterial drug resistance.
Nonetheless, the new generation of antimicrobial resins, like
the one proposed in this work, is expected to offer tremendous

benefits to oral health. At the same time, these antimicrobial
resins could establish the bases for other antimicrobial
nanomaterials or filling. +e results of this study are en-
couraging and open the doors to future multidisciplinary
research and clinical studies that will allow the therapeutic
value of nanotechnology-based restorative materials to be
established.

Data Availability

Data generated or analyzed during this study are included in
this published manuscript; however, more details are
available from the authors upon reasonable request.

Additional Points

Future Perspective. +e treatment of caries lesion would have
to evolve into some technique more practical and fast, that
matches the requirements and standards of modern
odontology including the concepts of minimally invasive
restorative dentistry. Development of new materials, like the
one presented here, is essential for this propose. For us, it is
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clear that in less than 10 years, one-step noninvasive treatment
for caries would become routinary. In this framework,
nanotechnology, and especially the use of metallic nano-
particles, will have a particular emphasis. Executive Summary.
Caries lesion and current treatment: (i) caries is characterized
by destruction in the tooth as a consequence of the de-
mineralization caused by bacterial plaque; (ii) the routine
treatment of caries consists of several phases which usually
include the mechanical removal of dental tissue, and therefore,
patients tend to quit it. Proposed nanomaterial: (i) the ZnO@
NP used here have an average size <50nm and a global positive
zeta potential >35mV; (ii) they are among the smallest and
more stable ones in acidic pH values found inside the mouth;
(iii) they have good electrostatic interaction with caries pro-
ducing bacteria. Antibacterial activity: (i) theMIC of ZnO@NP
was 1.2mg/mL for S. mitis and as low as 0.6mg/mL for S.
mutans and Lactobacillus; (ii) in this case, antimicrobial activity
was independent of oxygen availability. Interaction and in-
filtration of ZnO@NP with dental samples: (i) the load of
nanomaterial on the dental surface was 22 times higher when
ZnO@NP were carried in resin instead of PBS; (iv) a deep
infiltration of ZnO@NP inside the molar sample could only be
achieved when they were carried in the methacrylate resin.
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