Skip to main content
. 2017 Dec 1;1(3):159–168. doi: 10.1162/OPMI_a_00016

Table 1. . A linear mixed effects regression (including a by-subject random intercept to account for repeated within-subjects measurements) predicting Log W from Tsimane’ education level and task (computer vs. card version).

AIC BIC logLik deviance df.resid
401.8 423.7 −194.9 389.8 276
Scaled residuals:
Min 1Q Median 3Q Max
−2.1824 −0.6418 −0.0226 0.4943 4.9975
Random effects:
Groups Name Variance SD
Subject (Intercept) 0.02481 0.1575
Residual 0.20978 0.4580
Number of obs: 282, groups: subject, 141
Fixed effects:
Estimate SE t value
(Intercept) −1.252289 0.041399 −30.249
Education −0.042551 0.008400 −5.066
task1 −0.165655 0.037229 −4.450
Education:task1 0.031667 0.007554 4.192
Correlation of fixed effects:
(Intr) Eductn task1
Education −0.681
task1 0.000 0.000 −0.681

Note: summary(lmer(W_value_lg ∼ Education * task + (1 | subject), REML=F, data=gathered_d)) Linear mixed model fit by maximum likelihood [’lmerMod’] Formula: W_value_lg ∼ Education * task + (1 | subject)