
The Journal of Clinical Investigation   

1 4 8 3jci.org   Volume 129   Number 4   April 2019

R E V I E W  S E R I E S :  A L L E R G Y 
Series Editor: Kari Nadeau 

Allergic disease has been on the rise in Western societies in recent 
decades. Twin studies have shown that while genetic predisposition 
influences the development of allergic sensitization, environmental 
factors also play a very important role (1–4). Thirty years ago, the 
hygiene hypothesis postulated that microbial infections protect 
from allergy (5). This hypothesis has since been updated to encom-
pass the commensal microbiota (6–8), based on the identification of 
bacteria that are allergy protective as well as the presence of poten-
tially harmful bacteria that can drive allergic disease. The composi-
tion of the commensal microbiome is affected by multiple environ-
mental factors, including the mode of delivery during childbirth (9), 
breast versus formula feeding (10, 11), a “Western diet” low in fiber 
and high in fat content (12, 13), and misuse of antibiotics (14).

Atopic diseases can take a number of different forms. Often, 
skin manifestations like atopic dermatitis (AD; or eczema) appear 
in infancy and can persist into adulthood. It is estimated that AD 
affects up to 20% of the population, especially in developed coun-
tries (15), and predisposes children to the development of food 
allergies in early childhood and to asthma by school age (16–20). 
This disease progression is often called the atopic or allergic 
march. Although the exact mechanisms leading to sensitization 
(instead of tolerance) to environmental antigens are still being 
investigated, a picture of the underlying immune response has 
emerged (for recent reviews, see refs. 6, 21, 22). Generally, pro-
duction of the alarmins IL-25, IL-33, and thymic stromal lymph-
opoietin (TSLP) by epithelial cells activates local immune cells 
including basophils and type 2 innate lymphoid cells (ILC2s) (23). 
These cells then produce the type 2 cytokines IL-4, IL-5, and IL-13, 
which prime DCs to induce the differentiation of CD4+ T cells 
into Th2 cells (21–23). Cytokine-secreting Th2 cells activate aller-
gen-specific B cells, inducing their class switch to IgE (22). The IgE 
isotype is a hallmark of allergic sensitization. Effector cells like 
mast cells, eosinophils, and basophils express IgE receptors. Aller-

gens cross-link IgE bound to these receptors and induce effector 
cell degranulation, causing the release of allergic mediators like 
histamine and eicosanoids like prostaglandins or leukotrienes, as 
well as proteases and cytokines. These mediators induce the typ-
ical symptoms of allergic reactions: vasodilation, smooth muscle 
hypercontractility, and mucus overproduction at mucosal sites, 
resulting in a broad range of clinical signs and symptoms, from 
redness and itching to deadly anaphylactic responses (21, 22).

In this Review, we will introduce the microbiota of skin, intes-
tinal tract, and airways; describe their roles in health; and discuss 
findings on how alterations in their composition can affect mecha-
nisms of allergic sensitization.

The skin microbiota and atopic dermatitis
Healthy human skin forms a barrier between our tissues and the 
environment. The top layer of the epidermis, the stratum cor-
neum, consists of cross-linked keratinocytes that are constantly 
being shed. The skin surface is a hostile environment, desiccated 
with a high salt concentration and low pH, although specific body 
sites differ in variables like moisture, lipid content, UV exposure, 
and temperature (24, 25). The composition of the skin microbiota 
depends on genetics, environmental factors, and the local micro-
environment of the body site (26–29). In moist skin sites, coryne-
bacteria and some staphylococci dominate, while in sebaceous 
(oily) areas lipophilic bacteria prevail, with propionibacteria and 
staphylococci being the most abundant; dry skin sites are colonized 
with mixed bacterial populations with abundant Betaproteobacte-
ria and Flavobacteriales (27–29). Additional factors that determine 
the composition of the skin microbiome include the host immune 
system as well as competition for niche between the commensal 
bacteria themselves (Figure 1A). The skin is rich in antimicrobial 
lipids and antimicrobial peptides (AMPs), both of which are consti-
tutively expressed or induced by the presence of specific microbes; 
commensal bacteria can produce AMPs as well (30–32). Commen-
sal bacteria are also crucial for the education of the skin immune 
system, inducing the influx of microbiota-specific regulatory and 
effector T cells, which are important to control subsequent chal-
lenges with potential pathogens (33–35). Skin microbiota composi-
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microbiota with decreased colonization of beneficial commensals 
(42, 43) and an increased presence of the potentially pathogen-
ic commensal Staphylococcus aureus is a common phenomenon in 
both patients with AD and murine models of disease (44–46). The 
exact cause and timing of when particular predisposing factors 
come into play are not completely understood. While overgrowth of 
S. aureus sometimes precedes the development of AD (47), this is 
not always the case (43). However, in at least a subset of patients, 
alterations of the skin microenvironment, due to an impairment of 
the skin barrier function, affect colonization with commensals and 
their tightly regulated interplay with host cells. Alterations in the 
microenvironment could, for example, include moisture levels, pH, 
nutrient availability, or shifts in the production of AMPs. Potentially 
pathogenic strains of S. aureus exploit these conditions, leading to 
their overgrowth; the lesional skin is colonized with S. aureus in up 
to 90% of patients with AD (48). The proportion of S. aureus rela-
tive to other commensals is increased during flares (44), and higher 
density is associated with more severe AD (49). Increased coloni-
zation with S. aureus is associated with a lower diversity of the skin 
microbiome. Diversity decreases further during a flare and increas-
es if AD is treated (44); in a murine model, treatment with antibi-

tion undergoes changes during a person’s lifetime due to alterations 
in host biology. While the infant microbiome is fairly homogeneous 
across body sites at the time of delivery, it diversifies according to 
body site microenvironments within the first 6 weeks of life (36), 
and then changes during puberty as hormones affect the skin (37). 
The adult skin microbiome appears to be fairly stable over time 
(38). These findings demonstrate how environmental factors, host 
biology, and microbiota influence each other to establish a healthy 
skin microenvironment; the differences described between body 
sites or in different age groups may at least partially explain why 
certain skin conditions, including AD, preferentially appear in cer-
tain age groups or at specific body sites.

Several different but interdependent factors seem to predispose 
patients to AD. First, in contrast to healthy skin, the barrier function 
of AD patients’ skin is impaired (15). A number of genetic risk fac-
tors have been identified that directly affect barrier integrity, like 
loss-of-function mutations in the protein filaggrin, which is import-
ant for the development of the stratum corneum, or mutations that 
affect skin immune responses (39, 40). Mice with a filaggrin loss-of-
function mutation develop AD-like skin inflammation, underscor-
ing the importance of this protein (41). Second, dysbiosis of the skin 

Figure 1. Skin commensals and an intact skin barrier promote tolerance induction, while skin barrier impairment and dysbiosis can drive type 2 inflam-
mation. (A) In healthy individuals, the skin is colonized with a variety of skin commensals. Their composition depends on the local microenvironment and 
is balanced by antimicrobial peptides and lipids produced by the host or the commensals themselves. They also protect the host from colonization with 
potentially pathogenic bacteria. Colonization with beneficial commensals further induces local immune responses that protect the host from patho-
gens and promote induction of tolerance to environmental antigens. (B) Impaired skin barrier function is one of the main predisposing factors for atopic 
dermatitis (AD) development. Loss of microbial diversity as well as an overabundance of Staphylococcus aureus is also a common phenomenon on lesional 
skin of AD patients. Potentially pathogenic S. aureus strains can produce a number of molecules aiding in penetration of the host skin and driving type 2 
immune responses, thereby exacerbating AD. Environmental antigens taken up through the inflamed skin are encountered in a pro–type 2 environment, 
which can lead to allergic sensitization with production of antigen-specific IgE. AMP, antimicrobial peptide; APC, antigen-presenting cell; LN, lymph node; 
SEB, staphylococcal enterotoxin B; Teff, effector T cell; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin.



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  A L L E R G Y

1 4 8 5jci.org   Volume 129   Number 4   April 2019

this case peanut extract) to intact skin induced tolerance, applica-
tion to tape-stripped skin exacerbated the allergic response to pea-
nut protein (62). In infants, application of peanut oil–containing 
creams to inflamed skin may lead to sensitization to peanut (63). In 
a mouse model, sensitization with peanut extract or OVA through 
AD-like skin lesions increased basophil accumulation in the skin 
in a TSLP-dependent manner, inducing a systemic Th2 response 
with elevated levels of allergen-specific IgE (64). Similarly, mice 
sensitized through barrier-impaired skin exhibited airway allergic 
responses to OVA that depended on keratinocyte production of 
TSLP (65, 66); in a separate study, coadministration of intradermal 
TSLP with OVA was sufficient to induce OVA-specific sensitization 
and airway allergic responses (67). In addition, mice with a filaggrin 
loss-of-function mutation developed spontaneous lung inflamma-
tion with increased airway hyperresponsiveness (41). These data 
suggest that antigen taken up through barrier-defective, inflamed 
skin can be inappropriately recognized by the immune system and 
elicit an antigen-specific Th2 response, resulting in allergic sensiti-
zation. This could at least partially explain the correlation between 
AD in early childhood and the subsequent development of food 
allergies or asthma. However, the microbiome influences immune 
maturation in more general terms (discussed below), which could 
potentially also influence predisposition to AD and certainly has 
effects on food allergies and asthma.

The intestinal microbiota and food allergy
Even more so than the skin, the intestinal tract is colonized with 
a large and diverse microbiota that is highly influenced by factors 
in the local microenvironment. The small and large intestines dif-
fer greatly in their morphology and function (see refs. 68 and 69 
for review). In keeping with its functions in digestion and nutrient 
absorption, the surface area of the small intestine is enlarged by 
numerous villous projections; it is also covered with a fairly diffuse 
mucus layer. The mucus layer of the colon differs from that of the 
small intestine, having a two-layered structure with a dense and 
sterile inner layer covered by a more diffuse outer layer that is pop-
ulated by bacteria (70). While the proximal small intestine is rich in 
easily accessible nutrients, nutrients are depleted along its length; 
similarly, concentrations of AMPs, oxygen, and bile acids (which 
are released into the proximal small intestine) as well as acidity 
decrease along the length of the intestinal tract (68, 69). Bacteri-
al abundance increases from the duodenum to the terminal ileum 
and is highest in cecum and colon, which are enriched with anaer-
obic bacteria that ferment plant-derived dietary fibers (69, 71–73). 
Similarly, cross-sectional differences exist between regions closest 
to the epithelium, the mucus layer, and the lumen itself (74).

A number of studies have examined the intestinal bacterial 
composition of humans as well as mice. While there is large inter-
individual variability, Firmicutes and Bacteroidetes dominate 
overall (71, 74–77). However, like the skin microbiota, the intesti-
nal microbiota changes over the course of an individual’s life. The 
infant gut microbiome is shaped by factors like mode of birth (78, 
79), maternal antibodies found in breast milk (80), and the type 
of oligosaccharides in the milk an infant is fed (81). The switch to 
solid foods changes the composition again (79), and it does not 
stabilize until about 3 years of age (78, 82). The adult microbiome, 
while affected by diet (83), is fairly stable over time (84, 85).

otics targeting S. aureus partially restored microbial diversity and 
almost completely prevented dermatitis development (45). Sever-
al studies have demonstrated how a diverse microbiome can keep 
the growth of S. aureus in check. Culturable Gram-negative bacteria 
from healthy human skin, for example, were able to enhance barrier 
function, control S. aureus colonization, and even alleviate dermati-
tis in a mouse model of AD, unlike their counterparts from the skin 
of patients with AD (42). Certain strains of Staphylococcus (including 
S. epidermidis and S. hominis) produce AMPs that are active against 
S. aureus and even synergize with human AMPs. These strains are 
commonly found on healthy skin but are rare on patients with AD 
and, when reintroduced, acted against colonization with S. aureus 
(31, 32, 50). S. epidermidis additionally produces a small lipopeptide 
that signals through host TLR2 and induces the production of AMPs 
by keratinocytes (51, 52). These findings demonstrate how loss of 
beneficial commensals and the AMPs they produce (or whose pro-
duction they induce in host cells) enables S. aureus overgrowth, pav-
ing the way for establishment or exacerbation of AD.

What makes S. aureus so dangerous? The answer lies in the 
variety of factors S. aureus strains produce to exploit a weakened 
skin barrier and activate deleterious host immune reactions (Fig-
ure 1B). For instance, S. aureus produces a protease that enables it 
to penetrate into the dermis of AD patients or mice with filaggrin 
loss-of function mutations (53, 54). S. aureus penetration results in 
increased production of type 2 cytokines such as TSLP, IL-4, and 
IL-13 (53). S. aureus strains also produce a number of molecules that 
induce skin inflammation and exacerbation of AD. Among these are 
α-toxin, which lyses keratinocytes, especially in the presence of type 
2 cytokines (55, 56). Local concentrations of type 2 cytokines are 
increased by δ-toxin, which induces mast cell degranulation (48), 
as well as by lipoproteins, S. aureus cell wall components that signal 
through TLR2/6 and induce TSLP production in keratinocytes (57). 
Staphylococcal enterotoxin B (SEB) is a superantigen that induces a 
mixed Th1/Th2 response after application to tape-stripped mouse 
skin and results in specific IgE responses to both SEB and the coap-
plied model antigen OVA (58). When applied to human skin, SEB 
led to skin inflammation in both healthy subjects and those with 
AD; in three of six participants with AD, the application of SEB led 
to a disease flare (59). All of these factors contribute to the exacer-
bation of AD by creating local inflammation and inducing a further 
breakdown of the skin barrier. In future studies, it will be interest-
ing to further clarify the role of commensal bacteria in the develop-
ment of AD. What other factors might contribute to disease in those 
children who did not exhibit dysbiosis or an overgrowth of S. aureus 
before the development of AD? Current treatment regimens still 
mainly focus on suppressing inflammation and supporting the epi-
dermal barrier with emollients (15). Combining these with therapies 
targeting the skin microbiome may be beneficial.

AD and allergic sensitization
Skin inflammation and impaired barrier function likely contribute 
to allergic sensitization to environmental antigens. Several studies 
have shown that children with an impaired skin barrier or AD are at 
higher risk of atopic sensitization (16–18, 60, 61). In fact, the out-
comes of potential allergen application onto intact versus damaged 
skin have been compared to determine the best approach to epi-
cutaneous immunotherapy. Whereas application of the allergen (in 
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by DCs (99). Butyrate additionally serves as an energy source for 
colonocytes (101); it also induces beta-oxidation in colonocytes to 
keep the colonic environment hypoxic and enables the survival of 
beneficial obligate anaerobes (102). The picture emerging from 
these findings indicates a crucial role for dietary fiber–fermenting 
obligate anaerobes that, through production of SCFAs, strengthen 
intestinal barrier function and support the establishment of a gen-
erally tolerogenic environment by inducing Tregs as well as inhib-
iting proinflammatory DC functions. Other microbial metabolites 
also contribute to intestinal homeostasis. A long-chain fatty acid 
produced by lactobacilli signals through GPR40 and improves 
barrier function by inducing expression of tight junction proteins 
(103). Intestinal bacteria metabolize tryptophan to produce aryl 
hydrocarbon receptor (AhR) ligands that induce barrier-protective 
IL-22 expression (104). Bile acids are also metabolized by intes-
tinal bacteria, altering their reabsorption and bioavailability. Bile 
acids inhibit antigen-presenting cell activation and reduce inflam-
mation (105). In contrast to their hosts, certain commensal bac-
teria synthesize essential vitamins, some of which are important 
immunomodulators; one example of this is vitamin B9, which sup-
ports Treg survival (106–108). All of these factors likely contribute 
to the beneficial effects of a healthy intestinal microbiota.

In addition to providing the host with protection from colo-
nization with potential pathogens (see ref. 86 for a recent review 
on colonization resistance), symbiotic bacteria are important for 
intestinal barrier integrity as well as the development, education, 
and regulation of the immune system (Figure 2). Commensal 
bacteria induce the differentiation of colonic T cells into Tregs 
(87, 88). Specifically, Bacteroides fragilis polysaccharide A induc-
es the differentiation of Tregs via TLR2 signaling (89, 90), while 
certain strains of Clostridia, mainly from clusters IV and XIVa, 
induce Tregs via TGF-β (91, 92). Commensals specifically expand 
a population of retinoic acid receptor–related orphan receptor 
(ROR)γt+ colonic Tregs (93, 94) that keep Th2 responses in check 
(94). Short-chain fatty acids (SCFAs), produced by fermentation 
of dietary fiber by anaerobic bacteria, play an important role in 
the induction of Tregs (95). SCFAs can bind GPCRs (including 
GPR43, GPR41, and GPR109a) expressed on immune cells and 
the intestinal epithelium to induce Tregs and support epithelial 
homeostasis (95–98). The SCFAs butyrate and propionate also act 
as histone deacetylase (HDAC) inhibitors, leading to the acetyla-
tion of the Foxp3 coding region in T cells and increased expression 
of this transcription factor, driving Treg differentiation (99, 100) 
as well as reducing the production of proinflammatory mediators 

Figure 2. The healthy intestinal microbiota protects the intestinal barrier and promotes a tolerogenic microenvironment. A healthy gut microbiota 
containing fiber-fermenting anaerobic commensals can induce the differentiation of T cells into Tregs via several different mechanisms. SCFAs induce GPCR 
signaling as well as inhibit HDACs within DCs and T cells. Essential vitamins produced by bacteria can be important for Treg survival, and bile acids, which are 
modified by the intestinal microbiota, inhibit APC activation. In addition, molecules like PSA produced by Bacteroides fragilis can also induce Treg differen-
tiation. SCFA production also protects the intestinal barrier. Butyrate, for example, is an important energy source for colonocytes; its utilization drives local 
hypoxia, which in turn favors the anaerobic microbiota. Tryptophan metabolites can act as AhR ligands and induce the production of IL-22 by ILC3s. IL-22 acts 
on the epithelium to strengthen the intestinal barrier function, for example by induction of antimicrobial peptides or mucus production. Dietary antigens 
sampled in this environment will lead to tolerance induction rather than sensitization against the antigen. AhR, aryl hydrocarbon receptor; AMP, antimicro-
bial peptide; APC, antigen-presenting cell; GPCR, G protein–coupled receptor; HDAC, histone deacetylase; IEC, intestinal epithelial cell; ILC, innate lymphoid 
cell; LCFA, long-chain fatty acid; LN, lymph node; LPS, lipopolysaccharide; PSA, polysaccharide A; SCFA, short-chain fatty acid; Treg, regulatory T cell.
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in their intestinal microbiota during the first 3 years of their lives, 
which affected innate immune signaling differently from the type 
of LPS produced by the intestinal bacteria of the Russian children 
(121). In future studies it will be interesting to explore how stimula-
tion of immune cells, for example through TLR4, affects the intes-
tinal immune environment in the context of food allergies. Does 
stimulation with immunogenic LPS induce a Th1 response and 
thereby a shift away from the type 2 response necessary for aller-
gic sensitization? Or do certain bacterial populations present early 
in life prime the immune system to not react inappropriately later 
on, whenever it is confronted with microbial antigens or allergens?

The intestinal microbiota and asthma
Intestinal dysbiosis in early infancy is also associated with increased 
risk for later asthma development (122, 123). One study assessed 
asthma risk using positive skin prick testing and the presence of 
clinical wheeze at 1 year of age; the combination of those two fac-
tors was associated with a positive Asthma Predictive Index at age 3 
and thereby an increased risk of having active asthma at school age 
(123). The authors described a decrease in the genera Rothia, Fae
calibacterium, Lachnospira, and Veillonella (the latter three of which 
are Firmicutes and known SCFA producers) as well as a reduction 
in fecal acetate in those infants with an elevated risk of becoming 
asthmatic (123). A reduction in Faecalibacterium was also associated 
with an increased risk of atopic sensitization and asthma develop-
ment in a separate study (122). Colonization of GF mice with Rothia, 
Faecalibacterium, Lachnospira, and Veillonella alleviated allergic air-
way inflammation (AAI) in OVA/alum-sensitized adult offspring of 
the colonized mice. These mice exhibited reduced histopathology 
scores and reduced numbers of immune cells detectable in the bron-
choalveolar lavage fluid after intranasal challenge with OVA (123). 
Earlier work demonstrated exacerbated AAI in a similar OVA/alum 
airway hypersensitivity model in mice deficient in the acetate-bind-
ing GPR43 when compared with WT mice (97). However, signaling 
through GPR43 is not the only mechanism of action described for 
acetate. In mice that were intranasally sensitized and challenged 
with house dust mite extract, high-fiber diet led to an increase in 
intestinal acetate that induced Treg differentiation and ameliorated 
AAI via inhibition of HDACs (124). Furthermore, high-fiber diets 
induced intestinal bacterial production of propionate, which act-
ed on DC and macrophage precursors in the mouse bone marrow 
and led to lung DCs being more phagocytic and less able to induce 
Th2 responses, again ameliorating AAI (96). Finally, butyrate was 
recently shown to inhibit ILC2 proliferation as well as IL-5 and IL-13 
production, likely through its ability to act as an HDAC inhibitor, 
and thereby ameliorate Alternaria alternata–induced AAI (125).

These studies further emphasize the influence of the micro-
biome on systemic aspects of the immune response. Alterations 
in intestinal microbiota composition and metabolite production 
affected not only bone marrow precursors of immune cells (96), 
but also gene expression in the lung itself (124). These changes in 
turn favored the establishment of type 2 responses against aeroal-
lergens over tolerance induction in airways (Figure 3).

The airway microbiota and allergic asthma
Unlike the skin and intestinal tract, the airways have typically been 
thought to be sterile, since culture-dependent methods failed to 

It is therefore not surprising that the intestinal microbiota 
contributes to the induction of tolerance against food antigens in 
mice (109, 110). When transferred into wild-type mice, the dysbi-
otic microbiota from allergy-prone IL4raF709 mice (with a gain of 
function mutation in the IL-4 receptor chain) increased suscepti-
bility to oral allergic sensitization with OVA (111). Dysbiosis of the 
fecal microbiota in human infants is associated with food allergy 
(112–115). We found that, at just 4–5 months, the composition of the 
fecal microbiota of cow’s milk–allergic (CMA) infants is strikingly 
different from age-matched healthy controls (113).  We established 
a model for transfer of fecal bacteria from healthy and CMA infant 
donors into germ-free (GF) mice. We showed that GF mice devel-
op an anaphylactic response to sensitization with the milk pro-
tein β-lactoglobulin (BLG). Colonization with feces from healthy 
infants protected the mice from an allergic response to BLG. In  
contrast, mice colonized with feces from infants with CMA exhibit-
ed an anaphylactic response to BLG sensitization and challenge. We 
were able to narrow this effect down to a single species of butyrate- 
producing Clostridia, Anaerostipes caccae, present in the healthy 
infant microbiota. Colonization of GF mice with A. caccae was suf-
ficient to mimic the effects of the healthy microbiota and protect 
against an allergic response to BLG (116). Earlier work from our lab-
oratory showed that colonization of GF or antibiotic-treated mice 
with a mixture of mouse-derived Clostridia strains also alleviated 
allergic sensitization in a peanut allergy model (117). In agreement 
with previous studies (91, 92), Clostridia colonization increased 
colonic Treg populations (117). Mackay and colleagues showed that 
mice fed high fiber diets exhibited an increase in fiber-ferment-
ing anaerobic bacteria producing SCFAs with increased Tregs and 
enhanced tolerogenic capacity of DCs, all of which contributed to 
protection against allergic sensitization with peanut extract (118).

Colonization of GF or antibiotic-treated mice with Clostridia 
also improved intestinal barrier function in an IL-22–dependent 
manner (117), shedding light on another crucial mechanism sup-
porting intestinal health. The clinical relevance of these findings 
is highlighted by the observation that intestinal barrier integrity is 
impaired in patients with food allergies (119). Impaired intestinal 
barrier integrity affects the access of allergen from the gut lumen 
to underlying immune cells. With an intact barrier, antigen is sam-
pled by antigen-presenting cells and presented in a way that sup-
ports the induction of tolerance, while in individuals with impaired 
barrier function, antigens enter the systemic circulation as intact 
proteins capable of inducing an IgE response. We detected intact 
peanut allergens in the serum of GF or antibiotic-treated mice 
shortly after gavage of peanut extract, but not in Clostridia-colo-
nized mice or mice that received an IL-22–Fc fusion protein (117).

Direct stimulation of immune cells by microbial components 
also influences susceptibility to allergic sensitization. For exam-
ple, mice with mutations in TLR4, the receptor for LPS, showed 
increased concentrations of serum IgE as well as an exacerbat-
ed response to allergic sensitization with peanut extract (120), 
pointing to a protective role for TLR4 signaling. Indeed, a recent 
study comparing the intestinal microbiota of young children from 
Finland (who display a high prevalence of allergic sensitization) 
and Russia (who display a low prevalence) found a difference in 
the type of LPS expressed by bacteria abundant in these popula-
tions. Children from Finland had a high abundance of Bacteroides 
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identify any resident microbiota. The introduction of culture- 
independent methods of analysis like 16S rRNA targeted sequenc-
ing has changed this view, although the existence of a resident lung 
microbiota remains controversial (126, 127). Owing to very high 
interindividual variability, there is little agreement on what consti-
tutes a healthy airway microbiome; members of the Proteobacteria, 
Firmicutes, Actinobacteria, and Bacteroidetes phyla have all been 
identified (128, 129). In general, the microbiome composition of the 
upper airway seems very similar to that of the lung, although the 
community richness decreases in the lower airways (130, 131). The 
composition also appears to be fairly stable over time aside from 
increasing in richness over the first 2 years of a child’s life (132, 133).

Numerous studies have explored the association of microbi-
al dysbiosis in the airways and sensitization to aeroallergens and 
development or exacerbation of asthma (127, 134–137). In general, 
it appears that asthmatics’ airway microbiomes are enriched in Pro-
teobacteria, while the airways of healthy individuals show a higher 
abundance of Bacteroidetes and Firmicutes (127, 134–137). Three 
genera of Proteobacteria (Moraxella, Streptococcus, and Haemoph
ilus) were consistently associated with increased risk of develop-

ing asthma (132, 136, 138–140). Colonization with these genera is 
associated with viral respiratory tract infections, which in turn have 
been associated with exacerbation of asthma (141); in addition, 
rhinovirus-induced wheezing in the first 3 years of life increases 
the risk of having asthma at age 6 (142) or 13 (143). This finding 
as well as rhinovirus-induced exacerbation of existing asthma can 
be explained, in part, by the virus’s induction of IL-25, IL-33, and 
TSLP in airway epithelial cells, which led to expansion of ILC2s and 
increased airway hyperresponsiveness in mice (144–147). Further-
more, colonization with these potentially pathogenic Proteobacte-
ria appears to promote the spread of viral respiratory tract infections 
into the lower airways, with the risk of developing asthma later on 
increasing the earlier an infant was first colonized (132, 138). These 
data suggest that early-life colonization with pathogens can impair 
appropriate maturation of the infant immune system and tolerance 
by inducing type 2 responses in the airways (Figure 3).

The early-life window of opportunity
The timing of microbial colonization or dysbiosis as well as expo-
sure to potential allergens is important to consider (148). The evi-

Figure 3. Exposure to a healthy microbiota drives antiinflammatory homeostatic conditions in the airways, while dysbiosis and viral respiratory 
tract infections can induce type 2 inflammation. It has become apparent in recent years that bacteria can also be found in a healthy respiratory tract, 
with decreasing community richness in the lower airways. Commensal colonization induces the differentiation of peripheral Tregs that are crucial for the 
control of type 2 immune responses. The presence of Proteobacteria increases the risk of developing asthma, partly as a result of an increased risk for viral 
infections, particularly in the lower airways. Viral infections induce the release of the alarmins TSLP, IL-33, and IL-25 from the airway epithelium, inducing 
type 2 inflammation. In addition, intestinal microbiome homeostasis influences airway immune responses. Metabolites like SCFAs can act systemically, 
for example affecting APC precursors in the bone marrow to give rise to APCs populating the airways that are less capable of inducing type 2 responses. On 
the other hand, proinflammatory metabolites of a dysbiotic intestinal microbiota can play a role in driving inappropriate immune responses. APC,  
antigen-presenting cell; ILC, innate lymphoid cell; SCFA, short-chain fatty acid; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin.
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dence suggests that there is an early “window of opportunity” that 
is crucial for the maturation of the immune system. The effect of 
disruption of normal colonization during this critical time frame 
can be observed in humans, since dysbiosis in infants, for example 
due to several courses of antibiotics, is associated with the devel-
opment of food allergies (112, 115, 149). Increased production of 
IgE and exacerbated orally induced anaphylaxis or AAI in GF mice 
are normalized by colonization during early life, but not if colo-
nization is delayed until adulthood (150–152). In addition, it has 
recently become clear that introduction of potentially allergenic 
foods early in infancy is actually beneficial rather than increasing 
the risk of becoming sensitized as initially thought (153–155).

These findings are of interest in the context of immune sys-
tem development. During fetal development, both maternal and 
fetal immune reactions are carefully controlled to avoid Th1-medi-
ated rejection of the fetus, both by production of type 2 cytokines 
and, more importantly, via regulatory immune responses (8, 156). 
In addition, the maternal microbiome has an important influence 
on fetal immune system development. Maternal IgG can cross the 
placenta, trafficking microbial components and metabolites to the 
fetus and thereby influencing fetal immune development (157). 
SCFAs can cross the placenta and promote an immunoregulatory 
environment via GPCR signaling and epigenetic effects (124). The 
proportion of Tregs is higher in mucosal sites during early infancy 
compared with later in life (158), and the immune system of new-
borns is Th2-skewed (159, 160), indicating that these in utero effects 
continue for a short while after birth. These mechanisms likely 
help prepare the developing fetus for its colonization with a diverse 
microbiota upon birth, which is further controlled by factors found 
in breast milk. The composition of the intestinal microbiota is influ-
enced by maternal antibodies (80), by milk oligosaccharides that 
provide the main energy source for gut commensals (81), and even 
by bacteria found in breast milk (161). Other components of breast 
milk can affect infant immune development directly. These include 
allergy-protective polyunsaturated fatty acids as well as a variety of 
cytokines (162). TGF-β is detectable in breast milk at concentrations 
reported to influence infant immune development (162, 163).

Considering all these factors, it therefore appears that appropri-
ate immune responses to the colonizing microbiota are established 
under a tightly controlled regulatory environment, in which the 
Th2 skewing observed in newborns is balanced with an increase in 
type 1 responses. It is not surprising, then, that disruption of normal 
microbial colonization during this crucial developmental window 
enhances susceptibility to allergy. Several studies show that chil-
dren who develop allergies later in life have an increase in proin-
flammatory responses as newborns (164, 165). Similar effects may 
be caused by proinflammatory metabolites of dysbiotic microbiota, 
which have been associated with an increased atopy risk (122).

It therefore appears that during a critical window early in life, 
the commensal microbiota creates microenvironments conducive 
to appropriate immune maturation and induction of tolerance 

toward ingested or environmental antigens; dysbiosis during this 
critical time period can disrupt this process, eventually resulting in 
the induction of allergic responses instead.

Concluding remarks
The findings presented in this Review emphasize the importance 
of a healthy microbiome for the prevention of allergic diseases. 
Some work suggests that the effects of the “Western lifestyle” can 
be partially alleviated by specific interventions. For example, vag-
inal microbiota transfer was recently shown to be at least partially 
successful in combating the influence of birth by cesarean sec-
tion on the initial colonization of infants, although the long-term 
effects still remain to be seen (166).

The use of probiotics (living bacteria), prebiotics (foods to 
support the growth of beneficial bacteria), and synbiotics (both 
combined) is an intriguing possibility; however, research into the 
efficacy of these formulations is inconclusive (156, 167). The avail-
able data suggest that the efficacy of traditional probiotics is limit-
ed to the prevention of eczema in high-risk infants (156, 167, 168). 
Fewer studies have investigated the efficacy of pre- or synbiotics, 
making it difficult to form conclusions (156, 167). Synbiotics may 
be a promising option. The importance of an adequate supply of 
nutrients for microbial growth and the production of beneficial 
metabolites can be seen, for example, in comparing effects of 
low- and high-fiber diets (96, 118, 124). However, remaining ques-
tions on which bacterial strains to use, which prebiotics to add, 
and what dosage and what timing of administration to choose will 
have to be answered first. Furthermore, traditional probiotics are 
not FDA-approved drugs that can be sold as treatments for spe-
cific conditions; they are usually delivered as foods or as dietary 
supplements (169). In contrast, the development of live biother-
apeutics in adherence with FDA regulations has garnered atten-
tion in recent years (169). Prime targets for these efforts include a 
number of dietary fiber–fermenting obligate anaerobes (116, 117, 
122, 123). Another intriguing option currently being investigated 
is the direct use of bacterial products or their formulations; SCFAs 
are a focus for such research, considering their allergy-protective 
effects (96, 118, 124, 125). The combination of live biotherapeu-
tics with active bacterial metabolites may be the best strategy for 
restoring an allergy-protective microbiota. Development of these 
therapeutics is still in the early stages but shows considerable 
promise for the treatment and prevention of allergic diseases.
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