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Abstract

Holography is the most promising route to true-to-life 3D projections, but the incorporation of 

complex images with full depth control remains elusive. Digitally synthesised holograms1–7, 

which do not require real objects to create a hologram, offer the possibility of dynamic projection 

of 3D video8,9. Extensive efforts aimed 3D holographic projection10–17, however available 

methods remain limited to creating images on a few planes10–12, over a narrow depth-of-

field13,14 or with low resolution15–17. Truly 3D holography also requires full depth control and 

dynamic projection capabilities, which are hampered by high crosstalk9,18. The fundamental 

difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form 

of a hologram without letting projections at different depths contaminate each other. Here, we 

solve this problem by preshaping the wavefronts to locally reduce Fresnel diffraction to Fourier 

holography, which allows inclusion of random phase for each depth without altering image 

projection at that particular depth, but eliminates crosstalk due to near-orthogonality of large-

dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth 

control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 

1000 image planes simultaneously, improving the state-of-the-art12,17 for number of 

simultaneously created planes by two orders of magnitude. While our proof-of-principle 

experiments use spatial light modulators, our solution is applicable to all types of holographic 

media.
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Holography was originally invented to bypass limitations of lens aberrations to electron 

microscopy19,20, but it was its optical implementation that captured the imagination of the 

general public as means for true-to-life recreation of 3D objects21,22. Interest in this 

hitherto elusive goal is rapidly intensifying with the advent of virtual and augmented 

reality23,24. A hologram comprises a holographic field and a physical medium to store it. 

There is steady progress in improving the physical medium, using metamaterials2–4, 

graphene25, photorefractives26, stretchable materials12, silicon6, improving metrics such as 

viewing angle17, pixel size25, spectral response25, and reconfigurability12, while 

deformable mirrors17 and spatial light modulators (SLMs)22 are still the most commonly 

used. The key to creating realistic-looking projections, independent of the media, is the 

hologram field itself, which is often digitally synthesised: Computer generated holograms 

(CGHs)1–7 do not require real objects to create the hologram, which is essential for 

dynamic holography24. Both Fourier and Fresnel holography have been used to create 

CGHs. Fourier holograms based on established methods27–28 such as the Kinoform 

technique27 can project only around the focal plane of a lens, limiting them primarily to 

microscopy applications11. In contrast, Fresnel holography can project arbitrarily large 

images with 3D depth29. The first 3D Fresnel CGHs were based on the ping-pong 

algorithm10, which works only for two-plane projection. Alternative methods have been 

proposed30, but they are computationally heavy, do not project deep 3D scenes and cannot 

be implemented on common holographic media. A popular approach is to use look-up 

tables15,22, which is limited to reconstructing simple, low-resolution images. Projection 

quality can be improved with cascaded diffractive elements31, which is a costly and overly 

complicated method. While projections of up to several tens of planes have been 

demonstrated17, it was only for a single dot in each plane and could not be obtained 

simultaneously, but had to be created sequentially. For anything more complex than a single 

dot, earlier demonstrations have been limited to a few image planes, such as that of 3 letters 

in ref. 11. In all of these approaches, simultaneous multiplane image projection remains 

extremely limited by high crosstalk, resulting in projections that are too flat, too blurry or 

too low resolution and can only be viewed from within a tiny angular range.

To approximate a genuinely 3D object, a large number of images must be projected to 

successive planes (Fig 1a) and all these images must be embedded into the hologram. We 

use a succession of lenses, implemented as Fresnel zone plates (FZPs), to focus each image 

to a particular plane. The first key step is to shape the wavefronts to reduce the Fresnel 

diffraction to Fourier transform locally at each image plane, so that construction of a single 

Fresnel hologram comprising an arbitrary number of planes is reduced to a trivial 

superposition operation (Fig. 1b). The second step is to add random phase at each image 

plane to suppress crosstalk: An image can be regarded as an N-dimensional vector, where N 
is the number of pixels (order of 106). Random vectors become asymptotically orthogonal in 

the limit of N → ∞ (Fig. 1c). This property, which is due to the central limit theorem and 

the law of large numbers, leads to the elimination of any coherent trace of the images on 

each other during hologram reconstruction, virtually eliminating crosstalk from the 

reconstructed images (Fig. 1d).

We preshape the wavefront at each foci not only to allow for superposition of many 

holograms to form a single one, but also to prevent the random phase that we add from 
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distorting the images to which they are added. This would be nearly automatic if the 

reconstructed image would have a flat wavefront at its focal plane, as would be for Fourier 

holography, but Fourier holography is limited to the far field. Fresnel holograms can operate 

at virtually any distance but the propagation kernel is parabolic. We preshape the wavefront 

of the source hologram with a parabolic phase such that it becomes locally flat at each foci, 

much like prechirping of an ultrashort laser pulse entering a dispersive medium, where it 

accumulates a parabolic phase shift, only to be chirp free at a specific propagation distance. 

Consider a Fresnel hologram that projects a complex field distribution,

W x, y, z = e
j2πz

λ

jλz e
j π
λz x2 + y2

∬
−∞

∞
H ξ, η e

j π
λz ξ2 + η2

e
− j2π

λz xξ + yη
dξdη, (1)

where z is the distance between the image and hologram, (x, y) and (ξ, η) are the spatial 

coordinates at the image and hologram planes, respectively, H(ξ, η) is the complex field 

distribution of the hologram, and λ is the wavelength1. The main difference from a Fourier 

hologram is the presence of the term, e
j π
λz ξ2 + η2

. If this term can be cancelled at a specific 

plane z = z0, this would correspond to reducing Fresnel diffraction to a Fourier transform at 

that plane. To this end, we construct the hologram, H(ξ, η), in the form of 

H ξ, η = F ξ, η e
− j π

λz0
ξ2 + η2

, where F(ξ, η) is the Fourier hologram of the product of the 

desired image, U(x, y), and a random phase, e−jϕ(x, y), which is added to suppress crosstalk 

(see Methods for details). The appended quadratic term counteracts the effect of the 

propagation kernel, such that, at the particular position of z0, the projected field is

W x, y, z0 = e
j2π

λ z0

jλz0
e

j π
λz0

x2 + y2

∬
−∞

∞
F ξ, η e

− j 2π
λz0

xξ + yη
dξdη, (2)

which is similar, in form, to a Fourier hologram. For maximum generality and best results, 

F(ξ, η) should be complex. However, we restrict ourselves to using phase-only holograms, 

so a single SLM is sufficient for experimental realisation. The points with phase of nπ for 

e
− j k

2 f ξ2 + η2
 correspond to concentric circles with radii, rn = n f λ, which closely 

approximate a FZP of focal length f, for integer n. Direct superposition of a phase-type FZP 

on a phase-type Fourier hologram will generate a single-plane, phase-type Fresnel hologram, 

where the focal length of the FZP can be used to controllably translate the image to any 

distance z beyond the Talbot length (Fig. 1b). Then, construction of a single Fresnel 

hologram with M multiplane projections is straightforward: 

HM ξ, η = ∑
s = 1

M
Fs ξ, η e

− j π
λzs

ξ2 + η2

, where Fs(ξ, η) are the Fourier holograms of the images 

to be projected at z = zk. This way, the otherwise extremely complicated procedure of 
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packing many images into a single Fresnel hologram becomes a trivial superposition 

operation. The final Fresnel hologram is

HM ξ, η
multiplane hologram

= ∑
s = 1

M
{e

− j2π
λ z f

jλz f
∬

−∞

∞
Us x, y

intended image
e

− jϕs(x, y)

random phase
e

j 2π
λz f

xξ + yη
dxdy

}e
− j π

λzs
ξ2 + η2

Fresnel zone plate
.

(3)

After lengthy, but straightforward calculations, the image projected by this hologram at each 

of the image planes reduces to

W′ x′, y′, zi = k(Ui′ x′, y′ e
− jϕi′(x′, y′)

+ j
π ∑

s = 1
s ≠ i

M
Ys x′, y′ ), (4)

where k is a constant, Ys x′, y′ ≡ Us′ x′, y′ e
jϕs′ (x′, y′)

⊛ e j(x′2 + y′2), the sign ⊛ denotes 

convolution, and x′ and y′ are normalised versions of x and y. The primed terms, Ui′ x′, y′ ,

ϕ′(x′, y′) and W′(x′, y′, zi), are functions of the normalised coordinates, but remain 

otherwise identical in form and amplitude. The 3D image formed on any conventional 

detector is given by the light intensity, which is proportional to,

W′ x′, y′, zi
2 = k 2( Ui′ x′, y′ 2

intended image
+ 1

π2 ∑
s = 1
s ≠ i

M
Ys x′, y′ 2

+ j
π ∑

s = 1
s ≠ i

M
Ui′ x′, y′ * e

jϕi′(x′, y′)
Ys x′, y′ − Ui′ x′, y′ e

− jϕi′(x′, y′)
Ys x′, y′ *

+ 1
π2 ∑

s = 1
s > m

M
∑

m = 1

M
Ys x′, y′ * Ym x′, y′ + Ys x′, y′ Ym x′, y′ * ) .

(5)

Here, the first term, Ui′ x′, y′ 2, corresponds to perfect projection of the intended image. The 

second term is a sum of M − 1 individually as well as mutually random images due to the 

convolution of the random phases and parabolic wavefronts; in practice, they add white 

noise to the ideal image and with increasing M, their contribution, already suppressed by the 

factor of π2, regresses further to the mean by the central limit theorem. The third and fourth 

terms are sums over order of M and M2 terms, respectively, and each is in a form such that 

their average contribution over the image is in similar form as the orthogonality of two 

images. This contribution is ensured to be almost surely zero in the limit of N → ∞ by the 
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orthogonality of high dimensional mutually random vectors. Furthermore, these terms are all 

mutually independent and of zero expected values, and their summations get closer to zero 

by the central limit theorem for large M. Overall, the final result for any image plane, i, is 

the ideal image, |Ui(x, y)|2 and a small amount of white noise. Practically (in all examples 

considered, N is 105 – 107), crosstalk is completely eliminated.

The algorithmic implementation of our method is shown in Fig. 2a. In step 1, we start with a 

stack of target images that form the desired 3D projection. Each image is passed through a 

preprocessing stage, where random phase is added. In step 2, each image goes through a 

number of iterations to generate its Fourier CGH (kinoform). We use an iterative Fourier 

transform algorithm (IFTA) to generate a set of kinoforms, Fi(ξ, η), each to be used for 

projecting an image plane of the targeted 3D projection. We use the adaptive additive 

IFTA32, which fast enough for real time applications. In step 3, each Fourier CGH is 

superposed with a phase FZP, to shift its projection to the focal plane of the corresponding 

FZP. In step 4, the translated holograms are added in complex form to create a single 

complex Fresnel hologram. After the complex superposition, the phase of the resulting sum 

is used as the final hologram.

We first show a set of simulation results for simultaneous projection of 1000 images to their 

respective planes from a single 4000 × 4000-pixel 3D hologram. Light is able to focus/

defocus repeatedly along the propagation axis to form high-fidelity images with minimal 

crosstalk (Fig. 2b and Supplementary Video 1). Next, as a demonstration of how the front, 

back and many in-between layers of a complex 3D object can be represented through 

simultaneous projection of multiple planes, we show a 3D spacecraft that can be viewed 

with the correct perspective from any direction over the full 4π solid angle (Fig. 2c and 

Supplementary Video 2). The simulation assumes a medium that emits or scatters light only 

at foci (for instance, ref. 33 or Supplementary Fig. 1). We also demonstrate the possibility of 

projecting much more complex images from a single Fresnel hologram (Fig. 2d and 

Supplementary Video 3). As expected, we find that larger hologram sizes in terms of 

geometry and pixel-count lead to lower crosstalk between adjacent planes, increasing the 

number of separable planes. This increased axial resolution is enabled by FZPs, each acting 

like an imaging lens, extending over the entire hologram. Larger hologram sizes enable 

higher numerical aperture lenses, leading to a smaller depth-of-field at each plane, which 

allows for projecting at a higher number of planes. The performance of 3D holograms in 

terms of the number of projected planes and image quality is further discussed in Methods. 

Multiplane projection achieved with our method is applicable at any distance beyond the 

Talbot zone, and no physical lens is required to project the images. Thus, the method can be 

used to project over a large depth of field at nearly arbitrarily separated planes, e.g., to depict 

a closed-surface 3D object using a single hologram (Fig. 1b, Fig. 2c and Supplementary 

Video 2).

We performed a set of experiments to prove the concept using different laser wavelengths 

and SLMs (Fig. 3a and Methods). The SLM used in the experiments limited the holograms 

to 512 × 512 pixels. We first demonstrate two-plane reconstruction from a single Fresnel 

hologram, projecting grayscale images that are high resolution in terms of the number of 

active (non-black) pixels (Fig. 3b). Next, we show a four-plane projection from a single 
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Fresnel hologram (Fig. 3c). Finally, we demonstrate the ability to project images over a large 

number of planes (Fig. 3d). This projection, encompassing 11 images of on-axis letters, 

constitutes the highest number of planes experimentally imaged from a single Fresnel CGH. 

Altogether, these results highlight the exceptional flexibility achieved in the design of 3D 

Fresnel CGHs. A second group of experiments demonstrate the applicability of our method 

to low-cost 3D projection. We used a green laser and a liquid crystal on silicon (LCoS) SLM 

that we extracted from a very low-cost consumer-grade projector. The results of the 3D 

display prototype demonstrating large-volume projection are shown in Supplementary Fig. 

1. The hologram was designed to project 3 back-to-back images at different depths. We also 

implemented a dynamic display by animating 3 videos simultaneously, which were 

projected on-axis, without lateral shift (Supplementary Video 4).

The results reported here are far from fundamental limits imposed by physical optics; the 

quality and number of image planes scale up linearly with the number of the pixels available 

from the holographic media, accompanied by a merely linear increase in required 

computation time. These two favourable scaling properties are direct consequences of 

elimination of crosstalk and our wavefront engineering trick that reduces Fresnel diffraction 

locally to Fourier transforms respectively. SLMs with much higher numbers of pixels than 

those we have used in our experiments have been available since 200934, which suggests 

that more dramatic demonstrations are already possible. Our method can be used for 

realtime, video-rate dynamic holography even with current computer technology (see 

Methods). Such realtime capability can conceivably be used to incorporate occlusion effects 

(Supplementary Information). While our proof-of-concept results are targeted towards 

various 3D display applications, including volumetric displays35, in diverse scenarios, such 

as medical visualisation or air traffic control, our method can find use in a wide range of 

applications, including modern electro-optical devices36, microscopy11 and laser-material 

interactions. Just as holography was invented for electron microscopy, but made impact to 

optics, given the rich history of judicious use of random fields in optics37 and the generality 

of the mathematical result that our approach is based on, there may be exciting applications 

to near-zero epsilon optics38 and imaging with flat optics2.

Methods

Experimental setup

The experimental setup (Fig. 3a), in the case of IR illumination, includes a laser source (Yb-

fibre laser operating at 1035 nm, 300 mW), a collimator to nullify the divergence of laser 

beam and enlarges the beam spot size to fill the hologram displayed on SLM completely (~1 

cm diameter), a reflective liquid-crystal-on-silicon spatial light modulator (Hamamatsu, 

X10468-03) with 800 × 600 pixels, 20 μm pixel size, and a digital camera (Canon, 60D). 

The SLM reflects the collimated, linearly polarised laser beam after modulating it with the 

Fresnel CGH. The beam is then optionally (used only in Fig. 3b-c) expanded with a 3× 

telescope to block the zero-order diffraction, and then impinges on a screen. The hologram 

size is chosen to be 512 × 512 pixels, and the phase quantisation is set to 202 levels. In case 

of visible illumination (Supplementary Fig. 1 and Supplementary Video 4), the setup 

remains the same except for two changes. First, the wavelength of the laser is converted to 
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green (517 nm) second harmonic generation in a BBO crystal. Second, the SLM is replaced 

with a visible one taken from a very inexpensive LCoS projector (LG, PH150G). A 3× 

telescope is used (Supplementary Fig. 1 and Supplementary Video 4). The distances at 

which images can be projected and their sizes depend on the SLM size and its pixel 

dimensions, both of which can be scaled up with larger SLMs and smaller pixels, 

respectively.

Simulations of 3D Fresnel holograms

The simulations of Fresnel hologram are carried out with the Fresnel diffraction equation. In 

order to achieve clear images, the zero order was filtered with a simulated 4f lens system. 

This corresponds to masking a small central section of the image spectrum, and then 

calculating the final image with the inverse Fourier transform of the spectrum.

Performance characterisation of 3D Fresnel holograms

Performance of 3D Fresnel CGHs depends on pixel size and pixel density of the hologram, 

modulation type, illumination wavelength, and the amplitude and phase distributions at all 

image planes. In addition, practical limitations can effect performance, such as experimental 

limitations in forming images in the vicinity of a reflection-type hologram. Therefore, 

finding an exact analytical expression involving all relevant parameters would be extremely 

complicated. Instead, we choose two metrics, which we believe still provide a good insight 

into the performance of 3D Fresnel holograms. The first is the root-mean-square error 

(RMSE), and the second is depth-of-field (DoF). The former is based on image quality, and 

is a measure of similarity between the source images and projected images at each plane. 

The latter is based on axial resolution, and is related to the maximum number of separable 

planes for a given image quality.

The RMSE is first calculated for each image at its corresponding plane, and the results from 

all planes are then averaged to provide a collective quality metric for a 3D hologram. This 

value is used to evaluate how the projection quality changes as a function of the number of 

separate planes. For instance, the RMSE of a set of rotating back-to-back cubes is given in 

Supplementary Fig. 2, showing that error rises linearly with increasing projection planes. 

For a given error tolerance expressed in RMSE, the number of image planes can be 

truncated.

In parallel, DoF is used for evaluating the axial resolution. DoF is a metric used widely in 

photography in identifying the maximum distance between two separated objects at which 

the objects still appear acceptably sharp. Thus, crosstalk between images can be evaluated 

with DoFi at each plane (Supplementary Fig. 3). Minimising crosstalk in multiplane 

projection is critical, since an image suffering significant crosstalk from neighbouring planes 

can not accurately perform as a slice of a 3D projection.

We derive a DoF equation using two expressions, one for Rayleigh range of a FZP, and the 

other for spatial relationships between the sizes of the hologram and its image. We arrive at 

the following expression for depth-of-field at plane i, DoFi (Supplementary Fig. 3)
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DoFi ∝ λ[ 1
nh

zi
dξ ]

2
,

where zi is the focal length for image plane i, λ is the illuminating wavelength, dξ is pixel 

size of the hologram, and nh × nh is the resolution of Fresnel hologram. This expression 

provides a reasonably accurate estimation of the effect of parameters included in it. For 

instance, we would expect that for two similar 3-plane projections, each with a different 

focal distance for the central plane, then the crosstalk suffered by the side images should be 

similar, given that the ratio of consecutive image separations is equal to the square of the 

ratio of central image locations. Supplementary Fig. 4 shows a simulation confirming this 

estimate.

We further see that increasing the hologram size (nh × nh) would enable projecting to a 

higher number of image planes. This can also be understood from the following perspective: 

A FZP act like a lens, thus larger FZP sizes allow larger numerical apertures (NA). A larger 

NA leads to tighter focus, and similar to the case in optical lenses, we expect the depth-of-

field for each projection plane to be reduced. In parallel, one expects reduced crosstalk, 

since the images defocus faster when removed from the focal plane of FZPs. Thus the axial 

resolution (i.e., the number of separable planes) can be increased simply by increasing the 

hologram pixel number. We note that one should not confuse the depth-of-field of a slice of 

the 3D projection, discussed above in analogy to photography, with the depth-of-field of the 

entire projection. The latter is meant to describe the depth of the entire 3D projection. In this 

sense, it is analogous to the depth-of-field term described for the holo-video camera in ref. 

29.

Holograms used in the experiments were of 512 × 512 pixels. If a higher resolution SLM 

was available, for instance, an 8k SLM over which 4000 × 4000 pixel holograms are 

useable, then we expect the DoFi values to be reduced by a factor of 60. This would allow 

significantly higher axial resolutions and many more image layers. We demonstrate this 

prediction by propagating such a high-resolution 3D Fresnel hologram (4000 × 4000 pixels) 

using the Fresnel equation. The simulation results shown in Supplementary Fig. 5 show the 

odd-numbered images from among the 200 images that are projected directly back-to-back 

using a single 3D Fresnel CGH.

The 3D projections in simulations are in good agreement with the experimental results. For 

instance, a set of representative simulations are compared with experiments in 

Supplementary Fig. 6. Simulations of a single 3D hologram which projects 2 high-resolution 

portraits to directly back-to-back planes are given in Supplementary Fig. 6a. In comparison, 

the corresponding experiments shown in fig. Supplementary Fig. 6b are in good agreement 

with the simulations. The hologram is of 512 × 512 pixels and uses 20-μm pixels in both 

experiments and simulations.
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Scaling of the number of planes with number of SLM pixels

We observed a linear scaling between the number of planes and number of pixels of the 

SLM. In order to see this, we assumed a distance between consecutive images as, zi+1 = zi + 

γ(DoFi + DoFi+1), where γ is an empirical parameter chosen to minimise crosstalk. This 

recursive relation can be directly used to calculate the image positions. The number of 

projected planes for given constants of γ, z1, and dξ is calculated, resulting in linear scaling 

of maximum number of planes with the total number of pixels (Supplementary Fig. 7), 

preserving the image quality (RMSE ~ 0.24).

Computation time and possibility of realtime calculations for video-rate holography

The most time consuming step in our calculations is Fourier transform, which is well 

optimised for parallel computation, including for graphics processor unit (GPU) based 

computation. Furthermore, in case of video-rate holographic projections, it will rarely be the 

case that every part of the holographic image will change from one frame to the next. Much 

more commonly, changes will be limited to parts of the hologram. In that case, thanks to its 

superposition-based multiplane construction, large parts of our calculation would remain 

unchanged and would not need to be recalculated. For instance, if the canopy of the 

spacecraft in Fig. 2c opens up with the rest of craft remaining unchanged, only parts of the 

hologram describing the canopy will have to be recalculated. This unique property of our 

algorithm is similar to a technique commonly used in most compression algorithms and 

further eases requirements on realtime calculations. The typical calculation time for the 

experimentally demonstrated 3D holograms presented here is about 22 seconds using a 

single-CPU computer (Intel Core i7 4790K). A speed-up of 275 fold is achieved using a 

modern GPU, resulting in a 80 ms calculation time for experimental projection (Nvidia 

GeForce GTX980). We note that already available advanced GPUs, such as Nvidia Tesla 

v100 will allow another 10-fold speed-up. Further, these calculations were performed using 

Matlab for its convenience. Implementation of our algorithm in a low-level programming 

language, such as C, would likely result in at least 2-fold improvement. The projected 

calculation time with these improvements is likely to allow video rates of 20 Hz. More 

specialised hardware, such as field-programmable gate-array platform can improve 

calculation times further. Given the past rate of development of computational hardware, 

calculation time and cost appears unlikely to pose a limitation to realtime generation of 3D 

dynamic holograms at video rates using our approach.

Orthogonality of large random vectors

The orthogonality of large random vectors can be proved through several different 

approaches, including the waist concentration theory39. Here, we follow a simple approach 

based on the law of large numbers40, and the central limit theorem.

Assume X and Y to be non-equal large uniformly random vectors with equal size of N, 

which is large. After normalisation the vectors become X / ‖ X ‖ and Y / ‖ Y ‖, where ‖ X ‖ 
and ‖ Y ‖ are the lengths of X and Y respectively. The inner vector product of the two 

vectors is given as,

Makey et al. Page 9

Nat Photonics. Author manuscript; available in PMC 2019 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



IP = < X, Y >
X . Y

.

By the law of large numbers, X / N 1 and Y / N 1 with high probability for large N. 

Large N also yields < X, Y > / N 1 according to the central limit theorem. The inner 

product scales with 1/ N, showing that large random vectors rapidly converge to zero, 

rendering these vectors orthogonal. Similarly in multi-plane Fresnel holography, we see that 

adding random phase to source images renders them orthogonal, and reduces the crosstalk 

between their corresponding projected images (Supplementary Fig. 8).

Orthogonality of two images

We begin by cautioning the reader that use of a single quantity to characterise the cumulative 

amount of crosstalk between two images, each comprising of large numbers of elements, 

would, inevitably, prove insufficient for the most general use. Nevertheless, orthogonality, 

defined through the inner product, works as an excellent measure for a wide range of 

images, from the simple, complementary geometric patterns to human portraits 

(Supplementary Fig. 8). We calculate this quantity as follows: The images, together with 

their phase, are represented in complex form and are treated as vectors. The baseline of each 

vector is corrected by its average value, and each is normalised by its length. Then we 

simply calculate the inner product as,

IP =
x1e

jα1y1e
− jβ1 + x2e

jα2y2e
− jβ2 + … + xNe

jαNyNe
− jβN

X Y
,

where the vectors are X = (x1ejα1, x2ejα2, .. , xNejαN), and Y = (y1ejβ1, y2ejβ2, .. ,yNejβN). N 
is the total number of pixels in each image.

Theoretical calculations

The first step is to configure the hologram so as to produce a flat “propagation kernel” even 

though we are in the Fresnel regime, such that the projected field magnitude will correspond 

to the desired 2D image at a given z. This opens the door to adding a pure phase term to 

each plane in a way that it does not alter the image formed at that plane. This is possible 

because an image will be formed by detecting the light intensity, which is proportional to the 

absolute square of the field, an operation, which drops any pure phase contributions. If the 

projection W(x, y, z) is of the form W(x, y, z) = WA(x, y, z)ejΦ(x,y,z), then the image formed 

will be proportional to |WA(x, y, z)|2.

We start by recalling the Fresnel and Fourier hologram equations (ref. 1). We consider the 

Fourier hologram, F(ξ, η), of an image U(x, y), which is additionally multiplied by a 

random phase, e−jϕ(x,y), to suppress crosstalk, as will be shown below. The physical 

significance of being in the Fourier (Fraunhofer) regime is that U(x, y)e−jϕ(x,y) is the field 

that would be formed in the far field, at the plane z = zf,
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F ξ, n = − e
− j2π

λ z f

jλz f
∬

−∞

∞
U x, y e− jϕ x, y e

j 2π
λz f

xξ + yη
dxdy . (6)

Here, zf ≫ π(ξ2 + η2)/λ, which is the Fraunhofer condition. Similarly, the image formed by 

such a Fourier hologram in the far field is given by

U x, y e− jϕ x, y = e
j2π

λ z f

jλz f
∬

−∞

∞
F ξ, η e

− j 2π
λz f

xξ + yη
dξdη . (7)

The Fresnel hologram is more flexible in that it can project an image, W(x, y, zi), at some 

arbitrary plane, z = z0, and is given by

H0 ξ, η = − e
− j2π

λ z0

jλz0
e

− j π
λz0

ξ2 + η2

∬
−∞

∞
W x, y, z0 e

− j π
λz0

x2 + y2

e
j 2π
λz0

xξ + yη
dxdy . (8)

Similarly, the image to be projected at a plane z = z0, W(x, y, z0), by a Fresnel hologram, 

H(ξ, η), is given by

W x, y, z0 = e
j2π

λ z0

jλz0
e

j π
λz0

x2 + y2

∬
−∞

∞
H ξ, η e

j π
λz0

ξ2 + η2

e
− j 2π

λz0
xξ + yη

dξdη . (9)

The main difference of the Fresnel hologram (equation (8)) from a Fourier hologram 

(equation (6)) is the presence of a parabolic wavefront, which can be cancelled, albeit only 

for a specific plane, if we construct the hologram in the form,

H ξ, η = F ξ, η e
− j π

λz0
ξ2 + η2

, (10)

which projects an image, W(x, y, zi), at a plane z = z0. As explained in the main text, with 

this arrangement, a simple superposition operation is sufficient to construct a multiplane 

Fresnel hologram that projects a different image to each plane,

HM ξ, η = ∑
s = 1

M
Fs ξ, η e

− j π
λzs

ξ2 + λ2

. (11)
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Here, M is the total number of image planes, Fs(ξ, η) is the Fourier hologram of the image 

to be projected to a plane at z = zs. The final Fresnel hologram is

HM ξ, η
multiplane hologram

= − ∑
s = 1

M
{e

− j2π
λ z f

jλz f
∬

−∞

∞
Us x, y

intended image
e

− jϕs x, y

random phase
e

j 2π
λz f

xξ + yη
dxdy

}e
− j π

λzs
ξ2 + η2

Fresnel zone plate
.

(12)

We emphasise that the random phase, e−jϕs(x, y), is different and mutually independent for 

each plane, s. Next, we want to calculate the image projected by this hologram at an 

arbitrary plane, i, and demonstrate how the addition of the random phase does not distort the 

image it is added to, but that the random phase added to the other images suppress their 

crosstalk.

The image formed by this hologram at an arbitrary plane, zi, is given by

W(x, y, zi) = e
j2π

λ zi

jλzi
e

j π
λzi

(x2 + y2)

∬
−∞

∞
HM(ξ, η)e

j π
λzi

(ξ2 + η2)
e

− j 2π
λzi

(xξ + yη)
dξdη, (13)

or using equation (11),

W(x, y, zi) = e
j2π

λ zi

jλzi
e

j π
λzi

(x2 + y2)

∬
−∞

∞
∑

s = 1

M
Fs(ξ, η

)e
− j π

λzs
(ξ2 + η2)

e
j π
λzi

(ξ2 + η2)
e

− j 2π
λzi

(xξ + yη)
dξdη .

(14)

We now separate the sum into terms s = i and s ≠ i, and evaluating e
j
π(zs − zi)

λzizs
(ξ2 + η2)

 in the 

limit of zs → zi,

W x, y, zi = e
j2π

λ zi

jλzi
e

j π
λzi

x2 + y2

∬
−∞

∞
Fi ξ, η e

− j 2π
λzi

xξ + yη
dξdη + e

j2π
λ zi

jλzi
e

j π
λzi

x2 + y2

∬
−∞

∞
∑

s = 1
s ≠ i

M
Fs ξ, η e

j
π zs − zi

λzizs
ξ2 + η2

e
− j 2π

λzi
xξ + yη

dξdη .

(15)
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Using the relation ∬−∞

∞
Fi ξ, η e

− j 2π
λz f

xξ + xη
dξdη = jλz f e

− j2π
λ z f Ui x, y e

− jϕi x, y
 (from 

equation (6)) to simplify the first term, interchanging the order of the summation and the 

integral transform for the second term, and making the transformations, f x = ξ
λz f

, f y = η
λz f

,

to cast the integral transform into an inverse Fourier transform (see ref. 1), we obtain,

W x, y, zi =
z f
zi

e
j2π

λ zi − z f e
j π
λzi

x2 + y2

Ui x, y e
− jϕi x, y

+
λz f

2

jzi
e

j2π
λ zie

j π
λzi

x2 + y2

∑
s = 1
s ≠ i

M ∬
−∞

∞
Fs λz f f x, λz f f y

e
j
πλz f

2

zizs
zs − zi f x

2 + f y
2

e
− j2π x f x + y f y d f xd f y .

(16)

Now, let’s use the following relations, where ℱ denotes Fourier transform,

Fs λz f f x, λz f f y = −e
− j2π

λ z f

jλz f
∬

−∞

∞
U x, y e− jϕ x, y e

j2π x f x + y f y dxdy

= −e
− j2π

λ z f

jλz f
ℱ{Us x, y e

− jϕs x, y
},

(17)

which is obtained by applying the same transformation above on equation (6) and using

e
j
πλz f

2

zizs
zs − zi f x

2 + f y
2

= −
jzizs

λz f
2 zs − zi

ℱ{e

− j
πzizs x2 + y2

λz f
2 zs − zi }, (18)

we rewrite the terms above as Fourier transforms themselves.
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W x, y, zi =
z f
zi

e
j2π

λ zi − z f e
j π
λzi

x2 + y2

Ui x, y e
− jϕi x, y

+
λz f

2

jzi
e

j2π
λ zie

j π
λzi

x2 + y2

× ∑
s = 1
s ≠ i

M ∬
−∞

∞
(e

− j2π
λ z f

jλz f
ℱ{Us x, y e

− jϕs x, y
})(

− jzizs

λz f
2 zs − zi

ℱ{e

− j
πzizs x2 + y2

λz f
2 zs − zi }

)e
− j2π x f x + y f y d f xd f y

(19)

W x, y, zi =
z f
zi

e
j2π

λ zi −z f e
j π
λzi

x2 + y2

Ui x, y e
− jϕi x, y

+ j
λ ∑

s = 1
s ≠ i

M zs
z f zs − zi

e
j2π

λ zi −z f e
j π
λzi

x2 + y2

× ∬
−∞

∞
ℱ Us x, y e

− jϕs x, y
ℱ{e

− j
πzizs x2 + y2

λz f
2 zs − zi }e

− j2π x f x + y f y d f xd f y .

(20)

Thus, each element of the second term is in the form of the inverse Fourier transform of the 

product of Fourier transforms of two functions. Using the convolution property, they can be 

replaced by the Fourier transform of their convolution, which cancels the inverse Fourier 

transform,

W x, y, zi =
z f
zi

e
j2π

λ zi −z f e
j π
λzi

x2 + y2

Ui x, y e
− jϕi x, y

+ j ∑
s = 1
s ≠ i

M zs
λz f zs − zi

e
j2π

λ zi −z f e
j π
λzi

x2 + y2

(Us x, y e
− jϕs x, y

⊛ e

− j
πzizs x2 + y2

λz f
2 zs − zi ) .

(21)
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Next, we simplify the notation by introducing 

α2 =
λz f

2

πzizs
(zs − zi), k =

z f
zi

e
j2π

λ (zi − z j)e
j π
λzi

(x2 + y2)
, and 

k′ =
zs

λz f | zs − z f |e
j2π

λ (zi − z f )
e

j π
λzi

(x2 + y2)
=

zizs

λz f
2 | zs − z f |

k,

W x, y, zi = k Ui x, y
desired image

e
− jϕi x, y

random phase
+ j ∑

s = 1
s ≠ i

M
k′(Us x, y e

− jϕs x, y
⊛ e

− j x2 + y2 /α2
) . (22)

The series term contains the convolution of the product of the other images and their random 

phases with a parabolic phase (wavefront). The convolution with a parabolic phase plays a 

very important role, because it mixes the random phase with the amplitude, rendering both 

the amplitude and phase of the resulting field random. This effect is illustrated in 

Supplementary Fig 9.

We want to compare the magnitude of the first term with the magnitudes of the terms within 

the series. Before we can do so, we should arrange for the integration due to the convolution 

to be over dimensionless coordinates. To achieve this, we transform the entire equation into 

normalised (dimensionless) lateral coordinates through the transformation x → αx′ and y 
→ αy′. By its definition, the convolution term is

Us x, y e
− jϕs x, y

⊛ e
− j x2 + y2 /α2

= ∬
−∞

∞
Us x − u, y − v e

− jϕs x − u, y − v
e

j
u2 + v2

α2
dudv,

(23)

Introducing the normalised coordinates, u = αu′, v = αv′, x = αx′ and y = αy′,

Us(x, y)e
− jϕs(x, y)

⊛ e− j(x2 + y2)/α2
= α2∬

−∞

∞
Us(αx′ − αu′, αy′ − αv′

)e
− jϕs(αx′ − αu′, αy′ − αv′)

e j(u′2 + v′2)du′dv′

(24)

Now, we introduce the new functions, Ui′(x′, y′) and ϕ′ (x′, y′), taking the normalised 

coordinates as their parameters, but otherwise identical in form, amplitude and unit, as Ui(x, 
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y) and ϕ(x, y). To give a concrete example, for Ui(x, y) = U0e
−(x + y)2/r0

2
, the new function 

would become Ui′(x′, y′) = U0e−(x′ + y′)2 . The convolution takes the form,

Us x, y e
− jϕs x, y

⊛ e
− j x2 + y2 /α2

= α2∬
−∞

∞
Us′ x′ − u′, y′ − v′ e

− jϕs′ x′ − u′, y′ − v′
e

j u′2 + v′2
du′dv′

= α2Us′ x′, y′ e
− jϕs′ x′, y′

⊛ e
− j x′2 + y′2 .

(25)

Similarly, W(x, y) gets mapped to W′(x′, y′) and using the relation, α2k′ = k/π, to simplify, 

W′(x′, y′) is given by,

W′ x′, y′, zi = k(Ui′ x′, y′ e
− jϕi′ x′, y′

+ j
π ∑

s = 1
s ≠ i

M
Us′ x′, y′ e

− jϕs′ x′, y′
⊛ e− j x′ + y′ 2

) . (26)

This expression can be analysed to clearly reveal how the random phase suppresses 

crosstalk. As mentioned at the beginning of this section, the 3D image formed on any 

conventional detector or an image viewed through a scattering process is given by |W′(x′,y

′,zi)|2. To simplify further, we introduce Ys(x′, y′) ≡ Us′(x′, y′)e
jϕs′ (x′, y′)

⊛ e j(x′2 + y′2) . We note 

that all Ys(x′, y′) are random, because they are all convolutions of Us′(x′, y′)e
jϕs′ (x′, y′)

 the 

product of the coherent amplitude defining the image, Us′(x′, y′) and the random phase 

corresponding to that image, e
jϕs′ (x′, y′)

, with a parabolic wavefront, e−j(x′+y′)2. This 

operation is sufficient to thoroughly mix the non-random amplitude information defining the 

image with the random phase information. The end result is virtually completely random 

valued (see Supplementary Fig. 9), except in the limiting case of α → 0, in which case e
−j(x′+y′)2 → δ(x′+y′) and the convolution operation yields U′s(x′+y′)ejϕ′s(x′+y′)

 unaltered. 

However, α → 0 implies zi → zs, which would mean that the two images are already in the 

same plane. Thus, this limit is not relevant in practice.

Next, we calculate the value of |W′(x′,y′,zi)|2:
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W′(x′, y′, zi)
2 = k 2( Ui′(x′, y′) 2 + 1

π2 ∑
s = 1
s ≠ i

M
Ys(x′, y′) 2

+ j
π ∑

s = 1
s ≠ i

M
(Ui′(x′, y′) * e

jϕi′(x′, y′)
Ys(x′, y′) − Ui′(x′, y′)e

− jϕi′(x′, y′)
Ys(x′, y′) *)

+ 1
π2 ∑

s = 1
s > m

M
∑

m = 1

M
(Ys(x′, y′) * Ym(x′, y′) + Ys(x′, y′)Ym(x′, y′) * )) .

(27)

We now discuss each of the terms of the result above. The first term, Ui′ x′, y′ 2, corresponds 

to the production of the desired image in perfect form, apart from an overall multiplicative 

constant, which is not important. The second term is a sum of M − 1 random images, as 

discussed above. They are also mutually independent, so their summation is further closer to 

a constant value by the central limit theorem for large M. In practice, their role is to add 

certain amount of white noise to the ideal image. Furthermore, their contribution is strongly 

suppressed by the prefactor of π2 ~ 10, as well as the summation of M − 1 of them. The 

third term is a sum over M − 1 terms, each of which are in a form such that their 

contribution, averaged over the image (in all the examples considered here, N, the number of 

hologram pixels, varies between 105 − 107), is similar to inner products of very high 

dimensional (equivalent to N) mutually random vectors. Furthermore, unlike the second 

term, they do not involve absolute squares, so their random values are allowed to converge to 

zero. Together with the near-complete orthogonality of mutually random vectors in high 

dimensions, their contribution vanishes in the limit of large dimensions, i.e., large number of 

pixels in the images and large number of planes. The fourth term involves in the order of M2 

terms, which vanish for the same reasons, but even faster due to their large numbers for large 

M.

Overall, we see that the final result for any image plane, i, is that we obtain the ideal image, |

Ui(x, y)|2, only with the addition of some amount of white noise. There remains absolutely 

no trace of any coherent manifestation of any of the other images. We declare crosstalk to 

have been suppressed (see Supplementary Fig. 10 for a simple demonstration for the case of 

M = 2). Finally, we note that the demonstrations here were restricted to the use of pure phase 

holograms, Fi (x, y), due to practical reasons. This limitation causes additional deterioration 

of the image reproduction, which can be avoided at the cost of increased complexity of the 

experimental implementation, if so desired.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Computer-generated holograms need to comprise large numbers of individual holograms 

of 2D images projected to different foci to serve as realistic representations of 3D objects, 

requiring excellent depth control, separation and elimination of crosstalk. (b) We 

simultaneously project multiplane images with controllable separation, while remaining in 

the Fresnel regime. To achieve this, we add a phase Fresnel Zone Plane (FZP) to a phase 

Fourier hologram to shift its image to the focal plane of the FZP. This corresponds to 

projecting a Fourier image in the Fresnel regime. Multiple holograms can be generated this 

way, each is designed to project a slice of a 3D object, then superposed to create a single 

Fresnel hologram. (c) Normalised inner product of two complementary checkerboard images 

is calculated as a function of total pixel size (N). The phase of each source image is random, 

uniformly distributed over 0 – 2π. (d) Adding random phase to each image suppresses 

unwanted crosstalk.
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Figure 2. 
(a) Outline of the 3D Fresnel algorithm. (b) Representative schematic and simulations 

corresponding to a large-volume high-density 3D Fresnel hologram extending 150 cm in 

depth. The simultaneously projected 1000 on-axis images are simulated using a 4000 × 4000 

hologram. (c) Simulation of a complex projected object when from various angles. 100 

planes are simultaneously projected from a single 4000 × 4000 pixel hologram to distances 

spanning 10 cm to 20 cm from the hologram. (d) Simulation of 11 high-definition (1435 × 
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1080 pixels) images projected simultaneously from a single 16K hologram. The projection 

extends over 90 cm.
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Figure 3. 
(a) Optical setup used in the experiments. (b) Two-plane, high-resolution simultaneous 

projection (portraits of Maxwell and Gabor). The distances from the hologram are, 85.5 and 

70 cm. (c) Four-plane simultaneous projection of a rotating cube. The distances from the 

hologram are 128.5, 100, 85.5 and 70 cm. (d) Eleven-plane simultaneous projection of the 

letters spelling BILKENT UNIV, where z0 = 18 cm. Scale bars are 2 mm. Each image set is 

projected without lateral shift from a single hologram.
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