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Abstract

Background: For a number of fiscal and practical reasons, data on heroin use have been of poor 

quality, which has hampered the ability to halt the growing epidemic. Internet search data, such as 

those made available by Google Trends, have been used as a low-cost, real-time data source for 

monitoring and predicting a variety of public health outcomes. We aimed to determine whether 

data on opioid-related internet searches might predict future heroin-related admissions to 

emergency departments (ED).

Methods: Across nine metropolitan statistical areas (MSAs) in the United States, we obtained 

data on Google searches for prescription and non-prescription opioids, as well as Substance Abuse 

and Mental Health Services Administration (SAMHSA) data on heroin-related ED visits from 

2004 to 2011. A linear mixed model assessed the relationship between opioid-related Internet 

searches and following year heroin-related visits, controlling for MSA GINI index and total 

number of ED visits.

Results: The best-fitting model explained 72% of the variance in heroin-related ED visits. The 

final model included the search keywords “Avinza,” “Brown Sugar,” “China White,” “Codeine,” 
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“Radian,” “Methadone,” and “Oxymorphone.” We found regional differences in where and how 

people searched for opioid-related information.

Conclusions: Internet search-based modeling should be explored as a new source of insights for 

predicting heroin-related admissions. In geographic regions where no current heroin-related data 

exist, Internet search modeling might be a particularly valuable and inexpensive tool for estimating 

changing heroin use trends. We discuss the immediate implications for using this approach to 

assist in managing opioid-related morbidity and mortality in the United States.
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1. Introduction

Opioid-related emergency department (ED) admissions and deaths have rapidly increased in 

the United States during the past decade (Rudd et al., 2016). In particular, heroin-related 

deaths have more than quintupled from 2000 to 2014, as some people have shifted from 

taking prescription opioids to heroin (Compton et al., 2016; Jones et al., 2015; Martins et al., 

2017). For a number of fiscal and practical reasons, data on the status and evolution of 

heroin use have been of poor quality, which has hampered the ability to halt the epidemic 

(Humphreys, 2017; Kilmer and Caulkins, 2014; Ruhm, 2017). New methods for monitoring 

prescription and non-prescription opioid use are therefore needed to prevent heroin-related 

hospital admissions.

Internet search data, such as those provided by Google Trends, have been used as a low-cost, 

real-time data source for monitoring and predicting a variety of public health outcomes, 

including influenza, skin cancer, and depression (Bloom et al., 2015; Nuti et al., 2014). 

Recent models based on internet search and social media data have been improving and 

overcoming earlier limitations, gaining the attention of health care organizations, public 

health clinics, and government agencies who are beginning to implement these approaches 

in disease prevention and monitoring (Young, 2014). Internet search data might similarly be 

applied as a potential source for insights to address the opioid epidemic; however, no known 

research has explored this area.

Based on the hypothesis that heroin-related emergency department admissions might be 

preceded by people searching online for information relevant to opioids, we sought to 

identify whether Google Trends data could be used to predict the following year’s 

emergency department heroin-related admissions. Because both prescription and non-

prescription opioid use has been associated with future heroin use (Compton et al., 2016), 

we compiled a list of search terms for common descriptors of prescription and non-

prescription related opioids, and evaluated whether a model including these search terms 

might predict the following year’s emergency department heroin-related visits.
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2. Materials and methods

We obtained annual data on heroin-related ED visits over the most recent six-year period of 

data availability (2005–2011) from the Substance Abuse and Mental Health Services 

Administration (SAMHSA). The dataset comprised ten metropolitan statistical areas 

(MSAs) in the United States: Boston, Chicago, Denver, Detroit, Minneapolis, New York 

City, Phoenix, San Francisco, Seattle, and Miami. However, Miami was excluded from this 

study due to missing data from a number of years, leaving nine MSAs. We then identified a 

list of common descriptors for prescription and non-prescription opioids from the Drug 

Enforcement Agency (DEA) website listing the clinical and street names for relevant drugs 

(Drug Enforcement Agency, Houston Division, 2017). Due to the large number of opioid-

related terms in the DEA list, we attempted to refine the list by manually entering each 

opioid-related descriptor into a Google Trends search to determine the descriptors that were 

most frequently used in Google searches. Based on this initial screening, 12 prescription and 

non-prescription-related opioids were identified for use in the final model. Then, we 

obtained aggregated search data on Google searches using the Google Trends Application 

Programming Interface (API) for the period 2004–2011 (beginning one year prior to our 

existing heroin data in order to use Internet search data to predict following year heroin-

related admissions). Google Trends returned data on the normalized search volume, which is 

a decimal number between 0 and 1, provided by Google based on the relative frequency of 

search terms compared to each other, for each of the 12 opioid-related keywords. The 

searches were conducted on August 4, 2017 for each MSA (see Supplementary materials).

A linear mixed model assessed the relationship between the normalized volume of internet 

searches using the opioid-related search terms and following year (natural log-transformed) 

heroin-related visits, controlling for MSA GINI index (a measure of poverty-related 

inequality) and total number of ED visits for all causes. We employed a two-step process to 

determine the best-fitting model that incorporated a combined list of the opioid-related 

search terms. First, we entered all 12 opioid-related search terms into the model and used a 

step-wise comparison, ranking all models of search keyword combinations by BIC statistic. 

Second, we assessed the quality of fit of the model by analyzing the marginal R2 value 

(Nakagawa and Schielzeth, 2013). Analyses were conducted using R software in August 

2017. The IRB waived this study, as data are anonymous and aggregated.

3. Results

Across all MSA’s, heroin-related admissions increased from 1194.7 per 100,000 population 

in 2005, to 1358.3 in 2011. Minneapolis had the largest annual percentage increase in 

heroin-related ED visits (22.7%) over the study period, primarily due to a 53.5% increase in 

admissions between 2010 and 2011. San Francisco had the largest annual decrease over the 

study period (−20.6%). The largest percentage increase across all cities occurred in 2011 

(11.3%).

The analysis revealed regional differences based on where people searched for opioid-

related information. We found relatively fewer searches for “Avinza” across all MSA’s, 

except in Detroit and New York. We also found relatively fewer searches for “China White” 
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in Denver and Minneapolis; and “Kadian,” in Denver, Phoenix, and Seattle. “Brown Sugar” 

was the most frequently searched term in all cities except in Phoenix and Seattle, where 

“Methadone” was the most searched opioid-related keyword.

The best-fitting model explained 72% of the variance in heroin-related ED visits (R2 = .72). 

The final model included the search keywords “Avinza,” “Brown Sugar,” “China White,” 

“Codeine,” “Kadian,” “Methadone,” and “Oxymorphone” (Table 1; Fig. 1). GINI and total 

number of emergency department visits were not significant predictors and were 

automatically dropped from the final model. “Brown Sugar” was not a significant predictor 

but was automatically included in the final model because it was found to improve model fit. 

“Avinza,” “Methadone,” and “China White” were the strongest model contributors.

4. Discussion

Internet search data may enable novel, low-cost, and early detection of public health events 

or outcomes (Nuti et al., 2014). These data can be a highly cost-effective source for insights 

as they are freely and publicly available for research use and provide information on the 

opioid-related psychology and search behaviors of individuals. In geographic regions or 

countries where no current heroin-related data exist, internet search might be a valuable tool 

in providing at least a first estimate for changing heroin use trends.

Internet search data are being increasingly used for public health forecasting and 

understanding concerns for a variety of public health concerns because they are highly 

correlated with conventional surveillance data that are often costly to collect and suffer from 

reporting lag-time (Young et al., 2018). In fact, a primary barrier to addressing the opioid 

epidemic, as pointed out by public health officials and opioid researchers, is the inability to 

access recent data on opioid-related outcomes (Kilmer and Caulkins, 2014; Ruhm, 2017). 

For example, this study used heroin-related admissions from 2004 to 2011 (a seven-year lag 

time to present) because no more recent publicly-available data across the United States on 

heroin-related admissions were available. Although efforts are being made to provide access 

to high quality data on the evolution of the epidemic, most researchers are currently limited 

in their ability to access these data (Office of the Chief Technology Officer, 2017). However, 

near real-time or even predictive assessments of opioid-related trends are needed in order for 

researchers and public health officials to intervene in a timely fashion. Because Internet 

search data occur in real-time and have already been shown to be associated with current and 

future health outcomes, they may help to address this issue by allowing researchers and 

public health officials to gain more timely insights into the evolution of the opioid epidemic 

in order to intervene and prevent negative opioid-related outcomes, such as heroin overdose.

The ability to use online search behaviors to predict future heroin visits has several 

immediate implications for managing opioid-related morbidity and mortality in the United 

States. First, geolocation of search behaviors may offer more precise and targeted 

community-based opioid overdose education and naloxone distribution interventions to 

proactively target high-need areas (Kerensky and Walley, 2017). For example, if a model or 

software program were able to identify an increase in opioid-related search terms associated 

with future heroin-related admissions (such as in Indiana prior to the 2014 Indiana HIV 
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outbreak), then public health officials could be better prepared for rapid education and 

medical interventions. Second, agencies such as the Department of Health and Human 

Services have already requested new methods of using real-time, low-cost data sources to 

aid as potential solutions in addressing the opioid crisis in the United States. Recent efforts 

are focused on facilitating collaborations between academia, industry, and government to 

address the opioid epidemic (e.g., http://predictiontechnology.ucla.edu/hack-a-thon-2018/), 

and Internet-based opioid prediction models provide a good use case for developing these 

partnerships. Third, the present methods create a use case for how Internet and even social 

media data might be used to better understand people’s real-time public opioid-related 

intentions and behaviors. For example, analyzing opioid-related search terms could help to 

uncover changing trends in the descriptors that people use for prescription and non-

prescription opioids, both regionally and longitudinally. These types of social and behavioral 

data have already been integrated with health care system utilization and outcomes and can 

be provided to public health officials so that prevention efforts can be quickly assessed and 

rapidly refined at regional and national levels (Young and Heinzerling, 2017).

This pilot study has several limitations. First, it is subject to the common sample bias 

associated with Internet search data. For example, not all Americans use Google as their 

primary search provider, and Google Trends does not provide raw data on the number of 

searches but rather normalized search volume. Several earlier studies using Google search 

data have also identified flaws in their predictive ability due to such limitations. However, as 

newer data science models have been created, more recent studies have been able to address 

many of these previous limitations. Although the present study incorporates many of these 

methods that have been shown to address these limitations, we believe that the primary value 

of the current study is not to provide a definitive model for predicting future heroin-related 

admissions, but rather to present a case study to illustrate how this new tool can be used (and 

refined with future work) to address heroin and opioid-related public health problems. 

Second, our analysis was based on search keywords for opioids in order to explore the 

feasibility of this new approach. Unlike social media (e.g., Twitter data), which can provide 

context around people’s thoughts and behaviors, search data typically provide only 

keywords without context for the search. We conducted this study with an a priori list of 

search terms to explore these methods in a pilot study. Future modeling efforts may build 

upon this work by incorporating other “red flag” symptoms and behaviors for heroin use, 

such as searches related to needle sharing, as well as by integrating more contextual social 

media data (Young, 2014). Third, “Brown Sugar” was the most frequently searched term in 

all model keywords. This analysis did not filter out the many searches conducted using this 

keyword related to the baking product rather than to heroin. However, and possibly for this 

reason, “Brown Sugar” was not a significant predictor of future heroin admission. Finally, 

we were limited in the recency and breadth of the heroin-related admissions data (complete 

SAMHSA data were only available for nine MSAs through 2011), as well as reliance on the 

DEA site for identifying opioid-related search terms. For example, this analysis did not 

include data on rural towns or sub-urban and micropolitan areas, even though opioid use has 

been heavily linked to small urban and non-urban areas in the United States (Cicero et al., 

2014). Because opioid use and the number of heroin admissions continue to evolve over 
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time, more recent data, including data from small urban and non-urban areas, are urgently 

needed to be incorporated into models to provide more accurate and timely assessments.

5. Conclusion

Internet search data may be a valuable new source for insights in predicting heroin-related 

admissions. Due to the lack of available data on heroin and opioid-related behaviors and 

outcomes, and the urgent need for these data, researchers should further explore whether and 

how Internet search data may be used as a novel and supplementary source of information 

for addressing the opioid crisis.
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Fig. 1. 
Google Trends opioid searches (January 1, 2004 to December 31, 2011) and following year 

heroin ED rate (per 100,000 people), example of 2 cities.
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Table 1:

Multivariate Linear Mixed Model analysis of associations between search frequencies and Emergency 

Department heroin visits.

Coefficient Lower 95% Upper 95% Standard p-value

CI CI Error

Avinza 0.25 0.13 0.37 0.07 <.001

Brown Sugar 0.06 −0.04 0.16 0.05 0.27

China White 0.16 0.02 0.30 0.07 0.03

Codeine 0.13 0.05 0.21 0.04 0.004

Kadian 0.09 0.00 0.17 0.04 0.05

Methadone 0.19 0.09 0.29 0.05 <.001

Oxymorphone −0.15 −0.21 −0.09 0.03 <.001
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