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Abstract

The serine/threonine phosphatase PP2A regulates a vast portion of the phosphoproteome including 

pathways involved in apoptosis, proliferation and DNA damage response and PP2A inactivation is 

a vital step in malignant transformation. Many groups have explored the therapeutic venue of 

combining PP2A reactivation with kinase inhibition to counteract the very changes in tumor 

suppressors and oncogenes that lead to cancer development. Conversely, inhibition of PP2A to 

complement chemotherapy and radiation-induced cancer cell death is also an area of active 

investigation. Here we review the studies that utilize PP2A targeted agents as combination therapy 

in cancer. A potential role for PP2A in tumor immunity is also highlighted.

I. Introduction

Protein Phosphatase 2A (PP2A) is a serine/threonine phosphatase with functions that 

counter-balance kinase-mediated phosphorylation throughout cell signaling networks. Its 

activity is critical to maintaining physiologic, ‘healthy’ cellular function. PP2A is frequently 

inactivated in human cancers as a means to removing its tumor suppressive activity, thereby 

allowing for unregulated growth that is a hallmark of malignancy. While cancer remains the 

most researched disease context for PP2A disruption, PP2A inhibition also contributes to 

pathogenesis in cardiovascular disease [1-3], diabetes [4-7], neurodegenerative disease (e.g. 

Alzheimer’s and Parkinson’s disease) [8-12] and developmental conditions involving 

intellectual disability [13, 14]. Consequently, therapeutic targeting of PP2A has become an 

exciting area of research with promising potential for clinical impact across fields.

Corresponding author: Goutham Narla (gnarla@med.umich.edu).
1Present address: 3131 Rogel Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of Interest: The Icahn School of Medicine at Mount Sinai, on behalf of G. Narla, has filed patents covering composition of 
matter on the small molecules disclosed herein for the treatment of human cancer and other diseases (International Application 
Numbers: PCT/US15/19770, PCT/US15/19764; and US Patent: US 9,540,358 B2). RAPPTA Therapeutics LLC has licensed this 
intellectual property for the clinical and commercial development of this series of small molecule PP2A activators. G. Narla, has an 
ownership interest in RAPPTA Therapeutics LLC.

HHS Public Access
Author manuscript
Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2020 January 
01.

Published in final edited form as:
Biochim Biophys Acta Mol Cell Res. 2019 January ; 1866(1): 51–63. doi:10.1016/j.bbamcr.2018.08.020.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PP2A is a heterotrimeric enzyme comprised of a scaffolding subunit (PP2A-A), a catalytic 

subunit (PP2A-C), and a regulatory subunit (PP2A-B). Subunits assemble into A/B/C 

heterotrimers (Figure 1) that dephosphorylate substrates. Multiple isoforms exist for each 

subunit: 2 isoforms each for PP2A-A and PP2A-C, and 16 isoforms grouped into four 

families for PP2A-B (Figure 1). Importantly, the multi-subunit nature and variety of 

potential isoforms allows for PP2A’s notable diversity of substrates, as greater than 60 

unique holoenzyme combinations may assemble. In addition to the core PP2A protein 

subunits, endogenous regulatory proteins for PP2A (e.g. CIP2A, SET, PME-1) provide 

further points of pharmacologic targeting to modulate PP2A function. PP2A is functionally 

impaired in cancer through inactivating mutations, suppression of individual subunits and 

up-regulation of endogenous regulators [15-19].

A number of recent reviews provide comprehensive summaries of PP2A-targeting 

compounds in development (please see: [20-23] also, Table 1). Here, we will review and 

discuss the potential for PP2A therapeutics to complement and enhance existing treatment 

strategies through combination therapy.

II. PP2A Activation

The last decade has seen the emergence of a large number of PP2A activation strategies as a 

therapeutic venue in cancer (Table 1). Certain strategies directly target PP2A by using small 

molecules that bind to the scaffolding subunit resulting in conformational changes which 

lead to activation of the holoenzyme. These small molecules include perphenazine, a 

tricyclic neuroleptic, and SMAP, a re-engineered tricyclic sulfonamide [24-26]. More 

commonly, PP2A endogenous inhibitors are targeted for inhibition (Figure 1). OP449 is a 

peptide that binds antagonistically to the PP2A inhibitor SET, resulting in increased PP2A 

activity [27]. SET is also targeted using FTY720 (Fingolimod), which disrupts the SET-

PP2A interaction [28]. FTY720 was originally developed for its immunomodulatory 

properties in the treatment of multiple sclerosis. Phosphorylation of FTY720 allows it to act 

as a functional antagonist of the sphingosine-1-phosphate receptors (S1PRs), leading to 

sequestration of lymphocytes and immune suppression [29, 30]. Analogs of FTY720 that are 

incapable of being phosphorylated by sphingosine kinase-2 lack these immunosuppressive 

properties but retain their ability to activate PP2A and induce apoptosis [31-33], suggesting 

that the effect on PP2A is independent of S1PR related signaling.

Early genetic models of malignant transformation described the role of PP2A as a tumor 

suppressor, showing that PP2A inhibition was a requirement for the initiation of 

carcinogenesis [34]. PP2A is now known to inhibit numerous growth and survival pathways 

[35, 36] (Figure 2), suggesting that the ability to activate PP2A in cancer may suppress the 

development of resistance at multiple nodes and provide enhanced efficacy at reducing 

tumor burden when combined with specific inhibitors of pro-proliferative pathways. 

Multiple groups have utilized this combinatorial approach (summarized in Table 2). Here, 

we highlight some of the studies that have investigated these potential therapies.
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a. PP2A activation in combination with targeted therapy

i) Reactivation of PP2A downstream of oncogene-induced inhibition—
Recently, PP2A inhibition has been reported in cancer cells downstream of aberrantly active 

oncogenic pathways driven by receptor tyrosine kinases. Tumors with activating mutations 

of both cKIT and FLT3 have reduced expression of the PP2A scaffolding subunit (PP2A-A) 

and in some cases, of specific B subunits. In addition, amplification and increased 

expression of EGFR are correlated with overexpression of the PP2A inhibitor CIP2A 

[37-39]. PP2A is known to negatively regulate the pathways downstream of these tyrosine 

kinases at multiple nodes (Figure 2), suggesting that PP2A inhibition strategies may have 

been selected for during early stages of malignant transformation. It follows that combining 

a therapy that specifically inhibits the driving oncogene in these cancers with one that allows 

reactivation of PP2A to further inhibit their survival and proliferative signals provides an 

exciting potential therapy with increased efficacy and reduced side effects. Multiple groups 

have attempted to harness this therapeutic opportunity. Agarwal et al. reported that primary 

AML cells inhibit PP2A by overexpressing SET, and investigated the reactivation of PP2A 

with OP449 combined with rationally chosen kinase inhibitors targeting the diving 

oncogenes [40]. Specifically, the AML cell lines MOLM-14 (FLT3-ITD driven) and CMK 

(JAK3A527V driven) were treated with OP449 and either FLT3 or JAK inhibitors 

respectively. Combination therapy in both cases resulted in synergistic cell death measured 

by cell viability. Similarly, Smith et al. reported PP2A inhibition downstream of FLT3-ITD 

expressing AML via decreased expression of PP2A-A and investigated the ability of PP2A 

reactivation in sensitizing response to FLT3 inhibitors [38]. This study utilized FTY720 and 

AAL(S), a related analog that lacks immunomodulatory effects, in combination with 

multiple FLT3 inhibitors. Combination treatment resulted in synergistic cell death, measured 

by cell viability and methylcellulose colony formation, in two FLT3-ITD-driven cell lines 

and one primary AML line. Importantly, treatment with PKC412 (a FLT3 inhibitor) alone 

resulted in increased PP2A activity, while combination with FTY720 further increased PP2A 

activity. This is consistent with the earlier observation that FLT3-ITD causes decreased 

active PP2A by reducing expression of the scaffolding subunit, while FLT3 inhibition allows 

for PP2A reactivation. Since 30% of AML is FLT3 driven and FLT3 inhibitors have not 

proven to be efficacious as monotherapy [41], these studies provide preliminary data for the 

use of PP2A activation strategies in combination with FLT3 inhibitors in AML. The 

inclusion of relevant in vivo models would have greatly strengthened this data and provided 

a pre-clinical basis for future trials in humans.

An additional example of oncogene-induced PP2A inactivation was proposed in a model of 

chronic lymphocytic leukemia (CLL) [33]. The authors demonstrated increased 

phosphorylation of PP2A-C at Tyr307 in CLL cells but not normal B cells, and conclude that 

PP2A-C hyperphosphorylation is a result of LYN (a SRC family kinase) overexpression and 

leads to PP2A inhibition via increased association of PP2A-C with SET. Due to the issues 

surrounding the phospho-Y307 PP2A-C antibody [42], and the fact that the authors do not 

provide any antibody validation for the unknown ‘Santa Cruz’ antibody used in this paper, it 

is difficult to interpret their Tyr307 phosphorylation data. Nonetheless, the authors also 

demonstrate increased phosphatase activity upon treatment with multiple SRC family kinase 

inhibitors (SFKi) including dasatinib, and confirm that the activity is reversible with the 
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PP2/PP4/PP6 family inhibitor okadaic acid. Furthermore, combination of SFKi with an 

FTY720 analog led to enhanced dephosphorylation of AKT and increased apoptosis over 

either treatment alone, as measured by Annexin V staining. Cell death as a result of 

combination treatment was completely reversible by okadaic acid. Although the mechanism 

of PP2A inhibition downstream of LYN may be unclear, combination of PP2A activation 

and SFKi should be further explored in in vivo models of CLL to determine if this strategy 

can yield a new therapy for this common form of leukemia.

ii) PP2A activation as a strategy to combat resistance—Development of resistant 

clones downstream of both targeted therapy and cytotoxic chemotherapy is a critical 

problem in the treatment of cancer. The BCR-ABL targeting small molecule imatinib, 

perhaps the most well-known example of targeted therapy, represented a breakthrough in the 

treatment of Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia 

(CML) [43]. However, despite an impressive initial clinical response, resistance inevitably 

develops in a subset of patients, despite the availability of 2nd and 3rd generation compounds 

nilotinib and ponatinib to combat this [44]. SET overexpression has been reported in CML 

and is associated with poor prognosis and PP2A activation via FTY720 has shown efficacy 

in pre-clinical models of this disease [45, 46]. Agarwal et al. investigated the ability of PP2A 

activation using OP449 to enhance response to ABL kinase inhibitors [40]. The authors 

reported marked synergy in cell death of K562 cells when OP449 was combined with ABL 

kinase inhibitors (imatinib, nilotinib, dasatinib, ponatinib). Furthermore, the combination of 

OP449 and nilotinib synergized to reduce colony formation of primary CML CD34+ cells, 

but not normal CD34+ cells. Importantly, OP449 displayed single agent activity against 

nilotinib and ponatinib resistant cell lines, harboring the BCR-ABL T135I and BCR-ABL 
E255V/T315I mutations. Mechanistically, OP449 treatment reduced the total levels of BCR-

ABL, which may explain why it is agnostic to mutation status. This suggests that upfront 

therapy with both nilotinib and OP449 may suppress the emergence of refractory CML 

arising from these mutant clones.

Another example of the use of PP2A activating therapy to combat resistance was recently 

described in cellular and mouse models of lung cancer [47]. In non-small cell lung 

carcinoma (NSCLC), constitutive activation of KRAS occurs most commonly via mutation 

at the G12 residue [48], resulting in hyperactive signaling to growth and survival pathways, 

including the mitogen activated protein kinase (MAPK) and phosphatidylinositol-3-kinase 

(PI3K) pathways [49]. Currently, there are no targeted therapies for the subset of patients 

harboring this mutation [50]. Although multiple inhibitors of the downstream PI3K and 

MAPK signaling pathway have been developed, they have largely been unsuccessful in 

clinical trials due to high toxicity and limited efficacy [51, 52]. Since loss of PP2A 

regulatory subunits and overexpression of SET and CIP2A have all been reported in lung 

cancer [53-55], the Westermarck group investigated the role of PP2A suppression in driving 

resistance to kinase inhibitors in KRAS-driven lung cancer cell lines. This was done using a 

high-throughput drug screen in which two KRAS-driven NSCLC cell lines were treated with 

230 different kinase inhibitors. The response of these cell lines was compared to cells in 

which PP2A was inhibited via siRNA against PP2A-A. PP2A-A knockdown in these cells 

significantly increased resistance to inhibitors in the MAPK pathway targeting MEK and 
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ERK. Furthermore, activation of PP2A via siRNA against CIP2A sensitized cells to these 

MAPK inhibitors, suggesting that pharmacological activation of PP2A may overcome MEK 

inhibitor (MEKi) resistance. They utilized a phenothiazine derivative (SMAP) known to bind 

and activate PP2A and showed that this compound synergized with the MEK inhibitor 

trametinib in vitro. Importantly, combination of SMAP and selumetinib (a MEKi used in 

clinical trials) caused significant tumor regression in two KRAS-driven xenograft mouse 

models over either agent alone. Mechanistically, single agent treatment with the MEKi 

trametinib resulted in a reciprocal increase in the PI3K-AKT-mTORC signaling pathway. 

This feedback loop was further enhanced in PP2A inhibited cells. The activation of the PI3K 

pathway upon MAPK inhibition is well described [56] but previous attempts to combine 

MAPK and AKT inhibitors in patients have been unsuccessful due to dose-limiting toxicity 

[57]. This study suggests that an alternate approach to combat feedback mechanisms may be 

to combine MEKi with PP2A activators, thereby suppressing the PI3K pathway while 

simultaneously inhibiting other potential mechanisms of resistance such as c-MYC 

stabilization [58] (Figure 2).

In a separate study, PP2A inhibition was also responsible for acquired resistance to the BET 

bromodomain inhibitor (BBI) JQ1 [59]. The use of BBIs for the treatment of multiple cancer 

types [60-63] has recently been described and some studies have progressed to phase I 

clinical trials [64, 65]. These small molecules mimic the acetyl lysine-binding domain of 

BET (bromo- and extra-terminal domain) family proteins such as BRD4 and displace them 

from binding and activating transcription regulatory regions upstream of a large number of 

genes, including those involved in mitotic progression [60]. Shu et al. demonstrated that the 

BBI JQ1 displayed pre-clinical efficacy in triple negative breast cancer models. In order to 

predict resistance mechanisms that may arise in patients treated with BBIs, JQ1-resistant cell 

lines were developed. It was found that resistance arose as a result of PP2A inhibition by an 

unknown mechanism, resulting in hyperphosphorylation of BRD4 at Ser7. This resulted in 

bromodomain-independent binding of BRD4 to new super-enhancers, including the one that 

regulates BCLXL. This allowed cells to escape apoptosis by overexpression of the BH3 

family protein BCLXL. Resistance in these lines was overcome by combining JQ1 with 

perphenazine to reactivate PP2A, resulting in synergistic cell death in vitro. Similar results 

were observed when JQ1 was combined with an inhibitor of CK2, the kinase that 

phosphorylates this site on BRD4. Hyperphosphorylation at this site was also detected in 

breast cancer tumor microarrays and correlated with decreased progression free survival. 

This suggests that a subset of patients with hyperphosphorylation at this site may have de 

novo resistance to BBI treatment, and future trials using BBIs should consider the inclusion 

of a combination arm with PP2A activators.

iii) Identification of PP2A activation via high throughput drug screens as a 
strategy to enhance the efficacy of existing therapy—The phenothiazine class of 

PP2A activators has also been identified in unbiased drug screens for molecules that enhance 

efficacy of dasatinib and γ-secretase inhibitors [24, 66]. In an initial drug screen across 14 

pancreatic cancer cell lines, the SRC family kinase inhibitor dasatinib emerged as the most 

potent small molecule tested. Dasatinib has previously been tested in clinical trials of locally 

advanced and metastatic pancreatic cancer, both as monotherapy and in combination with 
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gemcitabine. In both trials, dasatinib did not display significant clinical activity, possibly due 

to de novo resistance against this agent [67, 68]. The authors used gene signatures from 

dasatinib-sensitive and dasatinib-resistant cell lines and used an in silico method to 

determine which drugs would re-sensitize cells to dasatinib. The top hit from this query was 

thioridazine, a small molecule belonging to the phenothiazine group known to directly bind 

and activate PP2A. The authors tested multiple phenothiazines against a panel of pancreatic 

cancer lines and chose to proceed with penfluridol, as this displayed the most potency. 

Penfluridol treatment decreased phosphorylation at PP2A targets c-MYC, AKT and GSK3β 
and caused cell death in a PP2A dependent manner. Importantly, penfluridol and the 

structurally unrelated PP2A activator FTY720 both displayed synergy with dasatinib in 

multiple pancreatic cancer lines. PP2A activation using OP449 has previously shown to have 

efficacy in pancreatic cancer in in vivo xenograft models [69], and the overexpression of 

SET and CIP2A in this malignancy suggests that PP2A inhibition may be driving some of 

the de novo resistance against dasatinib, although further experiments are required to test 

this.

In a study by Gutierrez et al., multiple members of the phenothiazine class were identified in 

a drug screen to find compounds that would enhance the efficacy of gamma secretase 

inhibitors in the NOTCH-dependent T cell acute lymphoblastic leukemia (T-ALL) cell line 

KOPT-K1 [24]. About 60% of T-ALL is driven by activated NOTCH signaling [70]. This 

transmembrane receptor is only active after cleavage by gamma secretase, which releases the 

NOTCH intracellular domain to act as a transcription factor that drives the expression of 

MYC, BCL2 and other oncogenes [71]. However, treatment with gamma secretase inhibitors 

(GSI) only leads to a modest cytostatic response in cell line models of NOTCH-activated T-

ALL [72]. From the drug screen described above, Gutierrez discovered that PP2A activators 

in the phenothiazine class could synergize with GSIs. One of the top hits, perphenazine 

(PPZ), displayed both single agent and additive or synergistic activity with GSI in multiple 

viability and apoptosis assays, both in T-ALL cell lines and primary cells. However this was 

only true for cell lines that were already sensitive to GSI. PPZ is unable to re-sensitize cells 

that are already GSI resistant; in these cases combining the two treatments was only as 

efficacious as PPZ alone. While the authors did not attempt to explore the mechanistic basis 

for this, they postulate that PPZ-induced PP2A activation and subsequent apoptosis occur 

via signaling pathways that are NOTCH-independent. This combination may be therapeutic 

in T-ALL patients with NOTCH1 activating mutations known to be GSI sensitive.

Given the specificity with which PP2A activation strategies cause cell death in malignant but 

not normal cell types, and that PP2A is frequently inactivated in cancer [22], PP2A 

activation strategies in combination with many of the potent inhibitors that already exist to 

inhibit driver oncogenes should be further explored for the treatment of cancer.

b. PP2A activation in combination with cytotoxic chemotherapy

Several studies have explored the utilization of drugs that activate PP2A, specifically 

FTY720, in combination with standard chemotherapies such as anthracyclines and platinum-

based agents. Some of the most common drugs used to treat patients with breast cancer 

include anthracyclines, such as doxorubicin. While several therapeutics have been tested in 
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combination with doxorubicin, targeting PP2A is of particular interest because of findings 

showing that expression of endogenous inhibitors of PP2A such as CIP2A modulate 

sensitivity to doxorubicin [73]. Furthermore, breast cancer patients with PP2A inhibition 

have a significantly worse clinical outcome. In vitro studies showed that PP2A activation by 

FTY720 reduced cell viability, induced caspase-dependent apoptosis and decreased 

phosphorylation of AKT and ERK in breast cancer cell lines. Combination of FTY720 with 

doxorubicin enhanced the antitumor activity in vitro and in vivo [74]. Given these results, 

further studies exploring PP2A activating drugs in combination with doxorubicin could lead 

to potential treatment strategies for breast cancer patients.

PP2A has been found to be frequently inactivated in patients with colorectal cancer as well. 

Restoration of PP2A activity using FTY720 reduced proliferation and colony formation, 

induced caspase-dependent apoptosis and inhibited AKT and ERK signaling in colorectal 

cancer cells [75]. SET was also found to be overexpressed in colorectal cancer cell lines. 

SET overexpression increased cellular proliferation whereas PP2A overexpression or SET 

silencing decreased cell growth in colorectal cancer cells [76]. SET silencing also increased 

the efficacy of treatment with oxaliplatin as well as 5-Fluorouracil. Both oxaliplatin and 5-

Fluorouracil are chemotherapeutic agents used to treat colorectal cancer. Since SET 

expression modulated the response to these chemotherapeutic agents, the authors tested the 

combination of FTY720 with oxaliplatin or 5-Fluorouracil which resulted in enhanced 

efficacy in colorectal cancer cells [76].

The efficacy of FTY720 in combination with cisplatin has been explored in several cancers 

with opposing results. Combination of cisplatin with FTY720 has been found to antagonize 

the cytotoxicity of cisplatin in ovarian cancer cells [77]. In melanoma however, it was found 

that FTY720 treatment in combination with cisplatin resulted in decreased cell viability, 

increased expression of apoptosis-associated cleaved poly (ADP-ribose) polymerase (PARP) 

and reduced phosphorylation of PI3K, AKT and mTOR [78]. Similarly, in lung cancer, 

treatment of a mouse model of lung cancer with FTY720 in combination with cisplatin 

resulted in enhanced anti-tumor activity. Molecular analysis showed that treatment with this 

combination resulted in decreased expression of ATG7 and Ki67 [79]. Further examination 

of these molecular pathways will lead to a better understanding of which cancers will benefit 

from PP2A activating drugs in combination with cisplatin.

FTY720 has also been shown to be important in treating obesity-related breast cancer.In 

obesity-related cancers, inflammation increases the malignant potential of cancer cells [80, 

81]. Sphingosine-1-phosphate plays a significant role in inflammation, which leads to an 

increase in cancer progression. Doxorubicin treatment of a murine breast cancer model 

resulted in an increase of sphingosine-kinase-1 (SPK1), sphingosine-1-phosphate receptor 1 

(S1PR1), interleukin 6 (IL-6), and STAT3. FTY720 is a functional antagonist of S1PR1. 

Thus, treatment of the murine breast cancer model with FTY720 resulted in suppression of 

SPK1, S1PR1, IL-6 and STAT3. Combination of doxorubicin with FTY720 resulted in 

reduced inflammation and synergistic suppression of cancer growth in vitro and in vivo. 

Furthermore, in an obesity breast cancer model where mice were fed a high-fat diet, this 

combination therapy was also efficacious [82].
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Modulation of the sphingosine-1-phosphate pathway by FTY720 has been reported to be 

efficacious in clear-cell renal carcinoma as well. FTY720 was found to inhibit HIF1α and 

HIF2α, which are hypoxia-inducible factors shown to induce chemoresistance in clear-cell 

renal carcinoma [83]. Treatment of a heterotopic xenograft model of clear cell renal 

carcinoma with FTY720 resulted in a decrease in HIF1α and HIF2α expression and 

vascular normalization. Combination of FTY720 with a gemcitabine-based chemotherapy 

resulted in significant decrease in tumor size [83].

While these studies investigated several signaling pathways in response to FTY720, they did 

not directly evaluate the role of PP2A. Thus, it is unclear whether PP2A carried out a role in 

the additive or synergistic response seen in these studies.

III. PP2A Inhibition

While pharmacologic activation has been the primary therapeutic approach for targeting 

PP2A given its inactivation in many cancers, PP2A inhibition has become an area of recent 

interest following demonstrated efficacy of the compound LB100. LB100 (also published as 

LB1) is a water-soluble homolog of the lead compound, LB102 (LB1.2), developed through 

norcantharidin derivation [84, 85]. Cantharidin and norcantharidin are PP2A inhibitors used 

in traditional Chinese medicine whose clinical potential is reduced by significant toxicity. 

Derivation was performed to overcome this limitation [86]. Although the exact mechanism 

through which LB100 binds to PP2A and inhibits its activity has not been established, the 

parent compound cantharidin has been suggested to bind the PP2A C-subunit [87, 88]. 

Research on LB100 has largely focused on and highlighted its potential as a potent chemo- 

and radio-sensitizer. A 2016 Phase I clinical trial was completed for LB100 in combination 

with Docetaxol for the treatment of solid tumors [89]. The compound was found to have 

minimal adverse toxicities with efficacy potential that merits further clinical investigation.

a. PP2A inhibition in combination with DNA Damage Inducers

DNA damage response (DDR) entails a highly coordinated sequence of signaling events that 

are triggered upon detection of damage to ensure maintenance of genome integrity. 

Critically, PP2A participates at multiple steps in DDR, including damage identification, 

activation of proteins for damage repair, and checkpoints to halt cell cycle progression 

[90-94] (Figure 3). It was hypothesized that direct impairment of PP2A could knock out 

critical defense pathways and render cells susceptible to lethal damage accumulation in the 

face of DNA damage induction. With the latter being readily accomplished through ionizing 

radiation or select chemo-toxins already used in cancer therapy, LB100 was predicted to 

further enhance their effects.

In the ground-breaking report, Lu et al. evaluated LB100 combination therapy with 

Doxorubicin (DOX) or Temozolomide (TMZ) for tumor response in Glioblastoma and 

Neuroblastoma model systems [84]. They found that treatment with LB100 alone results in 

signs of mitotic catastrophe, such as disordered microtubules and abnormal mitotic figures, 

as well as hyperphosphorylated AKT1, PLK1, and MDM2 resulting in the improper 

activation of these major cell cycle and DDR regulatory proteins. P53 was also decreased, 

presumably as a consequence of MDM2 activation. In contrast, treatment with cytotoxic 
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compounds DOX or TMZ alone led to increased p53 coupled with S-phase arrest, consistent 

with appropriate checkpoint triggering and cell cycle halting following DNA damage. 

Combination treatment with DOX or TMZ and LB100 led to phosphorylation patterns 

consistent with LB100 treatment alone, highlighting a central role for PP2A in response to 

DOX/TMZ-induced damage that when overridden, leads to accelerated, inappropriate entry 

into mitosis and accentuated cell death induction. In vivo, combination therapy with DOX or 

TMZ demonstrated greater tumor response—growth inhibition or regression—than either 

agent alone, and in some animals prevented tumor recurrence that otherwise occurs in this 

glioblastoma model.

LB100 has since been studied in multiple cancer model systems in combination with 

radiation or cytotoxic compounds (Table 3). Efficacy is found across classes of cytotoxic 

compounds: DNA-intercalating agents (e.g. Doxorubicin), DNA-alkylating agents (e.g. 

Temozolomide) and DNA-crosslinking agents (e.g. Cisplatin). In aggregate, research reports 

provide a largely consistent picture of the signaling mechanisms that underlie increased 

cytotoxin efficacy with LB100 adjuvant therapy: (1) AKT1 and MDM2 are activated while 

p53 is inhibited to prevent checkpoint activation in G1/S [84, 95, 96]. (2) 

Hyperphosphorylated PLK1 is activated and inhibits Chk1/2, which is no longer able to 

inhibit CDK1 and trigger G2 arrest [84, 95-98]. (3) This is compounded by removal of 

PP2A inhibition of CDC25c, which is also able to maintain CDK1 activity via de-

phosphorylation. The PP2A substrate and CDK1 inhibitor Wee1 is also inactive. Cells 

progress to mitosis, but spindle formation is disordered and mitotic catastrophe occurs [84, 

95, 96, 98, 99]. Disrupted cell cycle progression was further evident in cell cycle spread 

analyses, where treatment with a DNA damage inducer led to predominant S-phase arrest 

(more cells in G1/S), but when combined with PP2A inhibition by LB100, cells progress 

through S-phase and accumulated in G2/M due to disordered mitosis [84, 95, 96, 98-100]. 

PLK1 inhibition of TCTP, a protein that stabilizes microtubules and has anti-apoptotic 

functions, may contribute to abnormal mitotic figures and mitotic catastrophe [84, 96].

In addition to irregular cell cycle regulation, a few studies reported persistence of DNA 

damage with LB100 treatment, which was indicated by presence of γ-H2AX foci [96, 

98-100]; likewise, LB100 inhibited Rad51 foci formation as part of DDR [97]. This suggests 

that homologous recombination (HR) repair may also be impaired by LB100, which is 

unsurprising given PP2A’s additional roles in regulating damage repair.

Altered cell motility and/or tumor invasiveness in the context of LB100 was also revealed 

through the experiments of two research groups [101, 102]; elucidation of the mechanistic 

underpinnings could reveal the potential of this compound for invasive disease management

Finally, some investigations suggest that PP2A inhibition by LB100 treatment may modulate 

stem cell state to promote differentiation [100, 103]. Triggering stem cells, which are often 

quiescent, to re-enter cell cycle may help to render them more sensitive to radio- or 

chemotherapy [100]. This could present an additional anti-neoplastic function for LB100. 

However, data to support LB100 effects on stem cell or quiescent cell state is limited and 

requires more investigation.
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b. Combination with PP2A inhibition to achieve synthetic lethality

The concept of ‘synthetic lethality’ —in which either of two alterations is viable alone, but 

become lethal when present in combination—has garnered interest in cancer research as a 

treatment strategy to exploit the very genetic alterations that are favorable to cancer 

development. Loss or mutation of DNA damage sensors, such as p53, BRCA1/2, ATM/ATR 

and PLK1 allow cancer cells to escape checkpoints, survive and divide, despite loss of 

genomic integrity. However, there is a limit to tolerated genome disruption beyond which 

damage is too severe, and mitotic catastrophe or apoptosis may be induced.

Given PP2A’s multiple roles in DDR, synthetic lethality may be achieved through LB100 

treatment of susceptible tumors with genomic disruption of a complementary DDR protein. 

For example, studies have suggested that cancer cells overexpressing Mad2, a mitotic 

spindle checkpoint protein, or PLK1, a DDR kinase with multiple identified roles, may be 

vulnerable to synthetic lethality upon pharmacologic PP2A inhibition [104, 105]. These 

combinations resulted in severely impaired maintenance of genome integrity to the point of 

cell death induction. This is an avenue yet unexplored, but may highlight target patient 

populations for whom genomic susceptibility in combination with LB100 achieves a 

synthetically lethal therapeutic response.

Finally, synthetic lethality has been of great interest for patients with BRCA1/2 mutations, 

for whom PARP inhibitors have shown promising therapeutic benefit [106, 107]. BRCA1/2 

facilitate HR repair of double-strand breaks (DSB) and are functionally impaired by cancer-

associated mutations. Meanwhile, PARP is involved in single-strand break (SSB) repair and 

PARP inhibition appears—through mechanisms still being investigated—to result in 

degeneration of SSB into DSB whose resolution requires competent HR. When HR is 

deficient, the outcome is lethal for the rapidly dividing cancer cells [108, 109]. Given its 

own ability to disrupt HR repair, inhibition of PP2A may similarly synergize with 

compounds such as PARP inhibitors to achieve a pharmacologic synthetic lethality (Figure 

3). In support of this, genetic studies have highlighted cancer-acquired genetic perturbations 

in DDR-dependent PP2A B-subunits that may prime cells for PARP inhibitor sensitivity 

[55].

c. PP2A inhibition in combination with kinase inhibitors

Two papers report on the efficacy of LB100 combination therapy with kinase inhibitors: (1) 

Sorafenib in the treatment of hepatocellular carcinoma, and (2) Imatinib for BCL-ABL+ 

leukemia [110, 111]. Fu et al. showed that resistance to sorafenib is partially due to a 

decrease in phosphorylated SMAD3 in hypoxic microenvironments. Their studies showed 

that inactivation of PP2A by LB100 resulted in increased phosphorylation of SMAD3 and 

subsequent apoptosis. Combination of LB100 with sorafenib enhanced the treatment of 

hepatocellular carcinoma during hypoxia. In a study by Lai et al., a drug screen found that 

cantharidin (CAN) in combination with imatinib resulted in 93% growth inhibition in AHI-1 

(Abelson helper integration site-1) transduced K562 cells whereas treatment with CAN or 

imatinib alone resulted in 30% and 15% growth inhibition respectively. Subsequent 

treatment studies with the combination of LB100 and a tyrosine kinase inhibitor, such as 

dasatinib showed synergistic response in BCR-ABL positive blast cells and drug insensitive 
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leukemic stem cells in vivo. Mechanistically, this occurred through the inhibition of AHI-1 

mediated signaling molecules and PP2A-mediated protein degradation of β-catenin and 

inhibition of its downstream targets. However, toxicity studies for the combination treatment 

in higher-order mammals are required to determine if the cell death observed in normal 

CD34+ cells translates to severe adverse events in organisms, in which case the treatment is 

unlikely to progress to clinical trial in CML.

d. PP2A inhibition in the treatment of other diseases

PP2A plays a role in the pathologies of several human diseases beyond cancer, such as 

cardiovascular disease and neuro-psychiatric conditions, suggesting that PP2A-targeting 

therapeutics under development for cancer may find use in these clinical fields as well. One 

report utilized LB100 treatment to inhibit PP2A activity in a mouse model of depression 

[112]. The authors found that PP2A suppresses inhibitory GABA-B receptor and GIRK 

channel activity, leading to hyper-active neuronal signaling in lateral habenula circuits 

(LHb). LHb activity correlated with expression of depression-like symptoms when animals 

experienced aversive stimuli, but was significantly reduced upon PP2A inhibition by LB100. 

Importantly, LHb hyperactivity is also seen in fMRI data collected from depressed patients. 

With further experimentation, the study findings may be expanded upon to determine the 

translation potential of this approach for human patients suffering from clinical depression. 

Therapeutic potential for PP2A inhibition in non-cancer diseases has otherwise remained 

minimally explored.

Discussion and future perspectives

The role of PP2A in negatively regulating multiple oncogenic pathways makes the activation 

of this phosphatase in cancer a promising strategy, especially when combined with potent 

inhibitors of the driver oncogene. Furthermore, PP2A appears to be commonly inhibited in 

cancer by a variety of mechanisms [22]. This may provide a greater therapeutic window for 

PP2A reactivation strategies, as cancer cells are more likely to be dependent on reduced 

PP2A levels for survival, while healthy tissue that already has high PP2A activity, remains 

relatively unaffected. In contrast, the role of PP2A in cell homeostasis and particularly DNA 

damage repair have revealed a different vulnerability in cancer cells, where the inhibition of 

PP2A coupled with additional DNA damaging strategies may be therapeutically beneficial. 

Chemotoxic compounds are associated with significant off-target toxicity that results in 

morbidity for patients and/or restricts treatment options. The use of LB100 as a chemo- or 

radio-sensitizer, may allow for use of less toxic doses while achieving equivalent clinical 

response. Another area that remains relatively unexplored is the role of PP2A in tumor 

immunity. PP2A has been reported to function as a regulator of immune checkpoint 

signaling, in particular by the immune checkpoint inhibitors programmed death-1 (PD-1) 

and cytotoxic T lymphocyte associated protein 4 (CTLA-4). The PP2A target c-MYC is a 

transactivator for the PD-1 ligand PD-L1 [113], suggesting that PP2A activation and 

subsequent dephosphorylation and degradation of c-MYC may result in suppression of these 

factors involved in immune evasion. In addition PP2A dephosphorylates the mRNA binding 

protein Tristetraprolin (TTP), allowing its dissociation from 14-3-3 [114]. This allows TTP 

to bind AU-rich elements on PD-L1 mRNA, leading to PD-L1 mRNA degradation (Figure 
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4). Furthermore, PP2A inhibits the MAPK signaling pathways responsible for 

phosphorylation of TTP at its inhibitory site [115], suggesting that PP2A regulates TTP, and 

by extension PD-L1 stability at multiple nodes. Finally, PIK3CD (p110δ) signaling was 

recently shown to be essential for normal regulatory T cell (Tregs) function [116] and 

negative regulation of this pathway by PP2A may disrupt Tregs and allow cytotoxic T cell 

expansion. Since the majority of PP2A activators are tested in immune-deficient murine 

models, the role of PP2A in tumor immunity has remained unexplored and warrants 

increased investigation. Recently immune checkpoint therapy has seen great success in the 

treatment of cancer, but a subset of patients demonstrate de novo resistance to this approach. 

Given the roles of PP2A in suppressing PD-L1 and Tregs (Figure 4), future studies should 

determine whether the combination of immune checkpoint inhibitors and PP2A activators 

could overcome this resistance. By contrast PP2A has also been shown to function 

downstream of CTLA-4 in lymphocytes to inhibit signaling by the co-stimulatory molecule 

CD28 [117], suggesting PP2A itself may play a role in immune co-inhibition in Tregs, 

which express high levels of CTLA-4. Indeed genetic knockout of PP2A in murine Tregs 

phenocopies CTLA-4 loss, resulting in multi-organ autoimmunity and death [118]. In 

addition, the PP2A regulatory subunit B55δ was identified in an in vivo shRNA screen 

whereby loss of B55δ resulted in T cell expansion, increased tumor infiltrating lymphocyte 

(TILs) and enhanced production of IFN-γ and granzyme [119]. A recent study demonstrated 

that PP2A inhibition with LB100 enhanced the efficacy of anti-PD-1 treatment, potentially 

through activation of mTORC1 which resulted in reduced differentiation toward Tregs and 

increased tumor infiltrating CD8+ T cells [120]. A better understanding of which PP2A-B 

regulatory subunits contribute to these functions combined with additional studies that 

utilize PP2A modulating strategies in in vivo immune-competent settings may help to 

elucidate the seemingly contrasting roles of PP2A in tumor immunity. Overall, PP2A 

represents an intriguing drug target in cancer and a better understanding of its roles in 

normal and tumorigenic signaling will lead to the development of promising therapeutics for 

multiple malignancies.
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Abbreviations

AML Acute myeloid leukemia

BBI BET bromodomain inhibitor

CIP2A Cancerous inhibitor of PP2A

CLL Chronic lymphocytic leukemia

CML Chronic myelogenous leukemia

DDR DNA damage response

DOX Doxorubicin
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DSB Double-strand break

EGFR Epidermal growth factor receptor

FLT3-ITD FLT3 internal tandem duplications

fMRI Functional magnetic resonance imaging

GSI Gamma secretase inhibitor

HR Homologous recombination

IL-6 Interleukin 6

LHb Lateral habenula

MAPK Mitogen activated protein kinase

MEKi MEK inhibitor

NSCLC Non-small cell lung carcinoma

PARP Poly (ADP-ribose) polymerase

Ph+ Philadelphia chromosome positive

PI3K Phosphatidylinositol-3-kinase

PP2A-A PP2A scaffolding subunit

PP2A-B PP2A regulatory subunit

PP2A-C PP2A catalytic subunit

PP2A Protein Phosphatase 2A

PPZ Perphenazine

S1PR Sphingosine-1-phosphate receptor

SFKi SRC family kinase inhibitor

siRNA small interfering RNA

SMAP Small molecule activator of PP2A

SPK1 Sphingosine-kinase-1

SSB Single-strand break

T-ALL T cell acute lymphoblastic leukemia

TIL Tumor infiltrating lymphocyte

TMZ Temozolomide

Treg Regulatory T cell
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Highlights

• PP2A is a tumor suppressor that exists as a heterotrimer comprised of 

multiple possible regulatory subunits, allowing it to negatively regulate 

numerous proliferative and survival pathways.

• PP2A inactivation is a frequent event in cancer and its reactivation in 

combination with oncogenic kinase inhibition harbors therapeutic potential.

• Paradoxically, PP2A inhibition has also been shown to have tumoricidal 

effects, particularly when combined with DNA damaging agents.
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Figure 1. 
Protein Phosphatase 2A (PP2A) is a heterotrimeric enzyme complex composed of an ‘A’ 

scaffolding subunit, a ‘B’ regulatory subunit, and a ‘C’ catalytic subunit. Multiple isoforms 

exist for each. B-subunits demonstrate the greatest diversity with 16 identified isoforms 

grouped into 4 families. During PP2A biogenesis, monomeric C-subunit interaction with 

PTPA induces conformational and biochemical changes that activate the C-subunit prior to 

A-subunit binding and dimer formation. Methylation of the C-subunit at the carboxyl 

terminus by LCMT then takes place to facilitate binding of specific methyl-sensitive B-

subunits. Demethylation carried out by PME-1 may conversely alter or reduce holoenzyme 

assembly. Endogenous inhibitors of PP2A such as TIPRL, SET, and CIP2A may further 

regulate PP2A physiologic activity.
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Figure 2. 
Simplified signaling pathways downstream of growth factor signaling. PP2A negatively 

regulates proliferation and cell survival at multiple nodes. However, PP2A may be inhibited 

in cells with aberrantly active growth signaling resulting from activating mutations or 

oncogenic fusion proteins of the receptor tyrosine kinases shown, thereby allowing increased 

signaling through these pathways and tumorigenic progression. In this setting, 

simultaneously inhibition of oncogenic kinases and reactivation of PP2A harbors the 

potential for synergistic antineoplastic effects.
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Figure 3. 
PP2A exerts regulatory activity against multiple substrates within the DNA damage response 

(DDR) pathways. Shown is a simplified schematic of reported PP2A targets; a complete 

picture of PP2A’s role would involve added timing and contextual dynamics. Critically, 

PP2A activity against ATM and Chk1 / Chk2 promotes the high-integrity homologous 

recombination (HR) repair of damaged DNA and resolution of γH2AX foci marking sites of 

DNA strand break. In parallel, cell cycle progression is halted due to PP2A inhibition of 

MDM2 / activation of p53, as well as PP2A activity against PLK1, Aurora Kinase A (AurA), 

Wee1, and cdc25 that altogether inhibits CDK1/CyclinB. (A) In the face of significant DNA 

damage induced by radiation or a chemotherapeutic compound, PP2A inhibition impairs 

damage response and repair, and appropriate cell cycle arrest. Damage persists and cells that 

attempt to divide experience mitotic catastrophe due to a lethal loss of genome integrity. (B) 

Similar to BRCA1/2, PP2A has multiple key roles in facilitating HR repair that may allow it 
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to be a candidate for synthetic lethality when its inactivation is coupled with PARP 

inhibition.
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Figure 4. 
The complex roles of PP2A in immune checkpoint signaling. PP2A activation may increase 

tumor immunity via dephosphorylation and subsequent degradation of MYC as well as 

inhibition of MAPK and PI3K pathways. In contrast, loss of PP2A is linked to reduced Treg 

function, and specific depletion of the regulatory subunit B55δ was shown to increase tumor 

immunity.
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Table 1:

PP2A targeting agents

PP2A Activating
Agent

Class Target Protein Reference(s)

Phenothiazine Tricyclic neuroleptic PP2A-A scaffolding subunit Gutierrez et al. JCI 2014

SMAP Phenothiazine derivative PP2A-A scaffolding subunit Sangodkar et al. JCI 2017

OP449 SET-targeting peptide SET Christensen et al. Blood 2014

FTY720 Sphingosine analog SET Neviani et al. JCI 2007

Forskolin Diterpene Unknown Feschenko et al. J Pharmacol Exp Ther 2002

PP2A Inhibiting Agent Class Target Protein Reference(s)

LB100 (LB1.2) Norcantharidin derivative PP2A – binding partner unknown Lu et al. PNAS 2009
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Table 2:

PP2A activation in combination with other targeted therapies

Reference Cancer PP2A
activating
agent

Combination
Therapy

Major Findings
In addition to enhanced 
cell death in
vitro with combination 
therapy vs.
single agent

Alinari et 
al. Blood 
2011

Mantle cell lymphoma FTY720 Milatuzumab (mAb against 
CD74)

FTY720 increases 
sensitivity to 
milatuzumab by blocking 
CD74 lysosomal 
degradation resulting in 
increased CD74 
abundance Combination 
treatment significantly 
increased overall survival 
in a SCID murine 
xenograft model of 
systemic MCL

Agarwal et 
al. Clin 
Cancer Res 
2014

Chronic myeloid leukemia/ 
acute myeloid leukemia

OP449 Imatinib, nilotinib, ponatinib, 
dasatinib, AC220 (FLT3 
inhibitor), JAK Inhibitor I, AraC

OP449 leads to decreased 
BCR-ABL 
phosphorylation and 
protein levels in CML 
cells OP449 treatment 
decreased STAT5, AKT 
and ERK 
phosphorylation and is 
selectively toxic to 
patient derived AML 
cells and has no effect on 
normal CD34+ cells 
OP449 enhances 
apoptotic response from 
targeted therapy in AML 
driven by FLT3 and 
JAK3 and increases 
AraC-induced cell death 
in AML cells with NRAS 
mutations

Gutierrez 
et al. JCI 
2014

T cell acute lymphoblastic 
leukemia

Perphenazine Compound E (Gamma secretase 
inhibitor)

Combination treatment 
leads to synergy only in 
GSI sensitive lines. 
Perphanazine also has 
single agent activity in 
GSI-resistant T-ALL 
lines Perphanazine 
causes regression in a 
zebrafish model of T-
ALL. The effect is lost 
by overexpression of 
BCL2

Chien et al. 
Molecular 
Oncology 
2015

Pancreatic cancer Penfluridol, FTY720 Dasatinib Phenothiazines identified 
in silico as class of 
molecules that can 
reverse dasatinib-
resistance in pancreatic 
cancer cell lines 
Confirmed synergy with 
the structurally unrelated 
PP2A activator FTY720

Zonta et al. 
Blood 
2015

Chronic lymphocytic leukemia MP07-66 (FTY720 analog) Dasatinib Cell death induced by 
both dasatinib alone and 
combination treatment is 
reversible by okadaic 
acid Combination 
treatment increases 
dephosphorylation of 
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Reference Cancer PP2A
activating
agent

Combination
Therapy

Major Findings
In addition to enhanced 
cell death in
vitro with combination 
therapy vs.
single agent

AKT, GSK3b and SHP-1 
over single agent

Richard et 
al. 
Oncotarget 
2016

T cell acute lymphoblastic 
leukemia

OP449 Dovitinib (multikinase inhibitor) Dovitinib identified in a 
screen for small 
molecules that synergize 
with OP449 in T-ALL 
cell lines Synergy 
observed in both 
NOTCH-dependent and 
NOTCH-independent 
lines

Smith et al. 
Oncotarget 
2016

FLT3+ acute myeloid 
leukemia

FTY720 and related analog 
AAL(S)

Multiple FLT3 inhibitors PP2A activity is reduced 
in primary AML cells 
and FLT3+ cell lines 
Both FTY720 and FLT3 
inhibitors alone restore 
PP2A activity and in 
some cases the effect is 
additive

Shu et al. 
Nature 
2016

Triple-negative breast cancer Perphenazine (PPZ) JQ1 Acquired resistance to 
JQ1 resulted from BRD4 
hyperphosphorylation 
and increased association 
with MED1 leading to 
bromodomain 
independent binding of 
BRD4 to new super-
enhancers PPZ treatment 
decreased BRD4 
phosphorylation and 
restored sensitivity to 
JQ1

Martin et 
al. Breast 
Cancer Res 
2017

Triple-negative breast cancer FTY720 Gefitinib Combination treatment 
enhanced tumor growth 
inhibition in 2 xenograft 
models 4T1 cells grown 
in immune-competent 
mice responded to 
combination treatment 
while no significant 
response was seen in 4T1 
grown in nude mice

Kauko et al 
Sci Transl 
Med 2018

Non-small cell lung carcinoma SMAP AZD6244 (MEK inhibitor) Reduced PP2A activity 
contributes to MEKi 
resistance due to 
enhanced mTOR 
signaling Combination 
treatment is significantly 
better than either agent, 
causing regression in 2 
xenograft models of 
RAS-driven NSCLC

Hayashi et 
al 
Oncotarget 
2018

ER+ breast cancer Forskolin Everolimus (mTORC1 inhibitor) Sensitivity to EVE is 
correlated to the ability 
of EVE to decrease 
CIP2A levels CIP2A 
knockdown restores 
sensitivity to EVE in 
resistance clones

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mazhar et al. Page 32

Table 3:

PP2A inhibition by LB100 in combination with cytotoxic chemotherapy or radiation.

Reference Cancer Combination
Therapy

Major Findings
In addition to enhanced tumor growth
inhibition with combination therapy vs.
radiation / chemotherapy alone

Lu et al. PCNA 2009 Glioblastoma Neuroblastoma Temozolamide Doxorubicin Combination therapy induced tumor regression and 
prevented recurrence in 50% of animals Prevented 
DNA damage-induced S-phase arrest; cells progress 
to mitosis and are susceptible to irregular replication 
and mitotic catastrophe

Zhang et al. 
Biomaterials 2010

Sarcoma Doxorubicin Reduced incidence of lung metastasis

Martiniova et al. 
PLoS One 2011

Pheochromocytoma Temozolamide Delayed tumor recurrence, prolonged disease-free 
survival in 40% of animals that had developed intra-
hepatic metastases

Wei et al. Clin Cancer 
Res 2013

Pancreatic Cancer Radiation LB100-mediated radio-sensitization was specific to 
pancreatic cancer cells vs. normal colonic epithelial 
cells HRR in response to DNA damage was also 
inhibited LB100-induced signaling alterations were 
consistent with those induced by si-PPP2R1A

Bai et al. Mol Cancer 
Ther 2014

Hepatocellular Carcinoma Doxorubicin Cisplatin Reported increased angiogenesis and vascular 
permeability, which enhanced drug penetration but 
may also create potential for metastasis

Lv et al. Oncotarget 
2014

Nasopharyngeal Carcinoma Radiation LB100 was capable of radio-sensitizing a previously 
resistant cell line

Bai et al. Cancer 
Letters 2014

Pancreatic Cancer Doxorubicin Increased blood vessel density allowed for enhanced 
blood perfusion and doxorubicin drug concentration 
in tumor tissue; was linked to HIF-1α expression 
and increased VEGF secretion

Zhang et al. Cell 
Cycle 2015

Osteosarcoma Cisplatin Reduced incidence of lung metastases

Chang et al. Mol 
Cancer Ther 2015

Ovarian Carcinoma Cisplatin Delayed tumor burden in an intraperitoneal 
metastasis model and prevented tumor relapse 
PP2A-C knockdown also sensitized cells to cisplatin

Gordon et al. Mol 
Cancer Ther 2015

Glioblastoma Radiation In contrast to some reports, mitotic catastrophe was a 
major cell death mechanism with combination 
therapy, while apoptosis was minimally observed

Ho et al. Oncotarget 
2016

Medulloblastoma Cisplatin LB100 decreased cell motility and in vivo 
invasiveness, tumors for both combination and 
LB100 monotherapy displayed well-demarcated 
borders LB100 has anti-tumor activity through 
STAT3 inhibition and altered subcellular localization

Fu et al. Tumor Biol 
2016

Hepatocellular Carcinoma Sorafenib LB100 activity was linked to hypoxic environments, 
where apoptosis occurred subsequent to Smad3 
hyperphosphorylation and Bcl2 inhibition

Hu et al. Sci Rep 
2017

Acute Myeloid Leukemia Daunorubicin Bcl2 upregulation is a hallmark of the syndrome. 
LB100 increased miR-181b which inhibited Bcl2 to 
induce apoptosis

Hao et al. Neuro 
Oncol 2017

Chordoma Radiation LB100 reduced tumor cell mobility and invasiveness 
both without and with radiation co-treatment

Lai et al. Sci Transl 
Med 2018

BCR-ABL+ Leukemia Imatinib PP2A inhibition was able to re-sensitize TKI non-
responding cells, and also demonstrated success in 
targeting stem cell populations

Ho et al. Cancer 
Letters 2018

Meningioma Radiation Also linked LB100 anti-tumor growth activity to 
inhibited STAT3 signaling
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