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Abstract

The clinical syndrome referred to as viral hemorrhagic fever (VHF) can be caused several different 

families of RNA viruses, including select members of the arenaviruses, bunyaviruses, filoviruses 

and flaviviruses. VHF is characterized by malaise, fever, vascular permeability, decreased plasma 

volume, coagulation abnormalities and varying degrees of hemorrhage. Study of the filovirus 

Ebola virus has demonstrated a critical role for suppression of innate antiviral defenses in viral 

pathogenesis. Additionally, antigen presenting cells are targets of productive infection and immune 

dysregulation. Among these cell populations, monocytes and macrophages are proposed to 

produice damaging inflammatory cytokines, while infected dendritic cells fail to undergo proper 

maturation, potentially impairing adaptive immunity. Uncontrolled virus replication and 

accompanying inflammatory responses are thought to promote vascular leakage and coagulopathy. 

However, the specific molecular pathways that underlie these features of VHF remain poorly 

understood. The arenavirus Lassa virus and the flavivirus yellow fever virus exhibit similar 

molecular pathogenesis suggesting common underlying mechanisms. Because non-human primate 

models that closely mimic VHF are available for Ebola, Lassa and yellow fever viruses, we 

propose that comparative molecular studies using these models will yield new insights into the 

molecular underpinnings of VHF and suggest new therapeutic approaches.

Viral hemorrhagic fever.

The clinical syndrome classically referred to as viral hemorrhagic fever (VHF) is 

characterized by malaise, fever, vascular permeability, decrease plasma volume, coagulation 

abnormalities and varying degrees of hemorrhage [1–3]. VHF can be caused in human by 

select members of several RNA virus families including arenaviruses (e.g. Lassa, Junin, and 

Lujo virus), bunyaviruses (Crimean Congo hemorrhagic fever and hemorrhagic fever with 

renal syndrome virus), filoviruses (Ebola and Marburg virus), and flaviviruses (yellow fever 

virus and dengue virus). Among those viruses that cause VHF, the frequency of hemorrhage 

manifestations can vary, but generally represents the most severe form of disease caused by 

these pathogens. Because disease which progresses to VHF has high fatality rates, the 

viruses associated with this syndrome are of particular concern from a public health 

perspective; this is in part because of the threat posed by these agents as bioweapons but also 

because outbreaks arising by natural means can have devastating impacts on populations [4]. 

This is evidenced by the 2013-2016 West Africa Ebola epidemic which killed more than 

11,000 people, the annual burden of 100,000 to 300,000 Lassa virus cases in Africa and the 

2016 yellow fever virus outbreak in Angola which caused more than 3,700 infections and 
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364 deaths [5-8]. This review will summarize our current understanding of the pathogenesis 

of VHF by focusing Ebola virus, as this is probably the most intensively studied VHF and 

which has the most developed non-human primate model of VHF. We will also, however, 

draw comparisons to two other VHF viruses for which there are well-developed animal 

models that closely mimic human VHF, Lassa virus and yellow fever virus (YFV).

Ebola virus.

Among viruses classified as VHF agents, Ebola virus is the most extensively studied. Ebola 

virus is a member of the filovirus family. The Filoviridae are classified into three genera: 

Ebolavirus, Marburgvirus and Cuevavirus [9]. The Ebolavirus and Marburgvirus genera 

include human pathogens. Ebolavirus includes five species: Zaire ebolavirus (Ebola virus), 

Sudan ebolavirus, Bundibugyo ebolavirus, Tai Forrest ebolavirus and Reston ebolavirus. The 

Marburgvirus genus contains a single species, Marburg marburgvirus (Marburg virus). The 

filoviruses are filamentous, enveloped, negative-sense RNA virus with a genome of 

approximately 19,000 nucleotides [10]. Ebola virus encodes eight primary transation 

products from seven genes. The proteins are known as nucleoprotein, viral protein of 35 kDa 

(VP35), VP40, soluble glycoprotein (sGP), glycoprotein (GP), VP30, VP24 and large 

protein (L)-which is the enzymatic component of the viral RNA dependent RNA polymerase 

[10].

Filoviruses are zoonotic pathogens. For Marburg virus, Rousettus aegyptiacus bats almost 

certainly serve as reservoir hosts, as these animals have been found to harbor live Marburg 

virus in nature [11], Circumstantial evidence including serological studies and detection of 

filoviral nucleic acids in tissue samples, implicate bats as reservoir hosts for Ebola virus and 

other filovirus family members [12], Expectations are that a reservoir host should not 

typically suffer severe disease or high lethality from infection. Consistent with this, bats 

experimentally-infected with Marburg virus or Ebola virus do not suffer overt signs of 

disease, despite replication in vivo, and infections seem to be cleared, presumably due to bat 

immune responses [13], This scenario differs dramatically from the situation in humans and 

non-human primates. In humans, Ebola virus is notorious for causing severe disease with 

high fatality rates [10], In some Ebola virus outbreaks, case fatality rates have been reported 

to be as high as 90 percent; and a Marburg virus outbreak in Angola in 2005 was reported to 

have an 88 percent case fatality rate [10], Whereas prior filovirus outbreaks had resulted in 

as many as a few hundred human cases, a much larger Ebola virus event occurred in West 

Africa. An outbreak which is thought to have begun in late 2013, expanded into an epidemic 

that extended into 2016, becoming by far the largest outbreak on record. This involved more 

than 28,000 cases and more than 11,000 deaths [8].

Ebola virus disease.

Long known as Ebola hemorrhagic fever, the clinical syndrome caused by Ebola virus is 

now called Ebola virus disease (EVD). This reflects the fact that, as in other VHFs, Ebola 

virus does not uniformly cause overt signs of hemorrhage. Typical cases of EVD present as 

follows [14], The incubation period is generally 3–13 days with abrupt onset of nonspecific 

symptoms such as fever, chills, fatigue, headache, myalgia, nausea, vomiting, and diarrhea. 
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Hypotension is common and can progress to shock and death over the course of the illness. 

Rash is common but not always present. Leukopenia and thrombocytopenia occur. Evidence 

of liver damage including serum alanine and aspartate aminotransferase (ALT, AST) 

elevation is seen. Coagulation defects occur as evidenced by prolonged prothrombin time 

(PT), partial thromboplastin time (PTT), and bleeding, with patients often meeting the 

formal criteria for disseminated intravascular coagulation (DIC). Further, elevated D-dimers 

are detected in plasma indicative of fibrin degradation corresponding to blood clot 

formation. Pathology specimens from autopsy show hepatocellular necrosis, loss of 

lymphocytes from spleen and lymph nodes and tubular necrosis in the kidneys.

Lymphopenia is a characteristic feature of severe Ebola virus infection and lymphoid 

depletion and necrosis are common in the spleen, thymus, and lymph nodes in fatal human 

infection and in experimentally infected NHPs [15-19], Despite the loss of lymphocytes 

during Ebola virus infection, the lymphocytes themselves are not infected, due in part to an 

inability of Ebola virus to successfully enter these cell types [20], In macaque models, the 

lymphocyte loss is greatest among T-lymphocytes and natural killer (NK) cells [21], The 

mechanism(s) that underlie lymphocyte apoptosis is not clear but may be triggered via 

several different agonists or pathways, including the tumor necrosis factor (TNF)-related 

apoptosis-inducing ligand (TRAIL) and Fas death receptor pathways [19,22,23], impairment 

of DC function [19,22,24,25], abnormal production of soluble mediators such as nitric oxide 

that have proapoptotic properties [19,22,26,27], or by direct interactions between 

lymphocytes and EBOV proteins [28], EBOV infection of humans and NHPs triggers the 

expression of a number of inflammatory mediators including the IFNs, IL-6, IL-8, IL-10, 

IL-12, IFN-inducible protein (IP)-10, monocyte chemoattractant protein-1 (MCP-1), normal 

T-cell expressed and secreted (RANTES), TNF-α, and reactive oxygen and nitrogen species 

[27,29,30,22,31,26,32,23], Infection of various primary human cells in vitro also shows that 

EBOV infection can trigger the production of many of these same inflammatory mediators 

[22,33,34], The virus-induced expression of these mediators may result in an immunologic 

imbalance that contributes to failure of adaptive immune responses to clear infection in fatal 

cases, but the details of such a model remain to be worked out.

Thrombocytopenia, consumption of clotting factors, and increased levels of fibrin 

degradation products indicate impairment of the coagulation system during EBOV infection. 

Clinical laboratory data suggest that coagulation is impaired by Ebola virus infection in 

humans [31,35-37] and NHPs [38,39], Notably, D-Dimer levels in blood specimens were 

substantially increased in patients with fatal and nonfatal EBOV infections but were four 

times higher in patients with fatal cases than in patients who survived [35], Infection triggers 

expression of tissue factor (TF) which activates coagulation cascades, and an intervention in 

NHPs designed to inhibit TF triggered blood coagulation, recombinant nematode 

anticoagulant protein c2 (rNAPc2), was able to protect some animals from an otherwise 

lethal infection. This treatment also modified the NHP cytokine response and viral titers, 

suggesting links between inflammation, coagulation and antiviral responses [39].

Most current models suggest that excessive pro-inflammatory cytokine production and 

absence of an adaptive immune response are major factors in Ebola virus pathogenesis. 

However, the most important in vivo sources of the cytokine storm, the relevant signaling 
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pathways that trigger these responses, the mechanisms by which these signals are activated 

and the specific contribution of cytokine production to dysregulation of antiviral immunity, 

disseminated intravascular coagulation and circulatory shock all remain to be defined.

EBOV evasion of host antiviral responses.

Ebola virus and other filoviruses have a broad tissue tropism in primates, infecting many 

different cell types in the liver, spleen, adrenal glands and other organs [40,15,17,41], As 

noted above, Ebola virus and other filoviruses readily infect antigen-presenting cells 

(macrophages, dendritic cells (DCs)) and these cell types have been shown, in temporal 

studies in nonhuman primates (NHPs), to be early targets of EBOV replication 

[41,19,24,33,25,34,22]. Evidence suggests that monocyte and macrophage infection results 

in proinflammatory cytokine production which may contribute to manifestations of disease 

[22,34,42]. In contrast to macrophages, DCs are not activated by infection, and impair 

activation of T cells [25,24,43]. The loss of DC antigen-presenting function may why 

patients with fatal Ebola hemorrhagic fever (HF) show persistent high viremia in the absence 

of detectable virus-specific antibodies [44], although survivors do mount a potent antiviral 

adaptive immune response [45].

Ebola virus encodes multiple mechanisms to block interferon (IFN) responses. Most relevant 

to innate antiviral defense are the type I IFNs (IFNβ and multiple IFNαs). These serve as a 

major arm of the innate antiviral immune response [46]. IFN expression is triggered by 

several different pattern recognition receptors, including the RIG-I-like receptors (RLRs) 

RIG-I, MDA5 and LGP2, and several toll-like receptors (TLRs) such as TLR3, TLR4, TLR7 

and TLR9. Upon their expression, IFNs are released from the producing cells and can signal 

in autocrine or paracrine fashion by binding the IFN apha receptor (IFNAR) and activating a 

JAK-STAT signaling pathway and induces expression of numerous IFN-stimulated genes 

(ISGs), triggering an antiviral state that renders cells refractory to viral infection [47].

The VP35 protein of Ebola virus is a multifunctional dsRNA binding protein that 

participates in interactions with the viral RNA polymerase and nucleoprotein that are critical 

for viral genome replication and production of viral mRNAs [48-50]. In addition, however, 

VP35 potently suppresses IFN production that would otherwise be triggered by RNA virus 

infection [51]. This function appears to be critical for virulence [52,53], For RNA viruses 

that replicate in the cytoplasm, the RIG-I-like receptors (RLRs) RIG-I and MDA5 are major 

sensors of infection, as they detect RNA products of viral replication that possess features 

that mark them as “foreign” [54]. Among such features, double-strandedness and the 

presence of 3’-triphophates are sensed by RIG-I. Activation of RLRs results in signaling that 

leads to activation of the serine/threonine kinases TBK-1 and/or IKKε, the phosphorylation 

of transcription factors interferon regulatory factor (IRF)-3 or −7 and IFN gene expression. 

VP35 has been described to antagonize RLR signaling at several points. It interacts with 

TBK-1 and IKKε, displacing their interaction with IRF-3 or IRF-7, contributing to 

inhibition of their activation [55]. VP35 has also been reported to inhibit IRF-7 mediated 

transcription by a mechanism involving VP35 interaction with IRF-7, the SUMO 

conjugating enzyme Ubc9 and the SUMO E3 ligase PIAS1 [56]. Despite these mechanisms, 

potent suppression of RLR signaling and IFN production requires VP35’s dsRNA binding 
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activity [48,57,52]. Point mutations that disrupt this function while leaving VP35 viral RNA 

synthesis functions intact severely impair suppression of IFN responses [52,58]. This may 

reflect the capacity of VP35 to bind to RLR activating dsRNAs, as wild-type but not dsRNA 

binding mutant VP35 can directly interfere with activation of RIG-I by dsRNAs in vitro 

[59]. However, VP35 residues required for dsRNA binding are also required for its 

interaction with cellular protein PACT, which facilitates RIG-I activation [59]. By binding 

PACT, VP35 prevents PACT interaction with and activation of RIG-I. Disruption of dsRNA 

binding greatly disrupts VP35 suppression of IFN production in transfection studies. 

Further, when mutant VP35s are built into recombinant Ebola viruses, robust IFN responses 

are activated by infection. These data suggest that the dsRNA-dependent functions of VP35 

are the major suppressors of IFN production.

VP35 also likely interferes with development of adaptive immune responses. As noted 

above, Ebola virus impairs DC maturation and function. VP35-mediated suppression of 

RLR signaling makes a major contribution to DC inhibition. As indicated earlier, DCs are 

early targets of Ebola virus [19]. DCs function to present antigen and promote adaptive 

immunity [60]. Infection of DCs with Ebola virus disrupts normal DC maturation processes 

that are required for efficient DC maturation [24,25,43]. However, Ebola viruses built to 

encode dsRNA binding mutants of VP35 trigger a robust DC maturation as well as robust 

IFN responses [43]. Expression of VP35 alone in DCs reproduces the inhibition of 

maturation seen with wild-type Ebola virus, while dsRNA binding mutants lose this 

suppressive capacity, indicating that VP35 inhibition of RLR signaling is the major 

mechanism by which Ebola virus inhibits DCs [61–63].

VP35 RLR inhibition is also critical for Ebola virus virulence. This has been demonstrated 

in both mouse and guinea pig models, where infection with a dsRNA binding mutant of 

Ebola virus results in substantial attenuation relative to wild-type VP35 [52,53]. While the 

molecular basis of attenuation of VP35 mutants in vivo have not yet been reported, 

decreased viral loads correlate with reduced disease. Because the IFN response can 

substantially suppress growth of VP35 mutant Ebola viruses in cell culture and in vivo; the 

VP35 defect in RLR signaling likely results in potent innate immune responses that control 

infection in vivo, thereby explaining attenuation. In this regard, it is notable that the related 

Marburg virus does encode a VP35 protein that impairs IFN responses [64]. However, the 

Marburg VP35 protein is somewhat less suppressive of IFN responses than is the Ebola virus 

VP35 [65]. This may reflect in part differences in how the Marburg virus VP35 protein 

antagonizes IFN responses. Further, Marburg virus induces more IFN response than does 

Ebola virus in cell culture studies. Nonetheless, some outbreaks of Marburg virus, particular 

one on Angola in 2005, resuting in high reported case fatality rates, comparable to what has 

been reported for Ebola virus [66]. This suggests that absolute suppression of IFN responses 

is not necessary for a virus to cause VHF. It may be that Marburg virus has evolved other 

mechanisms that allow it to replicate efficiently when IFN is produced.

Ebola virus also suppresses the capacity of cells to respond to exogenous IFNs. Addition of 

IFN to cells results in activation of a Jak-STAT pathway in which STAT1 and STAT2 

become phosphorylated by Jak family tyrosine kinases. This allows the interaction of STAT1 

with the NPI-1 subfamily of karyopherin alpha (KPNA) (also known as importin alpha) 
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proteins, allowing the nuclear accumulation of protein complexes containing STAT1 and 

activation of IFN stimulated genes (ISGs) [67]. The Ebola virus VP24 blocks the nuclear 

accumulation of tyrosine phosphorylated STAT1 by binding to the NPI-1 subfamily of 

KPNAs, blocking their binding to the non-classical nuclear localization signal on STAT1 and 

preventing expression of ISG expression [68-71]. This blocks the antiviral effects of IFNs. 

Interestingly, Marburg virus also differs from Ebola virus in how it blocks IFN signaling. 

Instead of its VP24 protein serving as a suppressor of IFN responses, the Marburg virus 

matrix protein VP40 blocks the activity of the kinase Jak1. This prevents the tyrosine 

phosphorylation events that typically occur after IFN addition to cells. This prevents ISG 

induction and blocks antiviral responses [72,73]. The extent to which these different 

inhibitory strategies influence the outcome of infection remains to be determined. However, 

it seems likely that these functions protect infected cells from the antiviral effects of IFNs 

produced in vivo and may contribute to the relative poor efficacy of IFNs administered to 

treat these infections.

In addition to blocking signaling pathways related to RLR and IFN responses, Ebola virus 

encodes proteins that can counteract specific IFN-induced antiviral proteins and that may 

interfere with adaptive immunity by other means. Notable examples, include the inhibition 

of the IFN-induced antiviral kinase PKR, which is inhibited by VP35; the ability of the 

Ebola virus glycoprotein (GP) to counteract BST-2, also known as tetherin, which can 

prevent release of budding virus particles from infected cells; and the capacity of GP to 

potentially mask the presence of class I major histocompatibility complex on the cell surface 

[74-76]. The relative contribution of these functions to pathogenesis also requires further 

investigation.

Induction of inflammation.

As noted above, a major feature of VHF is the induction of a systemic inflammatory 

response, sometimes referred to as “cytokine storm.” That this occurs despite the capacity of 

Ebola virus to potently suppress innate immune responses in infected cells is striking and 

incompletely understood. In DCs for example, VP35 appears to suppress not only IFN 

production but also inflammatory cytokine production [61,62]. In contrast, numerous studies 

have infected peripheral blood mononuclear cells (PBMC), monocytes or macrophages and 

detected robust cytokine responses, suggesting that these cells may be important sources of 

damaging soluble mediators in vivo [34,22,42,33,77,78]. The pathways involved in the 

inflammatory responses and the viral products that trigger them remain to be defined. It is 

also unclear whether infected cells are the primary sources of cytokines or whether 

cytokines may be triggered largely via a bystander effect. One possibility is that GP triggers 

these responses, as GP activates signaling via Toll like receptor 4 [79]. Further GP is present 

on the surface of viral particles, on the surface of infected cells and is released in various 

forms as soluble protein; providing several potential mechanism to trigger systemic 

inflammation. Recent work correlates induction of human primary macrophage 

inflammatory cytokine production by the virulent Ebola virus but not by the more attenuated 

Reston virus with the capacity of Ebola versus Reston virus GPs to activate TLR4 signaling 

[42]. However, the contribution of GP-mediated inflammation to in vivo disease remains to 

be validated and other mechanisms may also be in play. Further defining proinflammatory 
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pathways and defining which cytokines are most relevant to disease versus promoting 

effective antiviral responses could provide new avenues to therapeutic intervention.

Similarities of other VHFs to Ebola virus.

Lassa virus.

Despite belonging to a different virus family, Lassa virus can cause VHF with many 

similarities to Ebola virus disease. Lassa virus belongs to the arenavirus family [80]. It is a 

pleomorphic, enveloped RNA virus with a bi-segmented, ambisense genome. Like Ebola 

virus, Lassa virus is a zoonotic pathogen. The reservoir for Lassa virus is the commensal 

rodent known as the multi-mammate rat (Mastomys natalensis). Once infected, this rodent 

displays no overt signs of disease and is thought to shed the virus throughout its lifespan. 

Peridomestic infestations by M. natalensis can lead to outbreaks of Lassa virus disease, 

known as Lassa Fever, where over 300,000 cases occur annually with an estimated 3000 

deaths [6]. Hospitalized patients presenting with Lassa fever have a case fatality rate of 

about 70-80%, but only about 1-2% of Lassa virus infections result in death. Transmission is 

through to occur through mucosal exposure to rodent excreta or by nosocomial means. After 

a 1-3 week incubation, Lassa fever presents initially as a non-specific febrile illness but can 

then progress to pharyngitis, vomiting, diarrhea, conjunctival injection, mucosal bleeding, 

pleural effusion and pericardial effusion which can lead to hypovolemia, shock and death. A 

transient thrombocytopenia is commonly observed and in rare cases petechial rash can also 

be present. Elevated liver enzyme levels (ALT, AST) is also common. A marked neural 

component of disease is also common and can present as sensorineural hearing deficit, 

tremors, encephalitis, and marked seizures.

Like Ebola virus, Lassa virus exhibits broad tissue tropism infecting liver, spleen, adrenal 

glands and other organs and infected antigen-presenting cells, with DCs once again being 

important in vivo targets of infection [81-83]. Similar to Ebola virus, Lassa virus also 

inhibits IFN responses and DC maturation. Lassa virus infection does not activate DCs or 

macrophages and Lassa virus-infected DCs fail to stimulate strong T cell responses and only 

induce weak memory responses [25,82,84]. The Lassa virus nucleoprotein (NP) has the 

capacity to block IFN induction which involves, at least in part, NP 3’-5’ exonuclease 

activity [85-87]. Lassa virus NP is also involved in the inhibition of antigen-presenting cell 

(DC and macrophage)-mediated NK cell responses [88]. It has also been shown that the 

LASV Z protein can inhibit RIG-I and Melanoma Differentiation-Associated protein 5 

(MDA5) [89,90].

Yellow fever virus.

YFV belongs to the flavivirus family. It is an enveloped, positive-sense RNA virus with an 

~11 KB genome. It is transmitted by mosquitoes of the Haemagogus and Aedes genera. It 

can be maintained through two life cycles: an urban cycle in which it is transmitted between 

humans via Aedes aegypti and in a jungle cycle where transmission occurs between non-

human primates (NHP) via Hemagogus mosquitos in South America and Aedes africanus in 

Africa; humans can be infected by mosquitoes that previously fed on an infected monkey 

[91]. YFV is endemic in central Africa and South America and results in approximately 
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200,000 cases and 30,000 deaths annually despite the existence of an effective vaccine [92]. 

A re-emergence of YFV in December 2015 in Angola resulted in 3,748 suspected cases and 

364 deaths. Although a vaccination campaign was implemented, depleted vaccine supplies 

hindered this effort [7]. In January 2017, a total of 110 suspected cases of yellow fever, 

including 30 deaths, were reported in Brazil [93]. Approximately 15% of infected YFV 

patients become severely ill, entering the “intoxication stage” [94]. Of patients that develop 

severe visceral disease, case fatality rates range from 20%-50% [95]. The VHF caused by 

YFV shares many features with Ebola virus disease [94,96]. Its incubation period is usually 

3–6 days but like Ebola virus, it has an abrupt onset with non-specific symptoms such as 

fever, chills, and headache. Other symptoms include myalgia, nausea, vomiting, dizziness 

and hemorrhage. As during Ebola virus disease, leukopenia and thrombocytopenia occur, 

evidence for coagulation defects is present and AST and ALT levels increase. Distinguishing 

YFV from other VHFs, patients become severely jaundiced.

Mechanisms of YFV pathogenesis.

Pathogenesis is incompletely understood. Like other flaviviruses, YFV inhibits type I IFN 

responses. NS4B, whose function is conserved among flaviviruses, can block STAT1 

activation and interferon stimulated gene (ISG) expression in Vero cells after addition of 

IFNβ [97]. Further, NS5 can interact with STAT2 to inhibit IFN responses [98]. Lastly, the 

sequence of the YFV E protein influences the extent to which the virus triggers innate 

antiviral responses [99]. The importance of innate immune evasion to the pathogenesis of 

YFV is suggested by the reduced mortality in rhesus macaques treated with IFNα inducers 

such as polyI:C [100]. Similarly, administration of IFNγ reduced viremia and hepatitis 

severity in squirrel monkeys and prolonged survival time in rhesus macaques [101]. Similar 

to hemorrhagic fever caused by EBOV, YFV infection results in profound lymphopenia and 

depletion of lymphocytes in germinal centers of spleen, LN tonsils and Peyer’s patches 

[102,103]. Similar to Ebola hemorrhagic fever, cytokine dysregulation during may mediate 

lymphopenia, endothelial damage, disseminated intravascular coagulation and circulatory 

shock observed in the terminal stage of YFV. Levels of pro-inflammatory modulators were 

significantly higher in patients with fatal yellow fever compared to patients who survived 

[104]. Similarly, levels of IL-6, IFNγ, MCP-1 and IL-15 were elevated in rhesus macaques 

infected withYFV [103]. Thrombocytopenia, prolonged clotting and prothrombin times have 

been observed in human patients and nonhuman primates due to diminished liver production 

of fibrinogen and clotting factors [94,103]. However, as with other VHFs, the source of the 

cytokine storm and its connection to disseminated intravascular coagulation and circulatory 

shock remains to be defined.

A working model of VHF pathogenesis.

Based on the available data, the following model of VHF is suggested (Fig. 1). Infection 

with VHF viruses may occur by exposure of mucous membranes or breaks in the skin to 

infectious virus such as may occur for Ebola virus; through exposure to excreta from 

infected rodents, as in Lassa virus; or through the bite of an infected insect, such as occurs 

for YFV. After introduction, macrophages and DCs are early targets of infection. 

Macrophages and DCs support productive replication and also traffic to local lymph nodes 

and to other tissues and organs, promoting systemic dissemination. Infection of and damage 
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to different organs promotes the indicated pathologic processes; for example liver damage 

may depress production of clotting factors, which may result in hemorrhage. Infection of 

macrophages also results in unbridled production of cytokines, commonly referred to as 

cytokine storm. This not only promotes vascular leakage and hypotension but can also 

activate coagulation pathways that may ultimately lead to disseminated intravascular 

coagulation. Also, these cytokines likely contribute to apoptosis of lymphocytes. Infection of 

DCs leads to a dysregulated phenotype where IFN responses are suppressed and maturation 

of DCs is impaired. This likely inhibits activation of T cells, further preventing control of the 

infection.

The need for a comparative systems biology approach to define common underlying 
features of VHF.

Some have questioned the utility of the term VHF, because the syndrome it represents is 

caused by a diverse array of viruses with varying replication strategies, because hemorrhage 

is often not a major manifestation of disease and because for some viruses, full blown VHF 

is less common than are less severe outcomes [105]. Nonetheless, the most severe forms of 

illness caused by the so-called VHF viruses result in common clinical features which 

suggests common underlying mechanisms. Outbreaks caused by these viruses can be 

unpredictable, as in the case of Ebola virus and YFV infection and these infections often 

occur in remote locations, making laboratory study of human infections difficult. For this 

reason, treatments that target common mechanisms would be useful as a generic approach to 

VHF treatment. However, devising such therapeutic approaches requires a better 

understanding of VHF mechanisms of disease. For this, good animal models that closely 

replicate severe human disease are important. Among the VHF viruses, high quality 

macaque models exist for Ebola virus and other filoviruses, for Lassa virus and for YFV. 

These, coupled with modern molecular technologies and systems biology approaches, 

present opportunities for detailed comparisons of VHF that could clarify mechanisms of 

disease and suggest therapeutic approaches.

Among the most pressing questions that could be addressed, What pathway(s) direct 
excessive inflammation and how does this influence the outcome of disease? Massive pro-

inflammatory cytokine production likely plays a major role in the pathogenesis of VHF 

[27,22]. In vitro studies suggest that infected monocytes and macrophages are a major 

source of inflammatory cytokines. However, the cell types most responsible for the 

inflammatory response that occurs in vivo and the most relevant signaling pathways that 

direct the inflammatory response remain undefined. Further, it is unclear if virus infection 

directs this response or whether a bystander effect makes a significant contribution to the 

inflammatory cytokine response.

How do inflammatory and immune responses contribute to vascular leakage and 
coagulopathy and what is the commonality between VHF from different virus families?

In vitro studies demonstrate that EBOV infection can elicit cytokines such as TNF that 

promote endothelial leakage [106,107,19,108]. The inflammatory response in monocytes 

and macrophages has been linked to production of tissue factor (TF) which can activate 

coagulation cascades and thereby contribute to DIC. Inhibition of TF activity can partially 

Basler Page 9

Semin Immunopathol. Author manuscript; available in PMC 2019 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protect NHPs from lethal EBOV challenge [39]. These data therefore suggest a link between 

inflammation, vascular leakage and cytokine production, however the contribution of 

inflammatory cytokines to these other processes remains to be fully evaluated 

experimentally. Further, the contributions of liver damage or damage to the adrenal gland to 

coagulopathy or low blood pressure also need further examination [109]. To date, there is 

limited information comparing the coagulopathies between hemorrhagic fever virus 

infections. Dissection as to these commonalities may allow for more universal treatment 

approaches across all VHF infections.

What is the status of the adaptive immune response?

Viral impairment of DC maturation suggests that T cell responses to EBOV should be 

impaired in vivo. Consistent with this view, fatal Ebola infections have been associated with 

the lack of specific antibody responses and with the apoptotic loss of lymphocytes 

[18,110,23,21,111]. Similar findings are reported for Lassa fever and yellow fever. However, 

survivors develop specific T cell responses [45,112]. Therefore, the development of adaptive 

immune responses during VHF in vivo requires further assessment.
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Figure 1. Model of viral hemorrhagic fever.
This model is largely based on Ebola virus, but is consistent with what is also known about 

Lassa and yellow fever virus pathogenesis. Ebola virus infects at a mucosal surface and 

infects macrophages and dendritic cells which migrate to lymph nodes. The infection 

suppresses innate and adaptive immune responses, allowing the virus to disseminate 

systemically. This systemic spread leads to damage in a variety of tissues, excessive cytokine 

responses, vascular leakage and disseminated intravascular coagulation. See text for details.
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