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Taiji: System-level identification of key transcription 
factors reveals transcriptional waves in mouse  
embryonic development
Kai Zhang1, Mengchi Wang2, Ying Zhao1, Wei Wang1,2,3*

Transcriptional regulation is pivotal to the specification of distinct cell types during embryonic development. 
However, it still lacks a systematic way to identify key transcription factors (TFs) orchestrating the temporal and 
tissue specificity of gene expression. Here, we integrated epigenomic and transcriptomic data to reveal key 
regulators from two cells to postnatal day 0 in mouse embryogenesis. We predicted three-dimensional chro-
matin interactions in 12 tissues across eight developmental stages, which facilitates linking TFs to their target 
genes for constructing transcriptional regulatory networks. To identify driver TFs, we developed a new algorithm, 
dubbed Taiji, to assess the global influence of each TF and systematically uncovered TFs critical for lineage-specific 
and stage-dependent tissue specification. We have also identified TF combinations that function in spatiotemporal 
order to form transcriptional waves regulating developmental progress. Furthermore, lacking stage-specific TF 
combinations suggests a distributed timing strategy to orchestrate the coordination between tissues during em-
bryonic development.

INTRODUCTION
Transcription factors (TFs) are essential regulators of cell fate and 
play pivotal roles in development (1). Identification of critical TFs 
that drive tissue differentiation can provide key mechanistic insights 
into the developmental process. However, a complete catalog of driver 
TFs at each developmental stage in each tissue has not been established. 
Tackling this challenge requires dissecting the transcriptional networks 
and characterizing the genome-wide influences of key TFs.

The global influence of a TF in the cell is conveyed through its 
regulatory effect on the target genes, which is propagated over the 
transcriptional network. The TF’s regulatory activity is affected by 
its own expression level and post-translational modification as well 
as other factors such as the presence of collaborative co-factors (2). 
Therefore, the expression level of a TF is not always correlated with 
its activity (3, 4). In light of this, many methods have been proposed 
to infer the activity of TFs using statistical or machine learning 
approaches. For instance, Schacht et al. (4) developed a statistical 
model to estimate the regulatory activity of TFs using their cumulative 
effects on their target genes. Arrieta-Ortiz et al. (5) used the linear 
model to infer the TF activity (TFA) by predicting target genes’ expres-
sion levels. Although these methods were able to predict the local 
activity of a TF, i.e., the expression level of their direct target genes, 
measuring the system-wide influence of a given TF is not their focus. 
As genes rarely function alone but usually cross-talk with each other 
to form complex regulatory logic, it is reasonable to believe that the 
global influence of a TF can, in principle, better predict the cell-state 
change upon perturbing the TF than its local influence (6, 7).

Previously, we have shown that the personalized PageRank can 
successfully infer the global impact of TFs (8, 9). It clearly outper-
formed the motif enrichment analysis and the TFA approach (9). In 
addition, several predicted TFs were later validated experimentally 

and demonstrated previously unappreciated roles (8, 9). Building 
upon our previous studies, we have made further improvements by 
incorporating spatial long-range interaction information into net-
work construction, which helps assign distal regulatory elements to 
target genes. Furthermore, we have developed a software package, 
dubbed Taiji, to help biologist to perform integrated analysis and 
identify driver TFs using different genomic information, including 
chromatin state [from chromatin immunoprecipitation followed by 
high-throughput sequencing (ChIP-seq) or assay for transposase-
accessible chromatin with high-throughput sequencing (ATAC-seq)], 
gene expression profile [from RNA sequencing (RNA-seq) or micro
array], and chromatin long-range interactions (from Hi-C or com-
putational prediction).

The Encyclopedia of DNA Elements (ENCODE) project has 
systematically mapped the epigenomic dynamics during mouse em-
bryonic development in 12 tissues and eight developmental stages. 
While this dataset provides an unprecedented opportunity to dissect 
the complex transcriptional regulatory logic during development, it 
also poses great challenges for integrated computational analyses. 
Using our framework, we have identified TFs that are crucial in 
defining tissue differentiation. Furthermore, we applied Taiji to the 
existing data in earlier development, from two-cell stage to embry-
onic stem cell, which complements the data generated by the mouse 
ENCODE project. Our analyses thus provide the first comprehensive 
catalog of key regulators for a variety of tissues during mouse embryo-
genesis. While many of the identified regulators are well supported 
by the literature, the newly found key TFs in development provide a 
valuable resource for follow-up biological study. We also uncovered 
TF combinations that activate in a spatiotemporal manner, which 
behave like transcriptional waves to orchestrate the developmental 
progress and tissue specification.

RESULTS
An overview of the Taiji framework
To identify key regulators, Taiji integrates various genomic infor-
mation to build transcriptional regulatory networks by predicting 

1Department of Chemistry and Biochemistry, University of California, San Diego, 
La Jolla, CA, USA. 2Bioinformatics and Systems Biology Graduate Program, University 
of California, San Diego, La Jolla, CA, USA. 3Department of Cellular and Molecular 
Medicine, University of California, San Diego, La Jolla, CA, USA.
*Corresponding author. Email: wei-wang@ucsd.edu.

Copyright © 2019 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).



Zhang et al., Sci. Adv. 2019; 5 : eaav3262     27 March 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 14

regulations between TFs and genes. The TFs in the network are then 
ranked by the personalized PageRank algorithm (Fig. 1A) (10). 
Briefly, Taiji starts by identifying active regulatory elements, includ-
ing active promoters and active enhancers, defined by ATAC-seq 
or H3K27ac ChIP-seq peaks. Enhancers were then assigned to 
their interacting promoters using chromatin interactions predict-
ed by EpiTensor (11). To construct transcriptional regulatory net-
works, Taiji scans each regulatory element to identify putative TF 
binding sites using motifs from the CIS-BP database (12). TFs with 
putative binding sites in promoters or enhancers are then linked to 
their target genes in the networks. Lastly, the PageRank algorithm 
was used to assess the genome-wide influences of TFs. Furthermore, 
we used the node and edge weights to personalize the ranking algo-
rithm. The node weights were determined by the z scores of gene 
expression levels, which allow the ranking algorithm to assign 
higher ranks to TFs that regulate more differentially expressed 
genes. The edge weights were set to be proportional to TFs’ expres-
sion levels, which help filter out TFs that are not expressed or with 
low-expression levels (see Materials and Methods for details).

Predicting long-range chromatin interactions in mouse 
embryonic development
Hi-C data were not available for the tissues studied by the mouse 
ENCODE project. Therefore, we resorted to EpiTensor (11), an un-
supervised learning method, to predict the enhancer-promoter inter-
actions from histone modification data. As we have demonstrated in 
our previous study, EpiTensor not only shows high concordance with 
the experimental data, including Hi-C, chromatin interaction analy-
sis by paired-end tag sequencing, and expression quantitative trait 
locus results, but also significantly outperforms other correlation-
based methods and nearest gene assignment (11). Besides, a unique 
advantage of EpiTensor is that it can predict chromosome interac-
tions at a high resolution of 200 base pairs (bp) within topologically 
associating domains (TADs) (Fig. 1B); this is much higher than the 
highest resolution (1000 bp) of the Hi-C data available in the pub-
lic domain. Using EpiTensor, we predicted the chromatin interac-
tions in 12 tissues at eight developmental stages. All predictions are 
available in the Supplementary Materials. The predicted interactions 
cover 25,358 transcription start sites (TSSs), >38% of all annotated 
transcripts [from GENCODE version M14 (13)], and 334 experi-
mentally validated enhancers in the VISTA database (14) account 
for 55% of confirmed active enhancers during mouse embryonic de-
velopment. To further assess the accuracy of EpiTensor’s predic-
tions, we compared the interactions predicted in mouse embryonic 
stem cells (mESCs) with Hi-C interactions from Dixon et al. (15). 
The result showed that EpiTensor’s predictions are in great con-
cordance with the Hi-C experiment (area under the receiver operat-
ing characteristic curve = 0.87) (fig. S1A). In Fig. 1C, we show one 
example of the predicted interactions. Specifically, locus iii is the 
promoter of Tubb2b, a critical gene for the cortical formation and 
brain morphogenesis (16). Locus iv is an experimentally validated 
active enhancer in embryonic mouse midbrain, hindbrain, and facial 
mesenchyme from the VISTA database (peak ID: mm1605). These 
two loci show correlated histone modification profiles across tissues/
stages and were identified as interacting loci by EpiTensor. No inter-
action was found between locus iv and v despite their closer dis-
tance. This result, together with the large distance (160 kilo–base 
pairs) between locus i and v, indicates the power of EpiTensor for 
identifying long-range chromatin interactions.

Computational validation of the Taiji framework
Network construction and PageRank procedure are the two critical 
components deciding the overall accuracy of Taiji’s results. To vali-
date the network construction method, we trained a random forest 
model to predict the expression changes of target genes from the 
expression changes of their upstream regulators in the network. 
Using 10-fold cross-validation, we showed that the predicted changes 
is in good concordance with the actual values ( = 0.756) (fig. S1B). 
Next, to investigate whether the PageRank scores can be used to 
assess the TFs’ importance, we used the GeneNetWeaver (17) to 
generate benchmark networks and associated them with dynamic 
models. Using the dynamic models, we generated the expression 
profiles and performed in silico knockout experiments for each 
regulator. The Euclidean distance between wild-type and knock-
out expression profiles was computed to represent the magnitude 
of the perturbation (fig. S1C). Regulators were ranked by their per-
turbation magnitudes, reflecting their global influences on the 
cells. We used this rank list as the ground truth to assess the perform
ance of different algorithms. Among the five methods we have 
benchmarked, PageRank performed the best, showing a strong 
Spearman’s correlation ( = 0.914) with the ground truth in the 
benchmark dataset of yeast (Fig. 2A). The gene expression of a TF is 
not a strong predictor of its importance, as indicated by the weak 
correlation ( = 0.393) with the perturbation magnitude (Fig. 2D). 
The regression-based TFA model (5) does not correlate with the 
ground truth ( = −0.134) (Fig. 2E). Another method, developed 
by Schacht and his colleagues (4), defines the TF activity as the 
weighted average of its target genes’ expression (WATG) and it 
shows a weak correlation with TFs’ overall importance ( = 0.225; 
Fig. 2C). We speculated that the averaging effect in WATG might 
contribute negatively to its performance on predicting global impor-
tance. Therefore, we developed a new metric called WSTG, which cal-
culates the weighted sum of target genes’ expression levels of a TF 
(see Materials and Methods for details). Note that the formulation 
of WSTG is conceptually equivalent to the network degree central-
ity. As expected, it performs much better than WATG ( = 0.823; 
Fig. 2B) because it takes into account the accumulated effects of 
all regulatees. In summary, algorithms that focus on measuring the 
“local” TF activities, i.e., TFA and WATG performed much worse 
than the network centrality-based methods (PageRank and 
WSTG), and PageRank showed the best performance.

A major advantage of PageRank algorithm, compared to other 
simpler centrality metrics such as WSTG, is that it is defined recur-
sively and, hence, depends not only on the number of connected 
nodes but also on those nodes’ PageRank values. Therefore, PageRank 
performed better than WSTG for the yeast network. To further 
confirm PageRank’s superior performance, we conducted addition-
al benchmarks using the Escherichia coli network and another 20 ran-
dom subnetworks extracted from the yeast network (fig. S1D and 
Fig. 2F). In all the tested cases, PageRank consistently outperformed 
WSTG and other methods.

Transcriptional regulatory networks constructed from TF bind-
ing site predictions can be quite noisy. Therefore, assessing the 
robustness of PageRank algorithm against noises is critical for ensur-
ing our results are reliable. For this purpose, we randomly inserted, 
deleted, or substituted a fraction of edges in the 20 benchmark net-
works mentioned above. We investigated whether the PageRank 
results were affected after introducing these noises. The result showed 
that the PageRank algorithm is resistant to random insertions 



Zhang et al., Sci. Adv. 2019; 5 : eaav3262     27 March 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 14

A

C

TF

Construct network

TF

Assign weights by expression

Apply personalized PageRank

Assign TF motifs found in enhancers or promoters to target genes

Promoter
Gene Y

TF2

Enhancer
Gene X

TF1

TF

Scan motif binding sites in active chromatin region

Link TF to gene targets

Gene X...
TF1

TF2 Gene Y 4D tensor decomposition

Locus Assay Time

Eigenloci

1

2

3

Locus
Tiss

ue

Tim
e

yass
A

fb
mb

hb
lv

ht
H3K4me1
H3K4me2
H3K4me3

H3K9ac
H3K9me3
H3K27ac

H3K27me3
H3K36me3

E11.5
E12.5

E13.5
E14.5

E15.5
E16.5

P0

Permute peaks and call
interactome with
FDR = 0.005

Eigenloci

1

2

3

Gene expression

B

EpiTensor prediction

Chr13

Serpinb6a Ripk1 Bphl Tubb2a 4930447K03Rik Tubb2b Psmg4

34,000 kb 34,050 kb 34,100 kb 34,150 kb

Eigenloci

H3K4me1

fb

1

2

mb

hb

ht

lv

H3K4me3

fb

mb

hb

ht

lv

H3K27ac

fb

mb

hb

ht

lv

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

E11.5
E13.5
P0

i ii iii iv v

Tissue
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(Fig. 2G), suggesting that adding uniform noises to the network 
without modifying the existing edges is less likely to distort the real 
signal. Second, random deletion has only a minor effect on PageRank’s 
performance. Removing a large percentage of the edges only induced 
a small drop of the average correlation. For example, when deleting 
80% of the edges, the average correlation of the PageRank scores 

with the ground truth drops to 0.691 from 0.839, which is still higher 
than that of gene expression ( = 0.616). When deleting all edges 
from the networks, the PageRank algorithm has the same performance 
as the gene expression ranking. The reason is that the gene expres-
sion levels are used to personalize the PageRank algorithm. After 
removing all edges, the ranking is then solely determined by the gene 
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expression levels. Among the three types of mutations, random 
substitutions pose the largest impact on PageRank’s performance. 
However, as long as 20% of the edges are preserved, PageRank can 
still predict well ( = 0.663). Overall, we found that the PageRank 
algorithm is very robust against random noises. This feature is very 
important when applying this method to noisy biological networks.

The de novo construction of biological networks remains chal-
lenging. We indirectly assessed the accuracy of the constructed net-
works by predicting genes’ expression changes. The predicted values 
are correlated with the experimental results despite the absolute 
values deviate slightly (fig. S1B), which suggests some unknown 
noise in the data or the constructed network. However, the random 
noise does not have major impact on the performance of our method, 
as shown in Fig. 2G.

Taiji reveals driver TFs during embryogenesis
We constructed transcriptional regulatory networks in 12 tissues at 
eight developmental stages. The average number of nodes and edges 
in these networks is 16,187 and 320,227, respectively. Six hundred 
thirty-nine (3.95%) of the nodes are TFs. On average, each TF regu-
lates 501 genes, and each gene is regulated by 19 TFs (fig. S2). To 
characterize the dynamics of TFs’ global influences across different 
tissues and stages, we removed TFs that do not present large varia-
tions [coefficients of variance (CVs) less than 1] in their PageRank 
scores, which gave us a list of 245 most variable TFs. We plotted the 
PageRank score matrix in Fig. 3A, ordering the samples (columns) 
by tissue types. We found that different tissues have quite distinct TF 
regulatory patterns (Fig. 3A, left). In contrast, when ordering the 
same data by developmental stages, no discernible patterns were 
observed (Fig. 3A, right), suggesting that transcriptional regulation 
largely takes place in a tissue-dependent fashion. To investigate the 
relationship between PageRank scores and expression levels, we cal-
culated the Spearman’s correlation between PageRank scores and 
expression levels for the 245 TFs (Fig. 3B). While 60% of TFs’ 
expression levels strongly correlate with their PageRank scores ( > 
0.75), a substantial portion (9.3%) of them show weak or no correla-
tions ( > 0.25). The rest of the TFs’ expression levels have moderate 
correlations with PageRank scores (0.25 <  < 0.75). The fact that 
about half of the TFs’ expression levels are highly correlated with 
their PageRank scores may explain why gene expression achieves the 
third best in our in silico validation (Fig. 2F).

Using the FastME algorithm (18), we constructed a lineage tree 
based on the PageRank scores of 245 TFs (Fig. 3C). The result shows 
that the samples are mostly grouped by their tissue types. A mixture 
is only observed for four closely related samples (forebrain at E10.5, 
midbrain at E11.5, midbrain at E10.5, and craniofacial prominence 
at E10.5), which may be due to the difficulty of dissecting these tissues 
at their early stages. As a comparison, we found many unexpected 
clusters in the lineage tree constructed using the gene expression 
profile of the same 245 TFs (Fig. 3D). For instance, intestine at post-
natal day 0 (P0) is grouped with liver samples; craniofacial promi-
nence at E14.5 and E15.5 are clustered with limb samples. These 
results further demonstrate that PageRank is superior to gene ex-
pression as an indicator of TFs’ activities.

We then asked whether there exist constitutively active TFs 
that exhibit high-ranking scores across all tissues and stages. For 
this purpose, we first selected TFs with average ranking scores 
larger than 3 × 10−3, corresponding to the top 10% of all TFs. Next, 
we retained TFs of which the CVs are less than 0.5, giving us 35 

constitutively active TFs in total (Fig. 4A). Similar to their tran-
scriptional activities, the expression levels of these TFs remain 
relatively high across tissues and stages (fig. S3). Functional classifi-
cation analysis revealed that these TFs are enriched in “metabolic 
process,” “cellular process,” and “developmental process,” suggest-
ing their general roles in basic cellular functions and embryonic 
development.

The earliest developmental stage that mouse ENCODE project 
has surveyed starts from E10.5. To obtain a complete view of mouse 
embryogenesis, we incorporated another published dataset that pro-
filed the transcriptome- and genome-wide chromatin accessibility 
in earlier mouse embryos (19), spanning stages from E1 (two-cell) 
to E5 (blastocyst stage). Together, we have identified potential driver 
TFs in 12 tissues from eight stages, as well as those in two-, four-, 
eight-cell embryos, inner cell masses (ICMs), and mESCs. For the 
first time, the complex transcriptional regulation during mouse 
embryonic development is systematically mapped (figs. S4 and S5). 
The identified driver TFs include many well-known key regulators. 
For example, we successfully identified Sox2, Nanog, and Pou5f1 
(also known as Oct4) as crucial TFs in mESCs. To systematically 
validate our predictions, we performed literature search in five 
tissues that have been extensively studied, including the heart, lung, 
liver, kidney, and limb. Forty one of 56 (73.2%) TFs identified by 
our method are shown to be associated with either development or 
disease of these tissues (see the Supplementary Materials for details). 
For instance, 9 of 13 identified driver TFs in the lung have been 
previously reported to play a pivotal role during the bronchiole tree 
and terminal alveolar region formation of mouse lung (Fig. 4B) and 
another two TFs relate with lung cancer (20, 21). Apart from the 
spatial specificity (across tissues), the temporal pattern of TFs’ 
activity (across stages) can also be accurately captured by our ap-
proach. For instance, Nkx2-1 is initiated at the early stage of lung 
development, and Nkx2-1 mutant embryos are arrested at early 
pseudoglandular (E11 to E15) stage (22), which is consistent with 
our analysis. Similarly, another key regulator, Foxa2, is present in 
the epithelial cells from the beginning of lung bud formation, and 
transgenic mice with Foxa2 ectopically expressed in the lung epi-
thelial cells exhibited defects in branching morphogenesis (23).

We have also found many previously unknown TFs. Hlx, identified 
as a key regulator for lung development, has not yet been studied in 
the lung. We showed that Hlx is regulating a number of high-rank 
TFs at P0, including several aforementioned constitutively active 
TFs, i.e., Sp1, Meis2, and Zfx (Fig. 4C). The functional enrichment 
analysis of all Hlx’s regulatees shows that they likely participate in 
epithelial tubes development in the lung. Besides, some of the pre-
dicted TFs have been studied in closely related tissues. For instance, 
Vsx1, predicted as an important regulator in the hindbrain, was re-
lated to retina development (24).

During development, ESCs differentiate into three germ layers—
ectoderm, endoderm, and mesoderm. To identify TFs that are spe-
cific to each layer, we grouped and compared tissues originated from 
the same layer against tissues from other layers (Fig. 5). The student 
t tests with a P value cutoff of 0.001 were used to identify TFs whose 
ranks change significantly in one germ layer compared with other 
layers. The functional relevance of the found layer-specific TFs is 
supported by the literature. For example, we have identified Zic1, 
Zic4, and Zic5 as specific regulators for ectoderm, which is in agree-
ment with the role of Zic family in neural development (25). In ad-
dition, many previously known layer-specific markers were also found 
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Fig. 3. TFA determined from Taiji accurately predicts tissue specification. (A) Two different views, arranged by tissue types (left) and arranged by stages (right), of the 
245 most variable TFs’ ranking scores during embryogenesis. (B) Histogram of the Spearman’s correlations between PageRank scores and expression levels of 245 TFs 
across tissues and stages. Sixty percent of the TFs show strong correlations (>0.75), and 9.3% of the TFs show weak or no correlation (<0.25). (C) A lineage tree constructed 
from the ranking scores of the 245 TFs. (D) A lineage tree constructed from the gene expression levels, determined by RNA-seq, of the same 245 TFs in (C). cf, craniofacial 
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from our analysis, e.g., Pax6 and Otx2 for ectoderm (26, 27) and 
Foxa2 for endoderm (28). To analyze the tissue specificity of the pre-
dicted driver TFs (listed in fig. S4), we further compared each tissue 
with other tissues originated from the same layer and used the stu-
dent t tests with a P value cutoff of 0.001 to identify tissue-specific 
driver TFs. In total, 68 tissue-specific driver TFs were found, as shown 
in Fig. 5. Together, these results provide a comprehensive map for 
the future mechanistic study of embryonic development.

Transcriptional waves during embryogenesis
In addition to the tissue specificity, we have analyzed the temporal 
activity of TFs during the mouse embryogenesis. To identify clus-
ters of TFs that show similar spatial-temporal patterns, we first per-
formed the principal component analysis to reduce the dimension 
of the TF ranking score matrix. We reserved the first 20 components 
for clustering analysis as adding more components did not gain much 
explained variance (fig. S6A). We used the silhouette analysis (29) 
to select the clustering method and the number of clusters. Among 
the five algorithms we have tested, the k-means algorithm performed 
best, identifying 25 distinct dynamic patterns during embryogenesis 
(fig. S6B). We further performed functional enrichment analysis 
to identify enriched Gene Ontology (GO) terms for these clusters 
(listed in fig. S7). In general, we found that the enriched GO terms 
are consistent with the dynamic patterns of these clusters. For 
example, the cluster C12, showing a heart-specific dynamic pattern, 
is enriched with heart-specific functions, such as “embryonic heart 
tube development,” “blood vessel development,” and “cardiac 
ventricle development.”

The 25 clusters represent transcriptional waves that orchestrate 
the tissue differentiation. The first wave starts from as early as the 
two-cell stage, represented by the cluster C7 (Fig. 6A). In C7, TFs 
show the highest activity at two-cell stage (or possibly earlier as we 
do not have data in zygote). Example TFs from C7 include germ 
cell–specific factors such as Obox1 and Nr6a1, both of which are 
essential for embryogenesis (30, 31), highlighting the roles of parental 
control in early development. As C7 wanes, C21 is turned on during 
four- and eight-cell stages, and C13 and C16 emerge in ICM and 
ESC, respectively. In C13 and C16, we found many well-known 
pluripotency regulators, such as Pou5f1, Nanog, and Sox2. These 
results provide valuable insights into the transcriptional program 
during early embryogenesis.

We also found clusters that are responsible for the differentiation 
of tissues from specific layers. For example, C5 is highly active in all 
four brain tissues from E10.5 to P0, suggesting its critical role in neural 
differentiation. Many TFs that are crucial for neural development 
were recovered in C5, such as Zic5 (25), Pax6 (27), and Gbx2 (32). 
In contrast to C5, C1 is more active in mesoderm- and endoderm-
derived tissues. TFs in this cluster are associated with functions 
specific to the development of these two layers. For example, Hnf4a 
was reported to play pivotal roles in the liver, colon, and kidney 
development (33–35).

Besides germ layer–specific transcriptional waves, there are also 
tissue-specific transcriptional programs that drive the differentia-
tion of individual tissue. In Fig. 6C, we highlighted four clusters, 
C10, C12, C6, and C18, which are responsible for the stomach/
intestine, heart, forebrain, and liver development, respectively. Note 
that we have found such a program for nearly every tissue, includ-
ing the craniofacial/limb (C9), lung (C3), kidney (C4), midbrain 
(C24), and neural tube/hindbrain (C19). See fig. S7 for details.

Most of the tissue-specific TFs are long lived, playing roles in 
almost every stage of development. However, a few TFs exhibit tran-
sient transcriptional spikes, probably related to their stage-specific 
functions. In Fig. 6D, we show two such examples which activate at 
different stages in craniofacial development (C8 for E11.5 and C9 for 
E13.5 and E14.5). As the mechanism of craniofacial development 
remains largely unknown, our discovery, therefore, provides an 
invaluable resource for the future studies.

The mouse embryonic data we analyzed here provide the first 
comprehensive temporal transcriptomic and epigenomic dynamics 
in a diverse set of tissues, revealing “transcriptional waves” in which 
TFs are active in specific tissues at a particular development stage. 
The observed transcriptional waves provide new insights into under-
standing how the development of different tissues is coordinated. 
During embryonic development, the growth of tissues must be 
tightly coordinated through the control of developmental timing. 
This can be achieved by a series of central instructive signals that 
activate at different stages to synchronize the development of tis-
sues. However, in this study, we did not observe any TF that is 
active in all tissues at a particular developmental stage, and hence, 
we conclude that central instructive signals may not exist at the 
transcriptional regulation level. Instead, we propose a “distributed 
coordination” model in which the coordination of tissue develop-
ment is achieved by tissue-to-tissue communications; the timing 
information is communicated in a tissue-to-tissue fashion and then 
propagated through the entire body. Evolutionarily, the model of 
distributed coordination removes the burden of developing a “central 
authority,” which is fragile and inefficient. The distributed coordi-
nation has been shown to play an important role in Drosophila 
tissue development (36). Our analyses show that the same principle 
may also apply to mouse embryonic development.

DISCUSSION
The embryonic development is controlled by TFs that relay envi-
ronmental signals through control of gene expression. Efficient and 
precise regulation of this process requires cooperation of many TFs 
to form complex transcriptional circuits. As a result, the global in-
fluence of a TF cannot be readily inferred from its local activity, i.e., 
its regulatory effect on direct target genes. To identify driver TFs in 
different tissues and at different stages during mouse embryogenesis, 
we developed a novel framework to assess the global influence or 
activity of a TF. In silico simulations show that our method is able 
to predict genes’ influences with great accuracy, outperforming other 
methods for the similar purpose. Compared with metrics for defining 
TFs’ local activities (4, 5), gene expression performs reasonably well 
in our benchmark data, and the PageRank scores correlate well with 
gene expressions for many TFs in real data. However, there exists a 
large portion (~40%) of TFs showing only weak or moderate cor-
relation between their PageRank scores and gene expression lev-
els. In our previous work, we showed this type of TFs can indeed 
play a pivotal role in CD8+ T cell differentiation (9). Because the 
correlation between gene expression and the activity of a TF may 
vary in different cell states, our method is more robust in predicting 
TF importance regardless of its activity correlated or not with its 
expression.

Our method Taiji is capable of flexibly integrating diverse genomic 
and epigenomic data, including ChIP-seq, RNA-seq, ATAC-seq, and 
Hi-C. Considering the current limitation of Hi-C experiments, we 
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Fig. 5. Germ layer– and tissue-specific driver TFs in mouse embryonic development. The legends for the color scheme and the shape of the bubble are the same as 
those in fig. S4. Because of the limited space, we do not show them in this figure.
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provide a computational alternative when Hi-C experiment is infea-
sible or unavailable. In this work, we predicted three-dimensional 
(3D) chromatin interactions in 12 tissues and eight developmental 
stages of the mouse embryo, which provides the first 3D chromatin 
organization information. By leveraging the strength of various ex-
periments, we have successfully mapped lineage-, tissue-, and stage-
specific driver TFs throughout the mouse embryonic development 
from as early as the two-cell stage to P0. In addition to retrieving 
known key regulators, we have also identified previously unknown 
TFs responsible for tissue differentiation and development progress, 
which can guide the future experimental investigations to under-
stand the regulatory mechanisms of development.

Particularly interesting is the observation of transcriptional waves 
represented by TF combinations that activate in a spatiotemporal 
fashion. We did not find stage-specific tissue-independent TFs, i.e., 
TFs that are active in all tissues at a specific stage (Fig. 3, A, C, and D). 
Therefore, we hypothesize that the coordination of tissue develop-
ment is not achieved by global regulators, i.e., there lacks a “central 
timer,” but by sequential activations of regulators in individual tis-
sues that function like a “distributed timer” and use tissue-to-tissue 
communication to ensure synchronization between tissues, i.e., tissues 
cross-talk and inform each other what is the current developmental 
stage. A distributed timer alleviates the burden of developing a central 
timer during evolution and also provides a more robust timing 
strategy relying on fewer pathways or loci.

MATERIALS AND METHODS
Prediction of chromatin interactions using EpiTensor
TADs were taken from the previous study (15). The input histone 
modification data were downloaded from the ENCODE data portal, 
including a common set of eight histone marks at seven time points in 
five tissues: H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, 
H3K4me3, H3K9ac, and H3K9me3 at developmental stages of 
E11.5, E12.5, E13.5, E14.5, E15.5, E16.5, and P0 in the heart, liver, 
forebrain, midbrain, and hindbrain. EpiTensor performed tensor anal-
ysis in the 4D space composed of tissue, time point, histone mark, 
and locus dimensions. The peaks in the eigenlocus vectors represent 
the covariation of histone modification signals that indicate 3D inter-
actions of the corresponding loci. We considered the first 40 eigen-
locus vectors, capturing, on average, 96.98% of total variance. The peaks 
in each eigenlocus vector were called by comparing to randomly 
shuffled background. The false discovery rate (FDR) and P value were 
calculated for each peak. In this study, we used 0.005 as the FDR 
cutoff. The EpiTensor predictions were validated in mESCs. First, 
we obtained the mESC-specific interactions by overlapping all pre-
dicted interactions in different tissues/stages with the H3K27ac peaks 
from mESC (ENCODE: ENCSR000CDE). We then compared the 
mESC-specific predictions with Hi-C interactions from Dixon et al. 
(15). We followed the same procedures of Zhu et al. (11) to draw the 
receiver operating characteristic curve.

Constructing TF regulatory networks
We used TF motifs, represented by position weight matrix, to predict 
TF binding sites at open chromatin regions within genes’ promoters or 
enhancers and then connected these TFs to downstream genes. We 
chose this strategy because it is one of the most scalable approaches for 
studying TF gene regulations in a reasonably accurate way. Our net-
work construction method contains three major steps listed below:

1) Identifying active promoters and enhancers: We define a gene’s 
promoter as the 6-kb interval that covers the 5-kb upstream and the 
1-kb downstream of the gene’s TSS. As active promoters are usually 
indicated by active histone marks, we used the H3K27ac ChIP-seq 
peaks to determine the activity of a given promoter. In particular, 
we called a promoter active if it is overlapped with at least one peak. 
Any gene of which the promoter is inactive was excluded from the 
network. To increase the sensitivity, i.e., preserving more active 
genes in the analysis, in this step, we used a relaxed cutoff (q val-
ue equals to 0.1) in MAC’s (model-based analysis of ChIP-Seq’s) 
(37) peak calling procedure. Distal peaks that are not overlapped 
with promoters were considered as enhancers.

2) Identifying genes’ regulatory domains: The definition of gene 
regulatory domain was borrowed from the GREAT (Genomic Regions 
Enrichment of Annotations Tool) software (38). Specifically, each 
gene was assigned a basal regulatory domain, which is the gene’s 
promoter. The gene regulatory domain was then extended in both 
directions to the nearest gene’s basal domain but no more than 1000 kb 
in one direction.

3) Scanning TF binding sites and linking TFs to target genes: We used 
the H3K27ac peaks called by ENCODE. For each peak, we identified 
its summit and scanned TF binding sites using FIMO’s (Find Indi-
vidual Motif Occurrences’) algorithm (39) with the P value cutoff 
1 × 10−5 in the 100-bp interval centered around the summit. In this 
study, we used the mouse TF motif database curated by the CIS-BP 
database (12) that contains the motifs of 639 TFs. To link enhancers 
to their target genes, we first used long-range chromosome interactions 
to identify the interacting promoters for each enhancer. TF binding 
sites in these enhancers were then linked to corresponding promoters/
genes. For the rest of the predicted TF binding sites of which the 
assignments cannot be made using the 3D chromosome information, 
we assigned them to genes according to the regulatory domains de-
fined in previous steps. Last, we formed a directed edge from a TF to 
a gene in the network if the TF has at least one binding site that is 
linked to the given gene.

Computing the ranking scores for TFs in the network
We used the personalized PageRank algorithm to calculate the ranking 
scores for TFs. We first assigned weights to the edges and nodes in TF 
regulatory networks. The weight of a node was calculated from the rel-
ative expression level of its representing gene. A gene’s relative expres-
sion levels among different cell types were computed by applying the.

z score transformation to its absolute expression levels. Sup-
pose a gene’s relative expression level in cell type i is zi, the node 
weight for this gene in cell type i was then given by ezi. The weight 
of an edge in a network was given by the logarithm of the gene 
expression level of the source (TF). Let s be the vector containing 
node weights and W be the edge weight matrix. The personalized 
PageRank score vector v was calculated by solving a system of linear 
equations v = (1 − d)s + dWv, where d is the damping factor (default 
to 0.85). The above equation can be solved in an iterative fashion, 
i.e., setting vt + 1 = (1-d)s + dWvt.

Validation of the network construction method
Considering the computational feasibility, we only selected 24 of 72 
samples to perform validation. They are the embryonic facial prom-
inence at E10.5 and E15.5, forebrain at E10.5 and P0, midbrain at 
E10.5 and P0, hindbrain at E10.5 and P0, heart at E10.5 and P0, 
limb at E10.5 and E15.5, stomach at E14.5 and P0, liver at E11.5 and 
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P0, neural tube at E11.5 and E15.5, kidney at E14.5 and P0, intestine 
at E14.5 and P0, and lung at E14.5 and P0. For every sample pair, we 
selected the top 500 most expressed genes from each sample. The log 
fold changes of these genes are the response variables of our predic-
tion model. According to the constructed network, we identified the 
upstream regulators of those genes and computed their log fold 
changes. These were the predictors for the model. These procedures 
were repeated for all 276 sample pairs, and the results were com-
bined. In total, we got 158,600 records for training a random forest 
model with 10-fold cross-validation.

Benchmarking different ranking algorithms
The gene expression profiles of wild-type and knockout experiments 
were simulated using the GeneNetWeaver (17). The yeast and E. coli 
networks were provided by GeneNetWeaver, and additional 20 sub-
networks were sampled from the yeast network. Each contains at 
least 50 regulators of 1000 genes. The formula of WSTG is given by 
WSTG(t) = Siϵregulatees of t wigi, where t represents the TF, gi is the 
expression level of gene i, and wi represents the weight or confidence 
of the TF gene regulation between TF t and gene i.

Lineage tree construction
Lineage trees were constructed by running the FastME algorithm 
(18) on normalized ranking matrix, which was obtained from row-
wise z score transformation of the original matrix.

Identification of driver TFs for tissues
The output of Taiji pipeline is a matrix, consisting of TFs’ ranking 
scores from different experiments. The rows and columns of the matrix 
represent TFs and experiments, respectively. To identify driver TFs, we 
first removed the rows (TFs) with CVs less than 1. We then grouped the 
columns (experiments) from various stages together whether they are 
from the same tissue and averaged the ranking scores in each group. 
Assuming that the average ranking scores are normally distributed, we 
calculated the deviation from the center for each score and computed 
the P value. A P value cutoff of 0.01 was used for calling driver TFs.
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