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Purpose: Conversational entrainment, the phenomenon
whereby communication partners synchronize their
behavior, is considered essential for productive and
fulfilling conversation. Lack of entrainment could,
therefore, negatively impact conversational success.
Although studied in many disciplines, entrainment has
received limited attention in the field of speech-language
pathology, where its implications may have direct clinical
relevance.
Method: A novel computational methodology, informed
by expert clinical assessment of conversation, was
developed to investigate conversational entrainment across
multiple speech dimensions in a corpus of experimentally
elicited conversations involving healthy participants. The
predictive relationship between the methodology output
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and an objective measure of conversational success,
communicative efficiency, was then examined.
Results: Using a real versus sham validation procedure, we
find evidence of sustained entrainment in rhythmic, articulatory,
and phonatory dimensions of speech. We further validate
the methodology, showing that models built on speech
signal entrainment measures consistently outperform
models built on nonentrained speech signal measures in
predicting communicative efficiency of the conversations.
Conclusions: A multidimensional, clinically meaningful
methodology for capturing conversational entrainment,
validated in healthy populations, has implications for
disciplines such as speech-language pathology where
conversational entrainment represents a critical knowledge
gap in the field, as well as a potential target for remediation.
On the surface, conversation is seemingly simple.
There are two roles, talking and listening, and
conversational partners must alternate between

these roles as a message is exchanged. However, successful
conversation, it appears, is a much more complex interac-
tional event that requires the coordination or syncing up of
behavior (Clark, 1996). This behavioral synchronization,
referred here as conversational entrainment,1 describes a
pervasive communication phenomenon in which conversa-
tional partners subconsciously align their communicative
actions with one another. Operationally defined as “spatio-
temporal coordination resulting from rhythmic responsive-
ness to a perceived rhythmic signal” (Phillips-Silver, Aktipis,
& Bryant, 2010, p. 5), conversational partners must perceive
the behavioral patterns of one another and adjust their
own accordingly. This adjusting and aligning of patterned
behavior has been observed in verbal (e.g., acoustic pro-
sodic speech features, Lee et al., 2014; syntactic struc-
ture, Branigan, Pickering, & Cleland, 2000; lexical use,
Kawabata, Berisha, Scaglione, & LaCross, 2016) and non-
verbal (e.g., eye movements, Richardson & Dale, 2005;
body posture, Shockley, Santana, & Fowler, 2003) aspects
of communication.
Disclosure: The authors have declared that no competing interests existed at the time
of publication.

1Other terms that have been used to describe this communication
coordination phenomenon include accommodation, alignment, convergence,
and synchronization.
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2The dialogue elicitation task required conversational partners to
work together, as quickly and accurately as possible, to identify the
differences between pairs of pictures. Task success was defined as the
number of differences identified in 12 min of spoken dialogue.
There is a well-established body of literature correla-
tively linking entrainment of verbal and nonverbal behavior
to productive and fulfilling peer interactions, advancing
the idea that conversational entrainment serves cognitive
and pragmatic functions essential for successful conversa-
tion. A number of studies, for example, show that en-
trainment of verbal behaviors such as word use (lexical
entrainment; e.g., Nenkova, Gravano, & Hirschberg, 2008)
or pitch properties (acoustic–prosodic entrainment; e.g.,
Borrie, Lubold, & Pon-Barry, 2015) track with increased
efficiency and performance in tasks that require conver-
sational partners to use verbal communication to achieve
goals. Pickering and Garrod (2004) have advanced the idea
that aligned or entrained behavior during conversation under-
lies tightly coupled production and comprehension processes,
and that this coupling greatly reduces the computational
load of language processing in spoken dialogue. Further-
more, alignment of behavior during conversation supports
predictive processes, whereby conversational partners can
track and anticipate upcoming realizations of speech (see
Pickering & Garrod, 2013, for further details). Entrain-
ment is also considered key for supporting important prag-
matic aspects of conversation, including taking turns,
interaction smoothness, building rapport, fostering social
bonds, and maintaining interpersonal relationships (e.g.,
Bailenson & Yee, 2005; Chartrand & Bargh, 1999; Lee et al.,
2014; Wilson & Wilson, 2005). Furthermore, pragmatic
benefits of entrainment may also extend to human–
machine communication (Levitan et al., 2016), although
the evidence in spoken dialogue systems is, to date, some-
what inconclusive (e.g., Beňuš et al., 2018). In noting
some of the key literature in the area of entrainment and
its functional utility in human–human communication,
it has been concluded that conversational entrainment
“… serves as a powerful coordinating device, uniting indi-
viduals in time and space to optimize comprehension,
establish social presence, and create positive and satisfy-
ing relationships” (Borrie & Liss, 2014, p. 816; see also
Beňuš, 2014, for a review of social aspects of entrainment).
Thus, lack of entrainment or inherent entrainment defi-
cits could impact the success of conversation, contributing
to social isolation and diminished quality of life.

Although conversational entrainment has been stud-
ied widely across many disciplines, it has received limited
attention in the field of speech pathology, where its impli-
cations may have direct clinical relevance. Borrie and Liss
(2014) recently proposed that any deficit in the ability to
produce, perceive, or modify rhythmic behavior will impact
entrainment and conversational success. Given that rhythm
impairments are pervasive in many populations with com-
munication disorders, entrainment deficits are likely wide-
spread in the field. Indeed, our preliminary work in this
area has confirmed that speech entrainment deficits exist
in adults with dysarthria (Borrie et al., 2015) and in adults
with autism spectrum disorder (Wynn, Borrie, & Sellars,
2018). For example, using a small selection of basic acoustic–
prosodic features and simple local, turn-by-turn entrainment
measures, Borrie et al. (2015) observed that entrainment of
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pitch, intensity, and jitter was significantly lower in conver-
sations involving a person with dysarthria conversing
with a healthy partner relative to conversations involving
two healthy conversational partners. Furthermore, conver-
sations characterized by lower levels of entrainment were
correlated with lower levels of communicative efficiency,
as measured by task success in goal-oriented dialogues.2

Thus, it appears that entrainment deficits are both real
and of potential consequence in clinical populations with
communication disorders. In order to advance entrain-
ment application in speech pathology, we must establish
a clinically meaningful methodology for capturing con-
versational entrainment in the speech domain that, once
validated in healthy populations, can be used to learn
more about the phenomenon and how it is disrupted in
the context of communication disorders.

Critically, a methodology for capturing conversational
entrainment in the speech domain for investigating deficit
and consequence should be informed by real-world clinical
evidence of successful and unsuccessful conversation. The
consideration of clinical evidence in objective measurement
of entrainment for the purpose of exploring functionality
is further motivated by a handful of studies, which have
postulated that pragmatic elements of successful conversa-
tion may be linked to both similarity and dissimilarity of
behavior (De Looze, Scherer, Vaughan, & Campbell, 2014;
Reichel, Beňuš, & Màdy, 2018). Speech-language pathol-
ogists (SLPs) are professionals trained in the prevention,
assessment, and treatment of communication disorders.
They have skills and expertise in evaluating social commu-
nication and peer interaction, including the cognitive and
pragmatic functions of conversation, such as information
exchange, turn-taking and interaction cohesiveness, and
rapport and connection. Thus, we advance that the expert
clinical assessment of conversation afforded by SLPs is key
to establishing meaningful measures of conversational
entrainment in the speech domain.

Conversational entrainment has been evidenced in
acoustic–prosodic features such as speaking rate (e.g.,
Local, 2007), fundamental frequency measures (e.g., Borrie
et al., 2015; Duran & Fusaroli, 2017; Levitan & Hirschberg,
2011), vocal intensity (e.g., Local, 2007; Natale, 1975), voice
quality (e.g., Borrie & Delfino, 2017; Levitan & Hirschberg,
2011), vowel spectra (e.g., Babel, 2012; Vallabha & Tuller,
2004), voice onset time (e.g., Fowler, Brown, Sabadini,
& Weihing, 2003; Nielsen, 2011), and latency and utter-
ance durations (e.g., Matarazzo, Weitman, Saslow, & Wiens,
1963; Matarazzo & Wiens, 1967). These studies using a
single or small number of self-selected features afford im-
portant insight into the nature of entrainment in the speech
domain. However, fewer studies have examined entrain-
ment of speech behaviors in large feature sets that cap-
ture multiple dimensions of the speech signal (although
83–296 • February 2019



3For more details on the Diapix, see http://groups.linguistics.northwestern.
edu/speech_comm_group/diapix/
for recent work involving larger feature sets, see Lee et al.,
2014; Nasir, Baucom, Georgiou, & Narayanan, 2017). In a
review of research on phonetic convergence (analogous to
speech entrainment), Pardo (2013) comments that, “there
is currently no compelling rationale or standard for choos-
ing one acoustic attribute over another” (p. 559) and that
characterization of the phenomenon must ultimately include
multiple dimensions. Thus, a methodology for capturing
conversational entrainment in the speech domain should
characterize the communication phenomenon across a broad
range of acoustic–prosodic features, spanning rhythmic (e.g.,
signal envelope), articulatory (e.g., spectral features), and
phonatory (e.g., pitch properties) dimensions of speech.

This Study
The purpose of this study was to build and validate a

clinically meaningful methodology to capture conversa-
tional entrainment in multiple dimensions of speech, using
a novel computational approach involving expert clinical
assessment of conversation and a corpus of experimentally
elicited, goal-oriented conversations involving healthy par-
ticipants. Our methodology begins with extracting large
acoustic–prosodic feature sets that represent rhythmic,
phonatory, and articulatory dimensions of speech. These
feature sets are then reduced, retaining shared information
among the individual acoustic–prosodic behaviors. We
then use the expert conversation assessments from five SLPs
and cross-recurrence quantification analysis (CRQA), a non-
linear technique that allows us to quantify shared organiza-
tion of behavior over time (Coco & Dale, 2014; Zbilut,
Giuliani, & Webber, 1998), to capture global entrainment
in the speech domain. Using this methodology, our first
research question asked: Which dimensions of the speech
signal are entrained during spoken dialogue? To address
this question, we compare real conversations with a sham
conversational corpus, constructed of randomly generated
dialogs between not-in-conversation partners. If acoustic–
prosodic features of the speech signal are really entrained
during conversations, then entrainment values should be
higher in the real conversational corpus as compared to the
sham conversational corpus. This analysis also serves as veri-
fication that our computational methodology involving
automatic acoustic–prosodic feature extraction methods,
feature reduction techniques, recurrence quantification, and
expert clinical assessment of conversation is sufficiently ro-
bust to capture conversational entrainment in speech signal
dimensions. Our second research question asked: Do mea-
sures of speech signal entrainment predict an objective
measure of conversational success, communicative efficiency?
To address this question, we use a series of machine learn-
ing approaches to detail the predictive relationship between
measures of speech signal entrainment and a measure of
communicative efficiency derived from task success in the
goal-oriented conversations. We provide additional sup-
port for this predictive relationship by modeling the none-
ntrained speech signal measures (i.e., measures that do not
differentiate between real and sham conversations). If it
Borr
really is the alignment of speech signal behavior that fa-
cilitates communicative efficiency in conversation, then
models built on speech signal entrainment measures should
outperform models built on nonentrained measures. A
validated methodology for characterizing conversational
entrainment in the speech domain lays the groundwork
for entrainment application in clinical settings.
Method
Participants

This study is based on a corpus of 57 experimentally
elicited conversations, involving 114 participants (99 women
and 15 men) aged 19–28 years old (M = 22.41) engaged in
university-level education. All participants were native
speakers of American English with no self-reported history
of speech, language, hearing, or cognitive impairment.
Participants were paired up, at random, to form a dyad
and partake in a conversational task. Note that gender was
not controlled for when forming dyads, so some dyads
were female–female (n = 43), other dyads were female–
male (n = 13), and one dyad was male–male (n = 1).
Conversational Task
Each dyad participated in a single recording session.

Conversational partners were seated facing one another
and fitted with wireless CVL Lavalier microphones, synced
with a Shure BLX188 DUAL Lavalier System connected
to a Zoom H4N Portable Digital Recorder. Separate audio
channels for each conversational partner and standard
settings (48 kHz; 16-bit sampling rate) were employed for
audio recording of the conversational task.

The conversation task was based on the Diapix task,3

a collaborative “spot-the-difference” task whereby dyads
must work together, verbally comparing scenes, to identify
differences between sets of pictures (Van Engen et al., 2010).
Each partner in the dyad was given one of a pair of pic-
tures and instructed to hold their picture at an angle at
which it was not visible to their partner sitting across the
table from them. The pair of pictures depict virtually iden-
tical scenes (e.g., yard, beach), differing from one another
by 10 small details (e.g., number of people, color of t-shirt).
The dyad was told that their goal was to work together,
simply by speaking to one another, to identify the 10 dif-
ferences between the pair of pictures as accurately and as
quickly as possible. When all the differences were identi-
fied, the dyad was given another pair of pictures to work
through. Dyads were tasked with working through as
many pairs of pictures as possible in a 10-min time frame.
Total recording time from each dyad was, therefore,
10 min. No additional rules (i.e., who could talk when) or
roles (i.e., giver, receiver) were given so dyads were free to
verbally interact in any way they saw fit to problem-solve
ie et al.: A Method for Capturing Conversational Entrainment 285
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the task. The task is not considered cognitively demanding;
however, conversational partners must work together to
be successful.
Expert Clinical Assessment of Conversation
SLPs work with people with communication disor-

ders and are often called upon to make judgments about
what constitutes a conversational breakdown (Garcia &
Orange, 1996). Using a 7-point Likert-type rating scale
(1 = strongly disagree, 4 = neutral, 7 = strongly agree),
five SLPs assessed each of the 57 conversational record-
ings according to the extent that they agreed with the fol-
lowing statement: The conversation pair sound like they
are in-sync or aligned with one another, with high ratings
(scores above 4) indicative of a natural cohesiveness to
the interaction, smooth turn-taking and conversational
flow, and a sense of rapport and connection between con-
versational participants and low ratings (scores below 4)
indicative of an awkward, disconnected, and disengaged
interaction (see the Appendix). Thus, this score reflects
expert clinical assessment of conversational success, also
indicative of a holistic impression of conversational en-
trainment. The clinicians were required to listen to the
first 2 min of a conversation before making their assess-
ment rating.4 An expert clinical assessment score was cal-
culated for each of the 57 recordings by averaging the
individual ratings across the five SLPs.
Measure of Communicative Efficiency
The dialogue elicitation tool, the Diapix task, grants

us an objective measure of an aspect of conversational
success, communicative efficiency.5 This objective measure
has been previously observed to correlate with measures of
acoustic–prosodic entrainment (Borrie & Delfino, 2017;
Borrie et al., 2015; Willi, Borrie, Barrett, Tu, & Berisha,
2018). Recall that the Diapix task required the conversa-
tional partners to work together as accurately and quickly
as possible to identify the differences between pairs of pic-
tures. Total number of differences identified in the 10-min
recording was then used as a simple, gross measure of
communicative efficiency: Relatively low and high numbers
of identified differences indicate relatively low and high
communicative efficiency, respectively. The measure of
communicative efficiency is, therefore, an objective evalua-
tion of how proficiently the dyad used verbal communica-
tion to collaboratively work through the demands of the
goal-oriented dialogue task.
4Two minutes was selected to enable clinicians to evaluate 57 conversations
within a reasonable time frame. Although all SLPs agreed that 2 min
was ample time to evaluate a conversation, we acknowledge that the
evaluation may change over the course of the conversation as partners
become familiar with one another.
5Communicative efficiency is operationally defined as “increasing the
rate of communication without sacrificing intelligibility or comprehensibility”
(Duffy, 2015, p. 386).
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Feature Extraction
Trained research assistants manually coded each

10-min audio file, annotating individual spoken utterances
by speaker using the Praat textgrid function (Boersma &
Weenink, 2017).6 A spoken utterance is defined as a pause-
free unit of speech, where pauses are greater than 50 ms,
from a single speaker. Thus, pauses less than 50 ms are
included in the spoken utterance. This definition of spo-
ken utterance is the same as interpausal units (Levitan &
Hirschberg, 2011). Simultaneous illustrations of the asso-
ciated spectrograms were used to aid coding accuracy.
All audio files were normalized using a reference level
and down-sampled to 16 kHz prior to feature extraction.

Five speech feature subsets, spanning rhythmic (enve-
lope modulation spectrum [EMS], rhythm metrics), articu-
latory (long-term average spectrum [LTAS], mel-frequency
cepstral coefficients [MFCCs]), and phonatory (voice re-
port) dimensions of the speech signal were extracted from
each spoken utterance. Each feature subset included a num-
ber of acoustic–prosodic features, which resulted in a
429-feature vector for each utterance. Similar speech feature
extraction methods have been reported previously (Berisha,
Liss, Sandoval, Utianski, & Spanias, 2014; Tu, Jiao, Berisha,
& Liss, 2016; Tu, Berisha, & Liss, 2017; Willi et al., 2018).
Specific feature subsets are described briefly below, but
please refer to the following link for comprehensive calcula-
tion details, http://www.public.asu.edu/~visar/IS2018Supp.
pdf.
EMS
The EMS feature subset is made up of 60 features re-

lated to rhythmic dimensions of speech. Specifically, EMS
is a spectral analysis of the low-rate amplitude modula-
tions in the speech signal, with measures that capture mod-
ulations within the entire speech signal envelope and within
specific frequency bands. These modulation measures pro-
vide information related to temporal regularities in speech
and have been shown to significantly correlate with acous-
tic vocalic and consonantal segmental rhythm metrics
(Liss, LeGendre, & Lotto, 2010).7

As per Liss et al. (2010), the EMS features are cal-
culated by obtaining the amplitude envelopes for the
original speech signal and nine octave bands with center
frequencies of approximately 30, 60, 120, 480, 960, 1920,
3840, and 7680 Hz using eight-order Butterworth filters.
Then, the mean of each amplitude envelope is removed,
and the power spectra for each signal were calculated. Fi-
nally, six EMS metrics were computed from each power
spectra (i.e., the nine octave bands and full signal), result-
ing in a 60-dimensional speech feature vector.
6Each speaker channel was coded for all spoken utterances, regardless
of whether the utterance was “talked over.”
7Additional research is necessary to determine whether functional or
perceptual significance can be assigned to amplitude modulation
within specific frequency bands.
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Rhythm Metrics
The rhythm metrics feature subset is made up of

12 features related to rhythmic dimensions of speech. Spe-
cifically, rhythm metrics is an analysis of voice timing
based on voiced and voiceless interval durations. These
duration-based measures provide information related to
syllable structure and stress patterns and have been shown
to capture speech rhythm differences between and within
languages (e.g., Dellwo & Fourcin, 2013; White & Mattys,
2007) and populations with rhythmic speech disorders (Liss
et al., 2009).8

The rhythm metric features were calculated using a
Praat script, based on the periodicity detection algorithm
outlined in Boersma (1993). Voiced and unvoiced inter-
vals were extracted using a 5-ms time step and default pa-
rameters for pitch floor, pitch ceiling, silence threshold,
and voicing threshold. The script used the pitch track func-
tion to assess voicing on a frame-by-frame basis by using
an autocorrelation-based method to estimate the periodicity
and assuming that the speech signal is unvoiced when the
pitch track is undefined. Details of the pitch estimation
algorithm used to partition the speech signal into voiced
and unvoiced segments are described fully in Boersma
(1993). The duration of the vocalic and intervocalic seg-
ments and a series of related metrics were extracted, result-
ing in a 12-dimensional speech feature vector.

LTAS
The LTAS feature subset is made up of 99 features

broadly related to articulatory dimensions of speech. Spe-
cifically, LTAS is an analysis of the average energy distri-
bution across frequency over an utterance. These measures
have been shown to capture differences in speaker gender
and age, as well as professional and dysphonic voices (e.g.,
Cleveland, Sundberg, & Stone, 2001; Linville, 2002;
Mendoza, Valencia, Muñoz, & Trujillo, 1996).

The LTAS features were calculated by obtaining the
average spectral information for the original speech signal
and nine octave bands with center frequencies described in
the EMS feature extraction. The 10 band signals (the origi-
nal full-band signal and nine octave band signals) were
then framed using a 20-ms nonoverlapping rectangular
window, and the root-mean-square of each frame is esti-
mated. Ten features were extracted for each of the signals,
resulting in a 99-dimensional speech feature vector.

MFCCs
The MFCCs feature subset is made up of 234 fea-

tures broadly related to articulatory dimensions of speech.
Specifically, MFCC is an analysis of coefficients that rep-
resent the short-term power spectrum of a speech segment.
These coefficient measures, introduced by Davis and
Mermelstein (1990), have been widely used in automatic
8Voicing intervals provide a recurring, suprasegmental temporal
measure, which for simplicity reasons are referred to as rhythm
metrics. It is, however, acknowledged that these measures may not
provide a comprehensive model of speech rhythm.

Borr
speech recognition (e.g., Martin & Jurafsky, 2000). The
lower order cepstral coefficients relate to the frequency re-
sponse of the vocal tract, and the higher order cepstral
coefficients relate to the frequency spectrum of the source
signal. Speaker-dependent characteristics can be suppressed
by only processing the lower order cepstral coefficients.

Based on a standard power spectrum estimate, the
MFCC features were first subjected to a log-based trans-
form of the frequency axis (mel-frequency scale) and then
decorrelated by using an inverse discrete cosine transform.
We then calculated the coefficients from the 13th-order
MFCCs (including 0th order) and their first- and second-
order derivatives using a 20-ms window with 10-ms frame
increment. Then, the mean, standard deviation, range,
skewness, kurtosis, and mean absolute deviations were cal-
culated for each coefficient or derivative feature, resulting
in a 234-dimensional speech feature vector.

Voice Report
The voice report feature subset is made up of 24 indi-

vidual features related to phonatory dimensions of speech.
The features, extracted using a custom Praat script, included
fundamental frequency, jitter, shimmer, and harmonics-
to-noise ratio, affording information about pitch, cycle-
to-cycle pitch variation, cycle-to-cycle amplitude variation,
and an estimate of the noise level in the human voice, re-
spectively. The phonatory features were extracted using a
5-ms time step and default parameters for pitch floor, pitch
ceiling, silence threshold, and voicing threshold. Addi-
tional phonatory features and measures of central tendency
and variation were also included in the voice report fea-
ture set, resulting in a 24-dimensional acoustic–prosodic
feature vector.

Feature Reduction
As described above, each speech feature set is made

up of a number of features. We employed independent
components analysis (ICA) to reduce the dimensionality
of the feature sets (Comon, 1992; Marchini, Heaton, &
Ripley, 2017) for the entrainment analysis. As a close
relative of principle components analysis, ICA aims to
establish a variable that represents the highest amount of
the shared variance across the individual features in a
set. Each feature set had a high amount of shared vari-
ability (all Cronbach’s αs > .70), suggesting that the ICA
captured a high degree of the original variability across the
features. We used ICA to perform feature reduction for
the five feature sets: EMS (using the five features—of the
total 60—relating to a center frequency of 480; this is likely
to capture the rhythmic patterns associated with changes
in vowel energy), rhythm metrics (using all 12 features),
LTAS (using all 99 features), MFCC (using all 234 fea-
tures), and voice report (using all 24 features). Thus, this
produced five variables, representing rhythmic (EMS,
rhythm metrics), articulatory (LTAS, MFCC), and phonatory
(voice report) speech dimensions, to be used in the entrain-
ment analyses.
ie et al.: A Method for Capturing Conversational Entrainment 287



Speech Signal Entrainment Analysis
We used CRQA to objectively quantify speech signal

entrainment in conversations. CRQA is a nonlinear time-
series technique that evaluates instances or points in time
in which two different streams of the same type of infor-
mation (i.e., rhythmic speech features of conversational
partners’ spoken utterances) visit similar states, termed
recurrence. The approach quantifies how and to what ex-
tent recurrence of behavior occurs over time (Coco, Dale,
& Keller, 2017; see Duran & Fusaroli, 2017, for applica-
tion of CRQA to speech behavior in a conversational
paradigm). To do this, CRQA produces a “recurrence
plot” that marks all points wherein the two systems, the
conversational partners, were aligned at each possible
time point. Using this information, several measures were
quantified:

1. Recurrence rate is defined as the number of single
instances of alignment between conversational partners
accounting for the number of turns taken over the
entire conversation. Higher recurrence rate values indi-
cate higher amounts of single-instance entrainment.

2. Sustained recurrence is defined as the amount of align-
ment between conversational partners that is main-
tained for longer than a single instance (also referred
to as nline). Higher sustained recurrence values indi-
cate higher amounts of sustained entrainment.

3. Length is defined as the average length/time that con-
versational partners stay aligned with one another.
Higher length values indicate that the dyad main-
tained entrainment for longer stretches, on average.

4. Max length is defined as the longest length/uninter-
rupted time that conversational partners stay aligned
with one another. Higher max length values indicate
longer periods of entrainment.

5. Entropy is defined as the variability in length/time
that conversational partners are entrained with one
another. Higher entropy values indicate that the time
in which the dyad entrained vary more widely across
the conversation.

Several aspects of CRQA make it particularly useful
for understanding conversational dynamics. First, it is a
nonlinear approach. As opposed to other measures tradi-
tionally used to measure entrainment (e.g., correlation
between adjacent speaking turns, aggregation across the
conversation), this allows for far greater flexibility in the
types and complexity of repeated patterns that the model
can capture. Second, it analyzes the entire conversation si-
multaneously. That is, all possible lags (i.e., all possible
time delays between the conversational partners) are con-
sidered in the quantification. In this way, we make no as-
sumptions about who is “leading” the conversation and at
what temporal scale entrainment occurs. Third, CRQA
produces several interpretable measures that summarize not
only the amount of entrainment but also stability and com-
plexity of the entrained behavior (as described previously).
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This approach has been validated as a robust method to
capture conversational entrainment or alignment in a wide
variety of verbal and nonverbal communicative behaviors,
including speech rate (Duran & Fusaroli, 2017) and eye gaze
(Coco et al., 2017; see Fusaroli, Konvalinka, & Wallot, 2014,
for a review of CRQA application in social interaction).
We implement the CRQA analysis using the “crqa” pack-
age in the R statistical environment (crqa package Version
1.0.6 and R Version 3.5.1; Coco & Dale, 2014; R Core
Team, 2018) and compare the results using the “furniture”
package (Version 1.7.13; Barrett & Brignone, 2017).

Parameter Settings: Integrating Expert
Clinical Assessment

A key aspect of using CRQA regards selecting a num-
ber of parameters it uses to calculate the measures. Many
of the parameters are intuitive (e.g., the normalization pa-
rameter specifies whether the CRQA analysis is performed
on the original acoustic features or a z-scored version of
the features). However, some of the parameters do not
have intuitive values as they require prior knowledge re-
garding the temporal scale at which entrainment occurs or
how similar features between two individuals should be
to be considered entrained. Specifically, the delay and radius
parameters are often unknown and can impact the resulting
CRQA measures. Delay refers to the interval necessary
for the conversational partners to be optimally aligned.
Changes to delay often do not have a large impact on the
resulting CRQA measures. Radius, on the other hand, re-
fers to the threshold at which the two states are consid-
ered “similar enough” and has a meaningful impact on the
resulting measures.

Some previous work has reported on an algorithm
that seeks for the parameters that produce a recurrence
rate between 3% and 5% (Coco & Dale, 2014). However,
this approach makes it difficult to compare real and sham
conversations (described below) on recurrence rate (any
differences are due to chance given the algorithm is arbi-
trarily stopping between 3% and 5%). To find meaningful
parameters that are not driven by obtaining an arbitrary,
prespecified recurrence rate, we sought to use a data-driven
approach wherein the selected parameters would be based
on having high predictive power of the expert clinical assess-
ment of conversation, thus affording the optimal CRQA
parameters that align with real-world evidence of success-
ful and unsuccessful communication.

Using 10-fold cross-validated k-nearest neighbor models,
the parameters (delay and radius) that produced the high-
est prediction accuracy of expert clinical assessment were
selected across a wide range of possible values. The tested
values were based on the algorithm used by Duran and
Fusaroli (2017) with the values tested being both above
and below the algorithmically produced values. Notably, we
did not try multiple embedding values given the algo-
rithm consistently produced a single value across all the
conversations and dimensions. This data-driven parameter
selection approach is built on approaches common in ma-
chine learning (Hastie, Tibshirani, & Friedman, 2009) and
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allows the CRQA to have parameters that can be used
across all the conversations (both real and sham). The
delay–radius combinations that resulted in the highest
cross-validated accuracies are reported in Table 1. These
parameters were then used to produce the CRQA mea-
sures for each conversation and feature set.
Sham Conversations
To test which of the various CRQA measures based

on the optimal parameters are considered entrained, we
created a corpus of sham conversations to disrupt interdepen-
dent behaviors that should transpire between in-conversation
partners. The sham corpus was created by randomly gener-
ating conversations between participants who did not con-
verse with one another, maintaining the same female–male
ratio of the original dyads. If our measures of entrainment
really capture the interdependent coordinated behavior
that presumably occurs during real conversation, then re-
currence output should be significantly greater in conversa-
tions between two in-conversation partners (real) versus
two out-of-conversation partners (sham). The use of sham
conversations (also termed virtual pairs) to validate mea-
sures of conversational entrainment is not new (e.g., Bernieri,
Reznick, & Rosenthal, 1988; Duran & Fusaroli, 2017; Lee
et al., 2014).

A total of 500 sham conversations, as opposed to 57
(to match the number of real conversations), were gener-
ated to reduce uncertainty in our estimates and more
confidently test for differences across real and sham conver-
sations. By increasing the number of shams, the Type II
error rates are reduced without any inflation of Type I
error rates. However, because of the 30 t tests (i.e., testing
overall differences across the five measures and testing
the differences across the 25 feature–measure combina-
tions [e.g., Envelope modulation spectrum-Sustained ecur-
rence]), we used the Bonferoni adjustment (i.e., keeping
the Type I error rate across all the comparisons at .05).
Herein, that resulted in an alpha level of .0017. Thus, if
the p value was less than .0017, the measure/feature–
Table 1. Parameters (delay and radius) selected for each feature set
based on the highest cross-validated prediction of clinical assessment
of conversational entrainment.

Variable Accuracy Kappa Delay–radius

Rhythm
EMS 75.2 0.345 4–9
Rhythm metrics 76.0 0.411 16–9

Articulation
MFCC 76.5 0.393 16–8
LTAS 69.6 0.122 5–9

Phonation
Voice report 76.6 0.323 5–8

Note. EMS = envelope modulation spectrum; MFCC = mel-
frequency cepstral coefficient; LTAS = long-term average
spectrum.
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measure was deemed a verified measure of speech signal
entrainment.

Predictive Models of Communicative Efficiency
We examined if the speech signal measures (CRQA

measures with parameters set by the expert clinical assess-
ments) classified as entrained (i.e., measures significantly
different between real and sham conversations) are predic-
tive of an objective measure of conversational success,
communicative efficiency. For validation, we examined
the predictive value of speech signal measures classified as
not entrained (i.e., measures not significantly different be-
tween real and sham conversations). For the predictive
models, we used three dissimilar, yet common, machine
learning techniques: Lasso (or elastic net) regression, sup-
port vector machines, and k-nearest neighbors (Hastie
et al., 2009). Lasso regression is a linear approach built on
linear regression that, given certain parameters, can both
select important variables and handle high multicollinear-
ity naturally. It has been used in a wide variety of situa-
tions, including predicting clinical judgments of the presence
of speech disorders (Ballard et al., 2016). Support vector
machines and k-nearest neighbors, on the other hand, are
nonlinear approaches to the prediction task. Support vec-
tor machines project the data on a much larger subspace
and identify a separating hyperplane in the new subspace;
they have been recently used in classification tasks involv-
ing measures of acoustic–prosodic entrainment and func-
tional conversational outcomes (Nasir et al., 2017; Willi
et al., 2018). The k-nearest neighbors’ classifier is a simpler
approach in which classification is based on the closest k
neighboring points (closeness based on Euclidean distances).
Nonparametric classifiers, such as k-nearest neighbors,
have the benefit of making no assumptions on the underly-
ing distribution of the data (i.e., data need not follow a
Gaussian distribution; Berisha, Wisler, Hero, & Spanias,
2016). The use of three different approaches to the classi-
fication task was motivated by the desire for confidence
in not only model predictions but in the measures that are
considered to drive these predictions.

The model-specific parameters of the machine learning
approaches were selected based on 10-fold cross-validation,
wherein many combinations of parameters were tested. Both
the accuracy of 10-fold cross-validated prediction and the
relative importance of each feature–measure were evalu-
ated. Each model was assessed in R Version 3.5.1 using
the “caret” package (Version 6.0-78; Kuhn, 2017).

Results
Expert Clinical Assessment of Conversation

Expert clinical assessment of conversation, according
to SLP judgments of conversational success, in line with
a holistic impression of conversational entrainment, ranged
from 1 to 7, with 4 = neutral conversation (i.e., not successful
enough to be considered “in sync” but not unsuccessful
enough to be considered “not in sync”). Interrater reliability
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between the five clinician judgments across the conversa-
tional corpus was high (Cronbach’s α = .92). This provides
important validation that the SLPs in this study are reliable,
with one another, at assessing conversational success as it
relates to a holistic view of conversational entrainment.

Ratings from five SLPs were averaged to achieve
a mean expert clinical assessment score for each of the
57 conversations. Using the average ratings, conversations
could be classified as unsuccessful (scores below 4) and
successful (scores above 4). This categorization resulted in
19 conversations classified as unsuccessful and 38 con-
versations classified as successful. As discussed previously,
this clinical evidence was then used to set the delay and
radius parameters of the CRQA measures for each feature
set.
Entrained CRQA Measures
A summary of the CRQA output measures for both

real and sham conversations can be found in Table 2 (re-
sults pooling over the feature sets) and Table 3 (results by
individual feature set). The tables both report the p values
from independent-samples t tests—adjusting for any instances
of unequal variances—comparing the measures from the
two types of conversations. Table 2 shows that, pooling the
five feature sets, both sustained recurrence and max length
were significantly different at the .0017 level (Bonferoni
adjustment).

Table 3 shows objective evidence of entrainment in
all feature sets studied (EMS, rhythm metrics, LTAS, MFCC,
voice report). Across all five feature sets, measures of sus-
tained recurrence were significantly higher in the real
conversations than the sham conversations. These signifi-
cant differences between real and sham conversations pres-
ent evidence of two important concepts: (a) a distinction
between measures that can be classified as measures of
speech signal entrainment and measures that are not entrained
and (b) validation that our computational approach in-
volving automatic acoustic–prosodic feature extraction,
feature reduction, recurrence quantification, and expert
clinical assessment is able to capture evidence of conversa-
tional entrainment in multiple dimensions of speech
Table 2. Comparison of real conversations with sham conversations
across the feature sets.

Measure

Conversation

p

Real (n = 57) Sham (n = 500)

M (SD) M (SD

Entropy 0.234 (0.054) 0.218 (0.044) .035
Length 2.072 (0.026) 2.061 (0.024) .003
Max length 3.272 (0.324) 3.208 (0.285) < .001
Sustained recurrence 127.884 (55.484) 83.312 (30.193) < .001
Recurrence rate 6.096 (0.746) 5.953 (0.562) .166

Note. p Value is based on independent t test adjusting for any
unequal variances.
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behavior. Both aspects provide information necessary to
investigate relationships between measures of speech signal
entrainment and an objective measure of communicative
efficiency. Notably, several features were approaching the
conservative alpha level of .0017. Of these, max length for
MFCC, rhythm metrics, and voice report was approaching
significance (p = .015, p = .038, and p = .048, respectively).
Furthermore, length and entropy in LTAS were approaching
significance as well (p = .016 and p = .023, respectively).
Thus, with more conversational samples, these feature–
measures may also be considered measures of speech sig-
nal entrainment.

Predictive Models of Communicative Efficiency
Both the entrained and the nonentrained models

predicted communicative efficiency of the goal-oriented
conversations. Across the 57 conversations collected, com-
municative efficiency scores ranged from 10 to 30 (M = 19.2,
SD = 5.4). Each model of the three types of machine
learning techniques (Lasso, support vector machines,
and k-nearest neighbors) predicted the continuous effi-
ciency score without any arbitrary categorization of the
measure. The entrained models included the five feature–
measures that were entrained (i.e., measures significantly
different between real and sham conversations), whereas
the nonentrained models included the 20 feature–mea-
sures that were not entrained (i.e., measures that were not
significantly different between real and sham conversa-
tions). The amount of variance accounted for R2 and error
rates (root-mean-square error) for the three entrained
predictive models, and the three nonentrained models are
shown in Table 4. The entrained models consistently ex-
plained more of the variance and had better predictive ac-
curacies (lower error) than the nonentrained models in
predicting communicative efficiency. For an estimate of ef-
fect size of the difference between entrained and nonentrained
models, we calculated the standardized mean difference
(a form of Cohen’s d). The effect sizes between the Lasso
and SVM models were moderate to large effect sizes.

Figure 1 shows the relative importance (x-axis) of
each verified entrainment measure (sustained recurrence)
by feature (y-axis) for the three models. Both the linear
approach (Lasso) and the nonlinear approaches (support
vector machines and k-nearest neighbors) revealed simi-
lar patterns of importance where several measures were
consistently important drivers of the high predictive accu-
racies. Among these, sustained recurrence of articulatory
(MFCC, LTAS) and rhythmic (EMS, rhythm metrics)
speech signal dimensions emerged as important in predict-
ing communicative efficiency of the conversations in at
least two of the three models.
Discussion
Here, we developed and validated a novel computa-

tional methodology to investigate the communication phe-
nomenon of conversational entrainment in the speech
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Table 3. Comparison of real conversations with sham conversations by feature set.

Feature-Measure

Conversation

p

Real (n = 57) Sham (n = 500)

M (SD) M (SD

Rhythm
EMS
Entropy 0.229 (0.118) 0.228 (0.087) .924
Length 2.067 (0.047) 2.060 (0.098) .332
Max length 3.281 (0.491) 3.238 (0.542) .540
Sustained recurrence 123.404 (53.996) 87.390 (33.083) < .001
Recurrence rate 6.332 (0.641) 6.209 (0.484) .163

Rhythm metrics
Entropy 0.236 (0.164) 0.213 (0.111) .310
Length 2.075 (0.090) 2.060 (0.039) .233
Max length 3.439 (0.907) 3.178 (0.592) .038
Sustained recurrence 131.018 (80.683) 88.838 (58.434) < .001
Recurrence rate 6.268 (1.561) 6.145 (1.558) .577

Articulation
MFCC
Entropy 0.205 (0.115) 0.191 (0.097) .377
Length 2.060 (0.060) 2.052 (0.033) .360
Max length 3.211 (0.411) 3.064 (0.510) .015
Sustained recurrence 77.456 (28.873) 59.598 (21.320) < .001
Recurrence rate 4.960 (0.452) 5.081 (0.451) .059

LTAS
Entropy 0.293 (0.148) 0.246 (0.105) .023
Length 2.096 (0.074) 2.072 (0.038) .016
Max length 3.579 (0.801) 3.388 (0.644) .087
Sustained recurrence 181.000 (160.925) 104.822 (71.407) < .001
Recurrence rate 6.975 (2.546) 6.665 (1.873) .375

Phonation
Voice report
Entropy 0.205 (0.140) 0.211 (0.103) .772
Length 2.061 (0.060) 2.059 (0.035) .810
Max length 3.351 (0.641) 3.172 (0.589) .048
Sustained recurrence 126.544 (73.830) 75.912 (42.826) < .001
Recurrence rate 5.945 (1.166) 5.664 (1.289) .093

Note. p Value is based on independent t test adjusting for any unequal variances. EMS = envelope
modulation spectrum; MFCC = mel-frequency cepstral coefficient; LTAS = long-term average spectrum.
domain. Key was the use of expert clinical assessment of
conversation, as judged by five SLPs, to inform measure-
ment of conversational entrainment across large feature
sets that capture a broad representation of the speech
signal. Based on the operational statement that if speech
Table 4. Prediction accuracies for the entrained models and the
nonentrained models and the effect sizes for the difference
between the models.

Entrained Nonentrained Cohen’s d

R2 RMSE R2 RMSE R2 RMSE

Lasso .347 4.854 .223 5.390 .628 0.629
SVM .325 5.060 .296 5.442 .338 0.321
KNN .304 4.899 .262 5.235 .148 0.274

Note. Cohen’s d is a standardized mean difference of the entrained
and nonentrained groups. RMSE = root-mean-square error; SVM =
support vector machine; KNN = k-nearest neighbors.
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signal behaviors are really entrained during conversations,
then alignment values should be higher in real conversations
as compared to artificially generated sham conversations
involving two out-of-conversation participants, we afford
empirical evidence of conversational entrainment across
rhythmic, articulatory, and phonatory dimensions of speech.

Speech signal entrainment has typically been quan-
tified using synchrony measures (e.g., Pearson correla-
tion) on single acoustic–prosodic features, computed across
conversational partners’ speaking turn change (e.g., Borrie
et al., 2015; Levitan & Hirschberg, 2011). Recently, more
sophisticated projection approaches involving principal
components analysis (Lee et al., 2014) or linear discrimi-
nant analysis (Willi et al., 2018), applied to larger feature
sets, have been used to evaluate the communication phe-
nomenon. Although these approaches provide valuable
insight into the degree of acoustic–prosodic entrainment
in a conversation, the use of CRQA allows us to examine
time-evolving interdependent behavior, capturing not
only the amount of entrainment but also organization that
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Figure 1. Results of the communicative efficiency prediction models, highlighting the relative importance of each entrained (sustained
recurrence) feature set. MFCC = melfrequency cepstral coefficient; LTAS = long-term average spectrum; EMS = envelope modulation
spectrum.
reflects stability and complexity of behavioral dependency
(see Fusaroli et al., 2014, for complete details). To briefly
recount the CRQA measures, recurrence rate quantifies
the amount of entrainment on the basis of a single instance
of alignment. Sustained recurrence also quantifies the amount
of entrainment, but this measure is based on alignment
that is maintained for longer than a single instance. Length
and max length quantify the average length/time and lon-
gest length/time of aligned behavior, respectively, and
are thus considered indicative of entrainment stability.
Finally, entropy captures the variability in the length of
aligned behavior, reflecting entrainment complexity.

The current results reveal that, at least for goal-
oriented conversations and clinically meaningful parameter
settings, entrainment is largely a sustained and stable phe-
nomenon. When examined collectively across all feature
sets, measures of sustained recurrence and max length were
292 Journal of Speech, Language, and Hearing Research • Vol. 62 • 2
significantly greater in real versus sham conversations,
whereas recurrence rate, length, and entropy were not.
When broken down by specific feature set, we see that the
measure of sustained recurrence is consistently informative
for differentiating between real and sham conversations
across rhythmic, articulatory, and phonatory dimensions
of speech. Measures of length and max length are approaching
informative on particular feature sets (i.e., articulatory and
phonatory dimensions) but, due to the conservative p value
cutoff (using the Bonferoni adjustment) used in the current
study, are not considered significant. Although the cutoff
value was selected to mitigate the chance of Type I error
in the 30 comparisons, it does raise the possibility that addi-
tional measures may also capture speech signal entrainment.
Future studies using larger numbers of conversations may
shed more light on this. From the current findings alone,
we surmise that single instances of shared coordination
83–296 • February 2019



(i.e., recurrence rate) between conversational participants
may not be an optimal measure to capture clinically mean-
ingful alignment in the speech domain. Rather, sustained
entrainment, where alignment transpires for longer than
a single instance, appears to maximally characterize the in-
terdependency of acoustic–prosodic behavior that occurs
in face-to-face, goal-oriented communicative interaction.
Indeed, others have noted that the type of interaction (e.g.,
level of shared information, agreement vs. disagreement,
deception vs. truth) influences the organization and struc-
ture of aligned behavior (Coco et al., 2017; Duran &
Fusaroli, 2017).

Based on results from three different machine learn-
ing approaches, the current study demonstrates that, as a
group, measures of speech signal entrainment (i.e., those
measures that are significantly different between real and
sham conversations) predict an objective measure of suc-
cessful conversation, communicative efficiency. Furthermore,
the models built on entrained speech signal measures out-
perform models built on nonentrained speech signal mea-
sures, highlighting the role of conversational entrainment in
communicative efficiency. Although other studies have
shown that measures of speech signal entrainment track with
communicative efficiency/task success (e.g., Borrie et al.,
2015; Nenkova et al., 2008), this is the first study of its
kind to explicate a predictive relationship with speech signal
entrainment measures informed by expert clinical assess-
ment of conversation. Furthermore, as illustrated in Fig-
ure 1, sustained entrainment of features that represents
articulatory behavior was the key driver for predicting com-
municative efficiency. Entrainment of rhythmic features
played a smaller role in the prediction task, whereas phona-
tory feature entrainment played virtually no role. Much of
the existing work in the area of acoustic–prosodic entrain-
ment, including our own previous work, has targeted a
single feature or speech signal dimension. The current find-
ings, however, provide evidence that a singular focus is likely
insufficient when evaluating conversational entrainment
and functional outcomes, advancing the idea that character-
ization of conversational entrainment, at least in the speech
domain, necessitates a multidimensional framework.

Setting CRQA Parameters
With Expert Clinical Assessment

It is important to acknowledge how the parameters
were set for the application of CRQA to the speech data in
the current study. Given that the parameters are critical
for the methodology to distinguish between instances of
alignment versus instances that are not aligned, selecting
appropriate parameters is no trivial task. Existing literature
has used an algorithmic approach to select the parameters
(Coco & Dale, 2014; Duran & Fusaroli, 2017). This approach
individualizes parameters for each conversation by select-
ing a recurrence rate between certain percentage point
values (e.g., 3%–5%). Herein, we used novel approach to
set CRQA parameters, using real-world evidence from expert
clinical assessment of conversation. This approach selected
Borr
the parameters that produced the highest cross-validated
predictive accuracy of expert clinical assessment and was
used across all conversations, real and sham.

This data-driven parameter selection approach, al-
though novel in the application of CRQA, is widely used
to select the parameters in machine learning techniques
(Hastie et al., 2009). It removes potential researcher bias
from the selection of the parameters and generally allows
a much better model fit. This is also true of CRQA. In
this case, this approach ensures that the measures pro-
duced are meaningfully related to clinical evidence of
successful conversation. Notably, the parameters that
would have been chosen in the next highest predictive ac-
curacy situations were not much different than those
from the highest accuracy. This suggests that this approach
provides a close range of parameters that perform simi-
larly across the conversations. As such, this approach
was not heavily dependent on some particularly well-
performing parameters that would likely not generalize
to other data. Future work, when coupled with clinical
evidence about the conversations, can use this parameter
selection approach with CRQA to find high-performing
parameters that can be used across the conversations. In
addition, work assessing the generalizability of the cho-
sen parameters would shed light on similarities across
conversations.

Clinical Implications and Future Directions
The current study affords a clinically meaningful

methodology, developed and validated in healthy popula-
tions, for learning more about the communication phe-
nomenon of entrainment and how it is disrupted in the
context of communication disorders. Much more research
is undoubtedly required to comprehend the utility of en-
trainment measures in speech-language pathology, but we
advance that such investigations could have high yield.
There presently exist no theory-driven automated tools to
assess conversation in terms of productive and fulfilling
interactions. Although expert clinical assessment of conver-
sation should always be gold standard, we speculate that
automated measures of entrained speech signal behavior
may provide predictive and decision-making support for
conversational assessment. Furthermore, in theory, these
objective measures will have the capacity to go beyond
what can be detected by the trained clinical ear, computing
the degree of speech signal entrainment, revealing the locus
of impairment (i.e., rhythm, articulation, or phonation),
identifying potential intervention targets, and monitoring
treatment progress and outcomes. Thus, this methodology,
developed and validated in conversations involving healthy
participants, lays the groundwork for ensuing entrainment
investigations in clinical populations.
Conclusion
We weaved together automatic acoustic–prosodic

feature extraction methods, feature reduction techniques,
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recurrence quantification, and expert clinical assessment
to characterize conversational entrainment within a multi-
dimensional framework. Using a real versus sham validation
procedure, we find evidence of sustained entrainment in
rhythmic, articulatory, and phonatory dimensions of speech.
We provide additional validation for the methodology,
showing that key output measures, verified measures of
speech signal entrainment, predicted an objective measure
of conversational success, communicative efficiency. This
clinically meaningful methodology for capturing conversa-
tional entrainment, validated in goal-oriented conversations
involving healthy participants, has potential application
for clinical disciplines such as speech-language pathology
where conversational entrainment represents a critical
knowledge gap in the field, as well as a potential target for
remediation.
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Appendix

Clinical Rating Scale
To what extent do you agree with this statement:

The conversational pair sound like they are in-sync or aligned with one another.

Note that high ratings (scores above 4) are indicative of a natural cohesiveness to the interaction, smooth turn-taking
and conversational flow, and a sense of rapport and connection between conversational participants and low ratings (scores
below 4) are indicative of an awkward, disconnected, and disengaged interaction.

1. Strongly Disagree

2. Disagree

3. Slightly Disagree

4. Neutral

5. Slightly Agree

6. Agree

7. Strongly Agree
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