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Summary

Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only 

hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by 

expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively 

constant. However, perturbations of any of these processes can lead to lipid accumulation in the 

liver. Although it is thought that these responses are hepatic arms of the ‘thrifty genome’, they are 

maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in 

that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part 

to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to 

involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is 

a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the 

chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific 

understanding of the mechanisms by which alcohol causes steatosis may therefore translate into 

targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
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Introduction

Alcohol is highly prevalent in most societies and more than 50% of Americans consume 

alcohol at least once a month.1 Heavy alcohol consumption associated with alcohol 

dependence and/or abuse (i.e., binge drinking) is well known to damage the liver. Alcohol-
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related liver disease (ALD) affects more than 10 million Americans each year, while treating 

the medical consequences of the disease costs more than $166 billion annually.2 

Furthermore, alcohol consumption can enhance damage to the liver caused by other diseases 

(e.g., hepatitis virus infection) and drugs (e.g., acetaminophen).3,4 Although the progression 

of alcohol-induced liver injury is well characterised, there is no universally accepted therapy 

available to halt or reverse this process in humans. Therefore, there is an increasing focus on 

understanding the biochemical changes responsible for the development and progression of 

ALD. With better understanding of the mechanism(s) and risk factors that mediate the 

initiation and progression of this disease, rational targeted therapy can be developed to treat 

or prevent it in clinical practice.

The first and most common hepatic change caused by alcohol consumption is steatosis, or 

fatty liver (Fig. 1). The prevalence of steatosis is essentially 100% in those who consume 

alcohol at levels that increase their risk of liver disease.5 Fat accumulation can be both 

macrovesicular (having one large fat droplet per hepatocyte and lateral displacement of the 

nucleus) or microvesicular (many small fat droplets per hepatocyte) (Fig. 1).5 Alcohol-

induced steatosis is rapidly and readily reversible upon cessation of alcohol consumption. 

Steatosis can also be clinically ‘silent,’ and can exist in the absence of increases in any other 

index of liver damage, such as plasma aminotransferases, for example. For these reasons, 

steatosis was originally viewed as an inert pathology in ALD (and in other fatty liver 

diseases). However, more recent studies have suggested that blunting or preventing steatosis 

could help attenuate the progression of ALD; in fact, the degree of steatosis is an early 

predictor of overall disease severity.6 These facts challenge the assumption that steatosis is 

an inert pathology. Hepatic fat accumulation can invoke metabolic changes that sensitise the 

liver to further injury (see below). Therefore, a full understanding of how alcohol induces 

steatosis could be key in preventing progression to later stages of ALD.

The liver plays a central role in lipid metabolism for the entire organism. Hepatic free fatty 

acids (FAs) are not only directly synthesised from glycolytic end products and hepatic 

catabolism (e.g., autophagy), but are also actively taken up by the liver from dietary, and 

extrahepatic (e.g., adipose tissue lipolysis) sources. This pool of FAs can either be used for 

energy via β-oxidation, membrane synthesis or esterification into triglycerides by 

hepatocytes. Triglycerides are subsequently packaged as very low-density lipoproteins 

(VLDLs) that can be secreted into the bloodstream or serve as precursors for primary bile 

acids, which facilitate the emulsification of dietary lipids for delivery to the liver and extra-

hepatic sites. There is intricate cross-talk between these systems. Hepatic lipid metabolism is 

controlled by a complex interplay of hormones, nuclear receptors, intracellular signalling 

pathways and transcription factors. Under homeostatic conditions, hepatic lipid flux 

maintains relatively low concentrations of hepatic lipid pools. However, dysregulation of this 

flux can cause lipids to accumulate in hepatocytes, leading to steatosis (Fig. 2).

Alcohol directly and indirectly impacts numerous aspects of hepatic lipid flux that 

ultimately lead to lipid accumulation. The simplest example is that alcohol metabolism itself 

directly causes steatosis. Concentrations of alcohol can easily reach the mM range in the 

portal/hepatic circulation during alcohol consumption. In the process of metabolising 

ethanol to acetate, 2 equivalents of reduced NADH are generated per equivalent of ethanol 
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oxidised. This metabolism robustly increases the ratio of NADH:NAD+ within the cell, 

which then favours inhibition of FA β-oxidation in the liver. Furthermore, ethanol 

metabolism also increases the rate of esterification of Fas.7 The net effect is to favour 

triglyceride accumulation in the hepatocytes. However, the impact of alcohol exposure on 

lipid metabolism is far more complex than simple redox inhibition of β-oxidation. The 

purpose of this review is to summarise the known impacts of ethanol on this process.

Effects of ethanol on fatty acid transporters

Circulating FAs are directly taken up by the liver, with a relatively high first pass extraction,
8,9 and are the largest source of lipid for triglyceride synthesis.10 The liver also clears 

chylomicron-remnant triglyceride, which also contributes to the hepatic FA pool.8 FA 

transporters, including CD36/FA translocase (FAT) and FA transport protein (FATP encoded 

by SLC27A1) and FA binding proteins, play important roles in FA uptake.11,12 Although the 

liver is not the main site of CD36/FAT expression, stimulation of CD36/FAT promotes 

hepatic free FA uptake, which can lead to hepatic lipid accumulation and liver injury in 

rodents and humans.11–13 Ethanol exposure increases hepatic uptake of exogenous FAs and 

subsequent incorporation of FAs (e.g. palmitate) into triglycerides or total lipid in the liver.
14–16 Ethanol-mediated upregulation of hepatic FA transporters, in particular, CD36/FAT, 

FATP1 and FATP5 promotes FA uptake, excessive fat accumulation, and development of 

steatosis in mice and rats.17–21 Co-administration of recombinant adiponectin to ethanol-fed 

mice markedly suppresses hepatic CD36/FAT expression and alleviates steatosis.22 Genetic 

ablation of mitoNEET (CISD1), a potential inducer of CD36/FAT, ameliorates experimental 

alcoholic steatohepatitis in mice, partially by downregulating CD36/FAT.23 These studies 

suggest the involvement of FA transporters, particularly CD36/FAT, in the pathogenesis of 

alcoholic fatty liver disease (AFLD).

Effects of ethanol on FA and triglyceride synthesis: potential key players

As mentioned, the liver can generate FAs from non-lipid precursors via de novo lipogenesis. 

This process is predominantly regulated by insulin and glucose flux in the liver and serves to 

provide a storage source of energy during times of fasting. Pyruvate from glycolysis enters 

the citric acid cycle and is converted to citrate, which is subsequently converted to acetyl- 

and malonyl-CoA and used to synthesise FAs. Rate-limiting enzymes in this process include 

acetyl-CoA carboxylases 1 and 2 (ACC-1 and −2 which convert acetyl-CoA to malonyl-

CoA), FA synthase (FASN which synthesise saturated FAs from malonyl-CoA), and steryl-

CoA-desaturase-1 (SCD-1 which converts saturated FAs to monounsaturated FAs). The 

synthesis of glycerolipid (i.e., triglycerides) from FAs is mediated by key acetyltransferases 

(e.g., GPAT, AGPAT and DGAT) and phosphatidate phosphatases (e.g., lipin-1).

SREBP-1c and ChREBP and transcriptional control of lipogenesis

Although they are controlled at several levels, the dominant regulation of the lipogenic genes 

described above is transcriptional (Fig. 1). The most potent inducers of these genes are the 

transcription factors SREBP-1c and ChREBP. The canonical activator of SREBP-1c is 

insulin and its inhibitor is glucagon. In contrast, substrate supply (glucose and citrate) 

regulates the expression of ChREBP. Under normal conditions, lipogenesis is thus 
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maximally induced after the intake of nutrients and is downregulated during fasting. 

Previous studies have indicated that both SREBP-1c and ChREBP are activated by alcohol 

exposure,24–27 which clearly explains the induction of lipogenic genes by alcohol. However, 

alcohol and/or its metabolites blunt glucose-induced insulin release from the pancreas and 

activate glucagon release.28 Furthermore, alcohol causes insulin resistance and inhibits 

gluconeogenesis, which should decrease intrahepatic glucose concentrations. These net 

effects should in principle disfavour activation of these transcription factors, suggesting that 

alternate activation pathways are in play, as discussed later.

Lipin-1

Lipin-1 protein plays a pivotal role in lipid synthesis as a mammalian Mg2+-dependent 

phosphatidic acid phosphohydrolase (PAP), which catalyses the penultimate step in 

triglyceride synthesis.29–34 In addition to PAP activity, lipin-1 contains a putative nuclear 

localisation signal, and acts as a transcriptional co-regulator of the expression of genes 

involved in lipid metabolism in the nucleus.29–34

Lipin-1 pre-mRNA alternative splicing generates 3 lipin-1 protein isoforms, lipin-1α, 

lipin-1β, and lipin-1γ.29,30,34 Lipin-1α and lipin-1β are expressed in various organs, such as 

the liver and adipose, while lipin-1γ is predominately expressed in the brain.29,30,34 The 

variant splicing of lipin-1α and lipin-1β is partially regulated by a splicing factor, arginine/

serine-rich 10 (SFRS10 or TRA2B).35The consequent protein products exert different 

functions. Lipin-1β serves as a PAP enzyme, which catalyses phosphatidate to 

diacylglycerol, facilitating the synthesis of triglycerides and phospholipids at the 

endoplasmic reticulum.29,30,32 In contrast, lipin-1α is predominately localised to the 

nucleus, where it acts as a transcriptional co-regulator, activating PGC-1α, PPARα and 

inhibiting SREBP-1c.31–33 The overall effects of lipin-1α are to increase β-oxidation of free 

FAs and reduce lipid synthesis.

Aberrant lipin-1 contributes to the abnormalities in lipid metabolism associated with AFLD 

in rodents and in humans.29,33,36–45 Owing to its inhibition of AMPK activity and activation 

of SREBP-1c, ethanol upregulates lipin-1, induces accumulation of cytosolic lipin-1 protein, 

enhances PAP activity, and promotes triglyceride synthesis in the livers of rodents and 

human alcoholics.33,39–46 Ethanol also blocks lipin-1 nuclear entry, inhibits nuclear lipin-1-

mediated FA oxidation and perturbs VLDL secretion in mouse liver.42 Furthermore, ethanol 

suppresses lipin-1 alternative pre-mRNA splicing and subsequently increases the ratio of 

lipin-1β/α by disrupting the SIRT1-SFRS10 axis.41,43 Abnormalities in lipin-1 are also 

involved in the ethanol-induced production of a panel of pro-inflammatory cytokines.45 

These ethanol-mediated alterations in lipin-1 promote steatosis, exacerbate inflammation 

and cause liver injury.

ER stress and the UPR

The endoplasmic reticulum (ER) is critically involved in the proper folding and assembly of 

secreted and membrane proteins. Homeostasis between the protein load and the capacity of 

the ER to process this load must be maintained to ensure proper protein folding. 

Physiological and pathological stimuli can disrupt this homeostasis causing misfolded or 
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unfolded proteins to accumulate, leading to ER stress. In attempts to reestablish 

homeostasis, the ER activates a signalling network known as the unfolded protein response 

(UPR). One downstream effect of activation of the UPR by ER stress is the insulin-

independent proteolytic activation of SREBP-1c. This effect of the UPR makes teleological 

sense, in that increasing lipogenesis would increase lipid substrate supply to the ER for 

protein processing.47 It has been shown that alcohol induces ER stress in the liver, at least in 

part by causing hyperhomocysteinaemia.24,48

TNFα

It is well known that both the basal and lipopolysaccharide-stimulated production of TNFα 
(or TNF) are increased in humans consuming alcohol and in experimental ALD.49,50 The 

role of TNFα and other pro-inflammatory cytokines in hepatic inflammation is well known. 

However, studies in experimental ALD indicate that they may also contribute to lipogenesis. 

Specifically, genetic or pharmacologic inhibition of TNFα signalling blunted steatosis 

caused by alcohol.51–53 This effect of TNFα may be mediated at several levels of lipid 

metabolism. For example, TNFα increases free FA release from adipocytes in the periphery,
54 increases lipogenesis in hepatocytes,55 and inhibits β-oxidation of Fas.56 Moreover, 

prooxidant production stimulated by TNFα in hepatocytes could impair mitochondrial 

electron flow and cause lipid peroxidation, processes that could also slow the metabolism of 

fat by mitochondria. Other studies demonstrated transcription and activation of SREBP-1c is 

enhanced by TNFα in hepatocytes,57,58 which yields another mechanistic link between 

TNFα and lipogenesis. Other cytokines induced by alcohol (e.g., IL-1 and IL-6) may also 

impair transport and secretion of triglycerides.59

PPARγ

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor 

that is known to impact on lipid metabolism and glucose homeostasis. The PPARG gene 

encodes 2 splice isoforms of the protein product, PPARγ1 and PPARγ2; the former is 

constitutively expressed at low levels in most tissues, whereas the latter is expressed 

predominantly in adipose tissue under basal conditions.60 Although the liver normally 

expresses low levels of PPARγ2, expression is elevated in steatotic livers, both alcoholic and 

non-alcoholic.60–62 The activation of PPARγ may be pleiotropic in fatty liver disease. 

Specifically, PPARγ agonists exert beneficial effects in both diet-induced and alcohol-

induced fatty liver injury;63–65 these protective effects are largely attributed to increasing 

adiponectin production in adipocytes (66; see later). In contrast, studies in hepatocyte-

specific knockout mice indicate that PPARγ2 activation is detrimental to the liver in 

experimental alcoholic and non-alcoholic liver disease.15 This hepatic effect of PPARγ 
appears to be mediated via induction of SREBP-1c and other genes key to lipogenesis.

AMPK and SIRT1

The protein kinase complex, AMPK, provides another level of control over lipid 

metabolism. AMPK acts as a “sensor” of cellular energy status and helps to maintain 

homeostasis.67 In general, the downstream effects of AMPK activation are considered 

catabolic and favour ATP generation during energy depletion. For example, glycolysis is 

enhanced by AMPK. Signalling downstream of AMPK also inhibits ATP-consuming 
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processes, such as de novo lipogenesis.68 More specifically, AMPK phosphorylates a 

number of serine residues on both isoforms of ACC (ACC-1 and ACC-2), which inhibits 

their activity, even in the presence of citrate.69 In addition to blocking the activity of key 

lipogenic enzymes, AMPK indirectly decreases lipogenesis by phosphorylating ChREBP, 

thereby hindering its nuclear translocation and transcriptional activity.70 Likewise, AMPK 

directly phosphorylates SREBP-1c, which also causes an inhibition of this factor’s 

transcriptional activity.71 Ethanol has been demonstrated to inhibit AMPK phosphorylation, 

thereby inhibiting ACC, SREBP-1c and ChREBP.33,72,73,27 The mechanisms appear to 

involve activation of the dephosphorylase PP2A via aSMase-mediated ceramide 

signalling74,75 and and/or via inhibition of upstream activation pathways (e.g., LKB176).

SIRT-1 is an NAD+-dependent protein deactylase. Targets of its deactylase activity include 

several key players in SREBP-1 and ChREBP-1 signalling.77–80 SIRT-1 also deacetylates 

histones, namely H3 and H4, which could epigenetically increase expression of lipogenic 

genes (e.g., SREBF178). Ethanol exposure downregulates expression of SIRT-1,78,81 likely 

at multiple levels of control.78 Additionally, the deactylase activity of SIRT-1 is sensitive to 

the NADH redox state of the cell.82 Thus, the increased ratio of NADH: NAD+ in the more 

reduced state caused by ethanol metabolism may not only blunt FA oxidation, but also 

directly contribute to increased de novo lipogenesis by blunting SIRT-1 activity. AMPK and 

SIRT-1 share many overlapping targets of regulation, the former via phosphorylation and the 

latter via deacetylation. Indeed, it is thought that these overlapping functions are at least 

permissive to each other and that maximal inhibition of lipogenesis is only affected when 

both AMPK and SIRT-1 are activated.83 Thus, the fact that both are inhibited by ethanol 

implies that lipogenesis will be effectively disinhibited.

Molecular chaperones

Stress induced heat shock proteins (Hsps) such as Hsp90, Hsp70, and Hsp72 are ubiquitous 

and highly conserved, and can be induced by a wide variety of physiological and 

environmental insults.84 Heat shock factors (HSFs) upregulate a family of Hsp genes by 

binding to the heat shock-binding element (HSE).85–87 Hsps serve as chaperones that 

maintain the function of signalling molecules in lipid metabolism. For instance, Hsp90 alters 

lipid homeostasis by regulating SREBP-1.86

Hsps play pivotal pathophysiological roles in AFLD.87 Like other stress signals, ethanol 

consumption results in accumulation of stress proteins such as hepatic Hsp70, Hsp72, Hsp90 

and HSF-1 in human and experimental murine AFLD.87–97 For example, ethanol exposure 

induces hepatic Hsp90 in mice and contributes to the development of steatosis and liver 

injury via dysregulation of molecules important in lipid metabolism, including SREBP-1, 

SCD-1, FASN and ACC-1.97 Pharmacologic inhibition of Hsp90 ameliorates fatty liver 

injury during chronic or acute ethanol exposure in rodents. These studies have demonstrated 

the clear and direct regulation of hepatic lipid metabolism by Hsps in rodents in response to 

ethanol challenge. In addition to Hsps, sestrins are a family of stress-sensitive genes 

regulating lipid metabolism.97 The inhibitory effect of ethanol on sestrin 3 contributes to the 

development of steatosis by disrupting AMPK signalling, which leads to alterations in the 

genes involved in FA synthesis and oxidation.98 Future studies are needed to delineate the 
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precise role of Hsps and sestrins in lipid metabolism and its contribution to alcoholic 

steatosis.

Adiponectin and FGF-15 axis

Adiponectin is an adipose-derived hormone that circulates in the plasma as low, middle, and 

high molecular weight multimers.99,100 Adiponectin is a pivotal player in the regulation of 

lipid metabolism (Fig. 1). After reaching the liver, adiponectin transduces signals via 2 

major adiponectin receptors AdipoR1 and AdipoR2. Adiponectin inhibits lipid synthesis and 

stimulates FA oxidation, in part by activating SIRT1, AMPK, PGC-1α and PPARα, and 

suppressing SREBP-1.99,100 Fibroblast growth factor (FGF) 15 (human homolog FGF19), is 

a terminal small intestine (ileum)-derived hormone.101 Circulating FGF15/19 signalling 

regulates bile acid and lipid metabolism in the liver through activation of a receptor complex 

comprised of fibroblast growth factor receptor 4 (FGFR4)/β-Klotho.101

Ethanol impairs adiponectin synthesis and production in adipocytes and downregulates 

hepatic adiponectin receptors.39,44,97,100,102–106 Adiponectin elicits profound lipid lowing 

effects in rodents administered ethanol and in patients with AFLD.39,44,97,100,102–106 

Aberrant hepatic adiponectin signalling is associated with lower activities of AMPK and 

SIRT1 and elevated levels of downstream molecules such as SREBP-1, ACC and lipin-1β in 

the livers of ethanol-fed rodents and patients with AFLD.39,44,97,100,102–106 These findings 

all point to a critical link between altered hepatic adiponectin signalling and AFLD.

Adipose-derived adiponectin and gut-derived FGF15/19 associate with each other, with the 

endocrine adiponectin-FGF15/19 axis a pivotal regulator of lipid metabolism.107,108 Chronic 

or chronic-binge ethanol feeding concomitantly reduces adiponectin and FGF15/19 levels in 

mice.23,109,110 Remarkably, the concurrent elevation of adiponectin and FGF15 is associated 

with inhibition of the genes involved in lipid uptake (e.g. CD36/FAT) and activation of the 

genes (e.g. PPARα and medium chain acyl-CoA dehydrogenase) implicated in lipid 

oxidation and the presence of ethanol-induced steatohepatitis in Cisd1 knockout mice.23 

These findings suggest that endocrine adiponectin-FGF15/19 signalling protects against 

AFLD, at least in part by ameliorating the ethanol-induced abnormality in lipid metabolism.

Overall effect of ethanol exposure on lipogenesis

In summary, the net effect of ethanol is to activate (e.g., via ER stress, TNFα and/or hepatic 

PPARγ) de novo lipogenesis, while concomitantly inhibiting processes that block this 

response (e.g., AMPK and SIRT1). Although some of this net effect results from the direct 

action of ethanol on lipogenic enzymes (e.g., disinhibition of ACC by AMPK inhibition), it 

is primarily the result of ethanol activating the transcriptional activity of SREBP-1c and 

ChREBP. This explains why these transcription factors are activated even when ethanol 

decreases the canonical inducers of these pathways (see earlier). In NAFLD, a similar loss of 

negative regulation of SREBP-1c and ChREBP is hypothesised to contribute to de novo 
lipogenesis, even in the fasting state.111 Although the effect of ethanol on fasting de novo 
lipogenesis is less clear, a similar mechanism which contributes to the loss of diurnal 

regulation of lipid metabolism could be in play (see later).
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Effects of ethanol on mitochondrial β-oxidation: potential key players

Mitochondrial β-oxidation shortens FAs into acetyl-CoA subunits, which can either enter the 

citric acid cycle, or be used to synthesise ketone bodies.112 Although short-chain FAs can 

readily cross the outer and inner mitochondrial membranes, medium- and long-chain FAs 

are actively transported into the inner mitochondrial space via the carnitine shuttle. The rate-

limiting enzyme in this process is carnitine palmytoyl transferase I (CPTI), which is 

regulated both transcriptionally and post-transcriptionally. Ethanol causes several changes 

that can directly or indirectly impair β-oxidation.

Transcriptional inhibition of mitochondrial β-oxidation by ethanol

Despite a net increase in the supply of FAs for β-oxidation, there is no apparent induction of 

β-oxidation genes during alcohol exposure. The major mechanism of action underlying this 

effect is hypothesised to be the inhibition of peroxisome proliferator-activated receptor alpha 

(PPARα) signalling.113 PPARα is a nuclear hormone receptor that regulates expression of 

numerous genes involved in mitochondrial β-oxidation.114,115 Ethanol exposure decreases 

PPARα DNA binding activity, without decreasing PPARα expression;116 this effect is 

potentially mediated via decreasing protein levels of the retinoid X receptor (RXR), which 

heterodimerises with PPARα to bind to target DNA.116

Nutritional deficiencies

Alcoholics replace in excess of 50% of their total daily calories with ethanol.117 

Furthermore, alcohol consumption often causes malabsorption,118 which may further 

exacerbate nutrient deficiencies. As the name implies, the carnitine shuttle requires carnitine 

as a cofactor. Roughly 25% of carnitine is synthesised endogenously from lysine and 

methionine, with the remainder derived from dietary sources.119 Several experimental lines 

of evidence support the hypothesis that nutritional deficiencies may lead to functional 

carnitine deficiency, via restricting precursor supply and/or carnitine proper.120,121 In 

contrast, the impact of alcohol on circulating levels of carnitine metabolites is equivocal at 

this time.122–124 Nevertheless, alcohol consumption may cause nutritional deficiencies that 

potentially impair mitochondrial β-oxidation.

Inhibition of β-oxidation activity

As mentioned, the increase in the NADH:NAD+-ratio caused by alcohol metabolism directly 

inhibits mitochondrial β-oxidation. This effect is thought to be predominantly mediated by 

the NAD+ reducing enzyme, 3-hydroxy-CoA dehydrogenase, the final step in generating 

acetyl-CoA during β-oxidation.125 Furthermore, the disinhibition of ACC caused by 

impairing AMPK activity (see earlier) increases the carboxylation of acetyl-CoA to 

malonyl-CoA, which inhibits CPTI activity.73,126 Coupled to the activity of CPTI, voltage-

dependent anion channels (VDACs) are required to transport acyl-CoA esters through the 

outer membrane to the intermembrane space. Ethanol and acetaldehyde cause VDACs on 

hepatocyte mitochondria to close, which also impairs mitochondrial β-oxidation.127,128 

Lastly, ethanol exposure damages the mitochondria and leads to mitochondria dysfunction;
129 this impact on mitochondrial function can indirectly impair the ability of the organelles 
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to oxidise free FAs. This latter point is likely exacerbated by the impaired autophagy of 

damaged mitochondria that is associated with alcohol exposure.130

Effect of ethanol exposure on mitochondrial β-oxidation

In summary, the net effect of ethanol is to inhibit mitochondrial β-oxidation by blunting the 

induction of β-oxidation genes, even in the context of increased FA supply (e.g., via 

inhibition of PPARα signalling), through potential functional deficiencies in critical 

cofactors for β-oxidation (e.g., carnitine), directly (e.g., increased NADH malonyl-CoA), 

and indirectly (via VDAC closure and mitochondrial dysfunction). Ethanol’s myriad of 

inhibitory effects on mitochondrial β-oxidation likely explain the continued inhibition of this 

process during chronic ethanol consumption, even after the ratio of NADH:NAD+ appears to 

normalise.131

Effects of ethanol on cholesterol synthesis and secretion

Another mechanism by which lipids can accumulate in the liver is via alterations in the 

packaging of triglycerides into lipoproteins to form cholesterol. Some studies have indicated 

that chronic experimental ethanol impairs hepatic cholesterol synthesis,20,132 whereas others 

have shown no effect.133,134 However, few studies suggest that hepatic cholesterol synthesis 

is increased by alcohol. In this context, the lack of response of this system to the increase in 

lipid flux through the hepatocyte may contribute indirectly to the steatosis caused by ethanol 

consumption. The rate of cholesterol synthesis and release is controlled predominantly by 

the supply of apoliprotein B and the activity of microsomal triglyceride transfer protein 

(MTTP). A key regulator of both processes is hepatocyte growth factor (HGF) signalling via 

its receptor c-Met.135 The activation of hepatic nuclear receptor 4α (HNF-4α) is also 

hypothesised to play a key role in this process.136,137

Activation of c-Met by HGF stimulates VLDL synthesis in hepatocytes through upregulation 

of apoliprotein B synthesis.138 HGF administration has also been shown to enhance the rate 

of recovery from experimental alcohol-induced fatty liver and is associated with increased 

synthesis and secretion of apolipoprotein B and subsequent formation of VLDL.139,140 The 

protective effect of medium chain triglycerides20 and the PPARγ agonist pioglitazone132 are 

hypothesised to be mediated, at least in part, by enhancing the capacity of hepatocytes to 

synthesise cholesterol. Enhancing the post-translational formation of HGF has also been 

shown to be protective against ethanol-induced steatosis. For example, although the 

canonical role of plasminogen activator inhibitor-1 (PAI-1) is to inhibit fibrinolysis by 

plasminogen activators, such as urokinase plasminogen activator (uPA),141 uPA also 

activates pro-HGF to mature HGF.142,143 Indeed, genetic or pharmacologic inhibition of 

PAI-1 prevents ethanol-induced steatosis, in part, by enhancing HGF-mediated VLDL 

synthesis.133

It is highly likely that other processes impacted by alcohol exposure (e.g., ER stress48) 

contribute to altered/impaired VLDL synthesis during ALD. This area of research has been 

somewhat underappreciated partly because of the difficultly in studying cholesterol 

metabolism in intact organisms. The advent of more advanced stable isotope labelling 

approaches and lipidomic analyses may now make this possible.144
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Other mechanisms by which ethanol impacts lipid metabolism

Lipocalin-2

Lipocalin-2 is an important innate immune protein belonging to the lipocalin family.145 

Emerging evidences demonstrate a pivotal and multifunctional role of lipocalin-2 in the 

early stages of ALD and in alcoholic steatosis.23,42–44,109,146,147 Ethanol administration in 

mice or rats markedly increases liver and adipose lipocalin-2 expression and elevates 

circulating lipocalin-2 levels.23,42–44,109,146,147 In a cellular model of alcoholic steatosis, 

recombinant lipocalin-2 or over-expression of lipocalin-2 exacerbates the ethanol-induced 

fat accumulation, whereas knocking down lipocalin-2 prevents steatosis in hepatocytes 

exposed to ethanol.147 Consistently, global ablation of lipocalin-2 partially but significantly 

prevents experimental alcoholic fatty liver injury in mice.147 Lipocalin-2 also promotes liver 

inflammation after alcohol intake by mediating neutrophil infiltration into liver and 

prolonging neutrophil lifespan in rodents and humans.148 Mechanistically, abnormally 

elevated lipocalin-2 plays a causative role in the experimental cellular and animal models of 

alcoholic steatosis by disrupting signalling cascades involved in lipid metabolism, including 

the phosphoribosyltransferase-SIRT1 axis, chaperone-mediated autophagy, FA oxidation and 

endocrine metabolic regulatory hepatic FGF15/19 signalling.147

Autophagy

Macroautophagy (herein, referred to as autophagy) is a genetically programmed and highly 

conserved intracellular lysosomal degradation mechanism.149,150 Autophagy maintains 

normal cellular functions and regulates lipid homeostasis, including lipid droplet turnover 

and formation. Aberrant autophagic machinery is associated with the development and 

progression of AFLD.147,149–161 However, because of the complexity of autophagic 

machinery and differences in animal AFLD models, experimental findings are controversial. 

The induction of autophagy by acute ethanol treatment eliminates hepatic intracellular lipid 

droplets and reduces lipid accumulation in rodents.151–153 However, chronic ethanol 

administration at higher dosages inhibits autophagy, coupled with accumulation of hepatic 

triglycerides in mice.147,154,155

In summary, regardless of acute or chronic ethanol exposure in animals, autophagy serves as 

a cellular adaptive mechanism and protects against ethanol-induced detrimental effects on 

lipid metabolism by removing lipid droplets and/or damaged mitochondria.147,151–161 

Although the mechanisms by which ethanol regulates autophagic machinery are not fully 

understood, ethanol metabolism-induced oxidative stress is likely to participate in the 

activation of autophagy.149,150,158 In addition, regulation of autophagy by acute vs. chronic 

ethanol exposure may be determined by a gene transcription programme in liver.156,157

Circadian clock

The circadian clock regulates circadian rhythms and is maintained by a complex circuitry of 

transcriptional/translational regulatory loops at molecular levels.162,163 The circadian clock 

plays an essential role in orchestrating many physiological processes, including lipid 

metabolism. Derangements in the finely tuned circadian clock can contribute to 

dyslipidaemia and liver diseases.162,163

You and Arteel Page 10

J Hepatol. Author manuscript; available in PMC 2019 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Circadian clock disruption is an important contributor to aberrant lipid metabolism and 

ethanol-induced steatosis.164 Chronic ethanol exposure results in the disturbance of the 

hepatic circadian clock and time-of-day specific regulation of lipid homeostasis in rodents.
165–169 Large time-of day-dependent increases in triglyceride and cholesterol levels have 

been demonstrated in the livers of mice receiving chronic ethanol-administration.165–169 

Changes in the diurnal oscillations of core clock genes (Arntl, Clock, Cry1, Cry2, Per1, 

Per2) and clock-controlled genes (e.g. Dbp, Hlf, Noct, Npas2, Nr1d1, Tef) were observed in 

the steatotic livers of ethanol-fed rodents.165 Per1 knockout mice have lower levels of 

triglyceride synthesis genes following acute alcohol administration.166 Chronic ethanol 

administration to mice disrupts diurnal rhythms in hepatic lipid metabolism at gene and 

protein levels.167,168,170 Ethanol-mediated alterations in the hepatic NAD+/NADH ratio are 

also under clock control.167

The exact underlying mechanisms through which ethanol negatively impacts circadian 

clock-mediated lipid metabolism and contributes to steatosis, remain to be elucidated. 

Ethanol-mediated alterations in 2 key energy sensing metabolites, NAD + and ATP, may 

disturb the liver circadian clock by disrupting post-transcriptional modification events (e.g. 
acetylation, and ADP-ribosylation, and phosphorylation) mediated by the molecules 

involved in lipid metabolism (e.g. SIRT1, AMPK and poly ADP-ribose polymerase 1).
164,165,167 Further, deciphering the mechanisms that link ethanol, lipid metabolism and 

circadian responses will provide valuable insights for the development of innovative 

therapeutic strategies.

Emerging areas

There are several new areas, including long non-coding RNAs, pre-mRNA splicing, and gut 

micro-biota that deserve further investigation in the context of alcohol and steatosis.

Alternate mRNA processing

A regulatory role for microRNAs in AFLD has been suggested.171 For example, 

microRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by disrupting the 

SIRT1-lipin-1 axis.40 Whether and how ethanol-mediated alterations in specific microRNA 

expression are linked to dysregulated lipid metabolism in alcoholic steatosis will need 

further investigation. Long noncoding RNAs (lncRNAs) influence lipid homeostasis by 

controlling the lipid metabolism-related gene expression, either by base-pairing with RNA 

and DNA or by binding to proteins.172,173 Alterations in lncRNA expression have been 

linked to a number of liver diseases including ALD.173,174 It is worthwhile exploring 

whether, and how, ethanol disrupts hepatic IncRNAs and subsequently causes fatty liver 

injury. Alternative splicing of precursor messenger RNA (pre-mRNA) is a pivotal step in 

gene expression, eliminating the introns and ligating the exons to form mature mRNAs that 

can be translated into proteins.175,176 Defects in the pre-mRNA splicing machinery can 

impact on lipid homeostasis and contribute to steatosis.176–178 Ethanol exposure causes 

changes in pre-mRNA splicing.179 However, alternative pre-mRNA splicing is an 

underappreciated mechanism in the pathogenesis of AFLD.180 It will be of importance to 
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investigate whether aberrant splicing machinery contributes to ethanol-mediated 

dysregulation of lipid metabolism and alcoholic steatosis.

Microbiome

Growing evidence demonstrates the involvement of gut microbiota in the development and 

progression of ALD.180 The influences of gut microbiota on ethanol-mediated dysregulation 

of lipid metabolism and the relationship between gut microbiota and AFLD warrant future 

investigation. Undoubtedly, illuminating the mechanistic connections between these newly 

understood machineries and ethanol will provide a more cohesive picture of how ethanol 

deranges hepatic lipid metabolism and results in steatosis and liver injury.

Concluding remarks

Hepatic lipid metabolism is a series of complex processes that control influx and efflux of 

not only hepatic lipid pools, but also organismal pools. As mentioned, lipid homeostasis is 

usually tightly controlled by expression, substrate supply, oxidation and secretion that keeps 

hepatic lipid poolsrelatively constant. However, perturbations of any of these processes can 

lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic 

arms of the ‘thrifty genome’, they are maladaptive in the context of chronic fatty liver 

diseases.181,182 Ethanol is likely unique among toxins, in that it perturbs almost all aspects 

of hepatic lipid metabolism. This complex response is due in part to the large metabolic 

demand placed on the organ by alcohol metabolism, but also appears to involve more 

nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid 

response to alcohol abuse. Although transient steatosis is largely an inert pathology, the 

chronicity of ALD seems to require steatosis. Better and more specific understanding of the 

mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies 

to treat ALD and/or prevent its progression.
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Key point

The initial hepatic change caused by excessive alcohol consumption is steatosis, which 

occurs in almost all patients who consume harmful levels of alcohol.
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Key point

There is evidence that stimulation of fatty acid transporters, particularly CD36/FAT, has 

an important role in alcoholic fatty liver disease.

You and Arteel Page 24

J Hepatol. Author manuscript; available in PMC 2019 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key point

Ethanol activates de novo lipogenesis via a number of processes, leading to lipid 

accumulation in the liver.
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Key point

The net effect of ethanol is to inhibit mitochondrial β-oxidation, even in the context of 

increased fatty acid supply, reducing the utilisation of lipid.
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Key point

A number of emerging research areas deserve further investigation in the context of 

alcohol and steatosis, including long noncoding RNAs, pre-mRNA splicing and gut 

microbiota.
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Fig. 1. Steatosis in alcohol-related liver disease.
Representative pictures of liver biopsies from patients with ALD and different degrees of 

steatosis. In all cases macro- and microsteatosis are present. Photomicrographs courtesy of 

Dr. John Woosley, University of North Carolina at Chapel Hill.
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Fig. 2. Intricate regulation of lipid metabolism, and the impact of ethanol exposure.
The liver plays a central role in lipid metabolism for the entire organism. Hepatic free FAs 

are not only directly synthesised (lipogenesis), but are also actively taken up by the liver. 

This pool of FAs can either be used for energy (FA oxidation), membrane synthesis or for 

esterification into triglycerides by hepatocytes. Triglycerides are subsequently packaged as 

VLDLs to be secreted. There is intricate cross-talk between these systems and hepatic lipid 

metabolism is controlled by a complex interplay of hormones, nuclear receptors, 

intracellular signalling pathways and transcription factors. Alcohol directly and indirectly 

impacts numerous aspects of hepatic lipid flux that ultimately leads to lipid accumulation. 

FA, fatty acid; VLDL, very low-density lipoprotein.
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