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Abstract

The temporomandibular joint (TMJ) disc, a fibrocartilaginous structure between the mandible and 

temporal bone, is implicated in temporomandibular disorders (TMDs). TMDs symptomatically 

affect approximately 25% of the population, of which 70% have internal derangement of the disc. 

Treatments lack efficiency, motivating novel therapies, including tissue-engineering toward TMJ 

disc regeneration. Recent developments in scaffold-based or scaffold-free approaches, cell sources, 

and biochemical and mechanical stimulation result in constructs exhibiting native tissue 

mechanics. Safety and efficacy of tissue-engineered implants show promising results in orthotopic 

animal studies. However, many hurdles need to be overcome in tissue-engineering approaches, and 

clinical and regulatory pathways. Future studies present an opportunity for clinicians and 

researchers to work together toward safe and effective clinical trials.
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Motivation for Tissue-Engineering of the Temporomandibular Joint Disc

The temporomandibular joint (TMJ) is a ginglymoarthrodial joint (see Glossary), central 

to speaking and chewing functions [1]. The TMJ contains a disc between a condyle and the 

glenoid fossa-articular eminence region [2] (Figure 1). The TMJ disc is biconcave and 

fibrocartilaginous in nature [2]. As the TMJ articulates, the TMJ disc may distribute the 

stresses that develop within the joint [3] (Figure 1). Trauma [4] and age-related degeneration 

[5] can cause abnormal loading in the TMJ, leading to temporomandibular disorders 

(TMDs). TMDs are characterized by orofacial pain and/or limitation in jaw movement [6–

8], and symptoms are present in approximately 25% of the population [9]. Perplexingly, 

TMDs affect females up to 8.0-fold more than males [9–12]. In addition, TMDs affect 

mostly younger patients between 20-50 years of age [12–14]. As the second most common 

musculoskeletal condition resulting in pain and disability, TMDs cost an estimated $4 billion 
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per annum in the United States (https://www.nidcr.nih.gov/research/data-statistics/facial-

pain).

A specific subset of TMDs involve discal pathologies such as internal derangement (ID), 
disc thinning, and disc perforation. ID affects about 70% of TMD patients [15]. Severe cases 

of ID present disc thinning and eventual disc perforation (Figure 2) in approximately 5-15% 

of ID patients [5,16,17]. However, ID and disc perforation can occur independently; the 

independent cases of disc perforation can be due to age-related wear [5]. These discal 

pathologies are the most prevalent manifestation of TMDs [15]. Osteoarthritis (OA) is also 

commonly seen in conjunction with ID [16,18], but the relationship between ID and OA is 

not understood; it is not known whether one precedes the other or if both share common 

causative events [18]. However, it is thought that TMJ disc pathologies such as ID or disc 

perforation are the first steps in a series of degenerative changes (i.e., OA) seen throughout 

the adjacent articulating, soft tissue surfaces [19].

Management of disc-related TMDs varies with disease severity [20]. Non- and minimally-

invasive strategies include physical therapy [21], occlusal splints or adjustments [22], 

pharmacologic agents [23], sodium hyaluronate and corticosteroid injections [24], 

arthrocentesis [25], and arthroscopy [16]. However, these treatments are only palliative. 

Only 5% of TMDs are candidates for surgical intervention [26]; surgeries for TMDs include 

discectomy with or without disc replacement [27] and partial or full joint reconstruction with 

autologous [28] or alloplastic materials [29]. Discectomy has shown promise for symptom 

reduction but has shown degenerative remodeling of the joint as a result [30,31]. 

Costochondral rib grafts are used to reconstruct the mandibular condyle [28], but no 

autologous grafts exist for the complete joint [14]. Alloplastic total joint prostheses have 

been indicated for severe ankylosis, failure of autologous grafts, failure of Proplast-Teflon 

implants, or severe OA [32]. Most TMD patients range between 20-50 years of age [12–14], 

but the typical lifetime of alloplastic total joint prostheses is 10-15 years [33], making 

revisions likely within a patient’s lifetime [14]. The use of alloplastic total joint prostheses is 

reserved as an option of last resort for a small subset of patients, creating a gap in terms of 

treatment options between non-invasive or minimally invasive strategies and end-stage 

surgical techniques.

The treatments described above do not provide mid-stage intervention for patients. To fill 

this gap, novel treatment strategies to improve patient outcomes must be developed. Tissue-

engineering aims to regenerate the pathological tissues in TMD with biological neotissues to 

restore long-term function. Here, we focus on TMJ disc pathologies due to their overarching 

prevalence in TMDs [15]. In particular, we discuss recent tissue-engineering efforts (Table 

1) and remaining hurdles for TMJ disc tissue-engineering.

Recent Tissue-Engineering Efforts

Tissue-engineering employs scaffolds, cells, and various signals such as biochemical and 

mechanical stimuli (Figure 3). As discussed in this section, advances in materials 

engineering have resulted in a variety of scaffolds [34–36], while scaffold-free approaches, 

such as the selfassembling process [37–39], have also emerged in TMJ disc tissue-
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engineering. In terms of cell sources, primary chondrocytes, mesenchymal stem cells 

(MSCs), and cell expansion technologies are also reviewed below (Table 1). Signals such as 

biochemical and mechanical stimuli for mechanical improvement of the TMJ disc (Table 1) 

are also discussed. This section also examines small animal models that have been used for 

examining the performance of these implants [36,39–43].

Novel Scaffold-based and Scaffold-free Approaches

The primary purpose of scaffolds is to provide a template for cells to form tissues. Scaffolds 

can be functionalized with biomolecules to direct cell behavior and manufactured with 

mechanical properties similar to the tissues they are intended to replace. Ideally, scaffold 

degradation rates would match the rate of tissue formation. Scaffolds recently used in tissue-

engineering the TMJ disc include natural materials and synthetic materials (Table 1). Two 

particularly interesting developments include novel scaffold fabrication methods and the 

emergence of scaffold-free approaches.

New fabrication methods allow for surface modifications of scaffolding materials. Layer-by-

layer nanoassembly is one such fabrication method [34,44]. Titanium dioxide nanofilms are 

used to modify surfaces of scaffolds for tissue-engineering of bone [44] as well as cartilage 

[34]. These nanofilms are created by layer-by-layer nanoassembly, based on the principle of 

electrostatic charge, to coat various surfaces allowing for increased cell attachment, control 

of cell phenotype, and control of differentiation. In a study using titanium dioxide surface 

modification with seeded TMJ disc cells, cell proliferation and extracellular matrix (ECM) 

deposition increased with increasing thickness of nanofilms [34]. The matrix was 

reminiscent of a fibrous ECM, in contrast to a cartilaginous ECM. Type I collagen and 

decorin, approximately 0.34mg/mL and 0.31mg/mL, were present in higher amounts than 

type II collagen and aggrecan, approximately 0.14mg/mL and 0.28mg/mL, after 14 days of 

culture on 20 layers of titanium dioxide nanofilms [34]. Additional work needs to be 

performed to couple layer-by-layer nanoassembly with typical scaffold materials such as 

polycaprolactone (PCL) or polylactic acid (PLA).

Three-dimensional (3D) printing is a fabrication technique that achieves microprecise 

placement of scaffolding materials and functional biomolecules. 3D printing can create 

regional variation in scaffolds reminiscent of the native TMJ disc. For example, a dual-

nozzle setup in a PCL-poly(lactic-co-glycolic acid) (PLGA) microsphere system allowed 

spatiotemporal delivery of transforming growth factor beta 3 (TGF-β3) and connective tissue 

growth factor (CTGF) [35,36]. The 100mg dosages of growth factor-embedded 

microspheres resulted in increased intermediate zone type II collagen and aggrecan 

deposition by approximately 2-fold compared to the 50mg dosage when analyzing 

immunofluorescence images of constructs seeded with bone marrow-derived MSCs [35]. 

However, growth factor-embedded microsphere application decreased compressive modulus 

in both dosages by at least 2-fold when compared to empty microspheres in both areas 

analyzed [35]. Similar trends were apparent in instantaneous and relaxation moduli 

indicating that mechanical properties did not necessarily trend with growth factor 

application and ECM content [35]. Compared to traditional scaffold-based approaches, 3D 
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printing offers the ability to create regional variation which can resemble native ECM 

content.

Scaffold-free approaches, such as the self-assembling process [37–39], have been developed 

to bypass issues related [45] to scaffold degradation products, e.g., acidity due to PLA 

degradation [46], fabrication byproducts, e.g., crosslinkers and plasticizers [46], and 

stressshielding of cells [47]. The self-assembling process recapitulates developmental 

aspects of cartilage formation to generate functional neotissues with characteristics 

resembling those of native tissues [45,48]. Specifically, it is the most prominent of these 

techniques for TMJ disc tissue-engineering because it has generated mechanically robust 

tissue [37]. Stimulation of self-assembled TMJ disc constructs by bioactive agents and 

mechanical compression resulted in values of approximately 3.5%, 2.75 MPa, and 2.25 MPa 

for collagen per wet weight, tensile Young’s modulus, and ultimate tensile strength (UTS), 

respectively. Additional analysis of constructs created from cocultures of hyaline articular 

chondrocytes (ACs) and knee meniscus cells (MCs) found collagen fibril alignment 

reminiscent of native TMJ discs, exhibiting direction-dependent strains in finite element 

analysis. This was promising because it showed anisotropic tissue on par with the alignment 

of native tissue [38], which further substantiates scaffold-free tissue-engineering as an 

alternative to scaffold-based approaches.

While scaffold-free approaches do not necessarily have the flexibility of scaffold-based 

approaches, e.g., scaffold functionalization with biomolecules, these limitations can be 

overcome with exogenous stimulation, which can have various effects on scaffold-free 

constructs such as increased mechanical properties [49,50]. In addition, variation of the cell 

source can also have a large influence on the eventual properties of the resulting constructs.

Cell Sources

Selection of a cell source is one of the most important considerations for TMJ disc tissue-

engineering (Table 1). Options for primary cells range from native TMJ disc cells [34,51] to 

other cells from hyaline articular cartilage and the knee meniscus [38]. In addition, recent 

advances in cell expansion technologies [52–54] have allowed exploration of costal 

cartilage-derived cells [39]. MSCs are also heavily used [35,36,40,41,51,55–57].

Potential primary cell sources for TMJ disc tissue-engineering include TMJ disc cells, ACs, 

MCs, and costal chondrocytes (CCs). TMJ disc cells have been used in multiple studies 

[34,51], but the dearth of available, healthy tissue raises concerns for this source [58]. Thus, 

ACs and MCs have been considered [38]. Using AC-MC coculture with the self-assembling 

process resulted in a functional, anisotropic TMJ disc as discussed above [38]. With recent 

advances in cell expansion technologies that preserve chondrogenic phenotype [52–54], CCs 

might allow for either an autologous or allogeneic approach to replacing cartilages, as 

demonstrated previously in articular cartilage [59,60] and the TMJ disc [39]. Allogeneic 

CCs can be harvested from cadaveric tissue, while autologous tissue harvest procedures are 

conducted routinely for rhinoplasty and autologous TMJ reconstruction. Thus, existing 

surgical procedures may be sufficient for tissue regeneration purposes. The use of CCs can 

also remove or reduce donor site morbidity and virtually eliminate the potential of 

harvesting cells from OA tissue. When used in a hyaline articular cartilage model, CC 
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constructs have attained a functionality index (FI, described in Box 1) of 55% compared to 

the medial condyle cartilage properties [60]. These techniques and results offer promise of 

an alternative source of chondrocytes that can create mechanically stable constructs for other 

parts of the body such as the TMJ disc.

An array of MSCs from both adult and fetal tissues have been used, as previously reviewed 

[61]. MSCs from various tissues (Table 1) offer an autologous or allogeneic approach and 

can be isolated in large quantities, making these sources clinically relevant for construct 

formation. Perhaps the most interesting MSCs are those derived from the synovium because 

they were shown to synthesize cartilage oligomeric matrix protein, link protein, and 

glycosaminoglycans (GAGs), similar to ACs [62]. For example, synovium-derived MSCs on 

fibrin-chitosan scaffolds increased type I collagen expression approximately 2-fold in vitro 
and ECM deposition in vivo as evidenced by histological analysis when compared to pure 

chitosan scaffolds [40]. Progress using MSCs has resulted in morphological and biochemical 

biomimicry evaluated via histology, gene expression, and other biochemical assays 

[36,40,41,51], but future research should next focus on assaying functional properties of 

MSC-derived constructs via mechanical testing.

The choice of cell source remains a challenge within the field of TMJ disc tissue-

engineering. Lack of standardization of mechanical testing modalities makes it difficult to 

compare sources head-to-head and to determine if one cell source is more suitable than 

another. Perhaps the most important characteristic to consider when choosing a cell source is 

mechanical stability of the resulting tissue-engineered construct due to the dynamic joint 

environment.

Improvement of Mechanical Properties of TMJ Disc Fibrocartilage

The TMJ disc functions in a dynamic environment of compression, tension, and shear 

[63,64]. Finite element analysis shows stresses in the TMJ disc during mouth opening to be 

greater than 7 MPa in compression, 4 MPa in tension, and 1 MPa in shear [65]. For 

comparison, the hip experiences approximately 7-10 MPa in compression and up to 18 MPa 

during stressful activities such as standing up [66,67]. Characterization of the native tissue 

should aim to define the gold-standard, design criteria for tissue-engineered TMJ disc 

constructs; the expectation is that replicating the native tissue’s mechanical properties would 

allow for restoration of mechanical function. Thus, to engineer constructs with physiological 

levels of mechanical stresses in mind, various biochemical and mechanical stimuli, and also 

changes in scaffold processing (Figure 3) have been developed. For scaffold-free 

approaches, self-assembled constructs have approached native values in mechanical 

properties due to synergistic effects of biochemical and mechanical stimulation [38,39]

A majority of recent scaffold-based studies use only biochemical stimuli to improve 

construct mechanical properties (Table 1). Constructs stimulated with biochemical stimuli 

have been previously found to exhibit native tissue structure-function relationships. For 

example, insulin-like growth factor I and TGF-β applied to constructs created from TMJ 

disc cells increased collagen synthesis by greater than 400% at 3 weeks of culture, leading to 

higher aggregate moduli of 5 kPa [68]. However, constructs sometimes do not follow native 

tissue structure-function relationships [35] (e.g., increased matrix deposition leading to 
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increased mechanical properties). To overcome such deficiencies, mechanical stimulation 

may be considered. However, mechanical stimulation has not been employed in scaffold-

based TMJ disc approaches, though it has been used in other fibrocartilages such as the knee 

meniscus. For example, hydrostatic pressure combined with TGF-β1 led to 4-fold higher 

collagen deposition and 3-fold higher GAG deposition, as compared to the unpressurized 

growth factor controls in MC-seeded PLA scaffolds [69]. Studies showing recapitulation of 

native tissue structure-function relationships should serve as models for future studies 

toward identifying additional stimuli. Biochemical stimuli must continue to be investigated, 

but, additionally, mechanical stimuli can be used to increase mechanical properties of 

engineered discs to withstand the dynamic in vivo environment.

Scaffold-free approaches have combined biochemical stimuli and mechanical stimuli to 

generate stiffer, stronger, anisotropic constructs, followed by examination of the resulting 

constructs in large animal models. Using a scaffold-free approach with AC-MC coculture, 

TGF-β1, chondroitinase ABC (C-ABC), and lysyl oxidase-like 2 (LOXL2) have been 

identified in the past as efficacious for fibrocartilage tissue-engineering, enhancing tensile 

Young’s modulus and UTS by 245% and 186%, respectively [70]. In a self-assembled TMJ 

disc model using AC-MC coculture stimulated with only TGF-β1 and C-ABC, tensile 

Young’s modulus, UTS, and collagen per wet weight increased by 2-fold or greater in the 

intermediate zone of the disc, as compared to controls [38]. Passive axial compression and 

these biochemical stimuli were combined and noted to exhibit synergism, showing 5.8-fold, 

14.7-fold, and 13.8-fold increases in collagen per wet weight, tensile Young’s modulus, and 

UTS, respectively, compared to unstimulated controls [38]. Moving to in vivo studies, TMJ 

discs engineered using all three stimuli (TGF-β1, C-ABC, and LOXL2) coupled with 

passive axial compression, yielded an FI (Box 1) of 42% of native properties with a 

passaged, allogeneic CC source [39]. By combining these three biochemical stimuli with 

mechanical stimulation, increased functional properties were achieved as compared to either 

alone. Thus, further synergistic effects of other biochemical and mechanical stimuli should 

be explored.

As reviewed elsewhere [49], strategies for other tissues, such as hyaline articular cartilage, 

can help inform further mechanical improvement of constructs. Similar designs and models 

can be used to engineer the fibrocartilage of the TMJ disc. For example, in a recent study on 

tension and its effects for articular cartilage engineering, continuous stimulation combined 

with a bioactive regimen increased the tensile properties by 5.8-fold over unstimulated 

controls in AC-derived, self-assembled constructs [71]. By improving mechanical stability 

using biochemical and mechanical stimuli, constructs continue to approach native tissue 

values. Attaining mechanical biomimicry is a crucial characteristic for constructs to perform 

satisfactorily when implanted into the orthotopic environment.

Current Animal Models

Prior to human clinical trials, tissue-engineered implants are examined in relevant animal 

models to demonstrate initial safety and efficacy. Similar to TMJ disc tissue-engineering, 

development of animal models is based on design criteria. For the TMJ, similar anatomies, 

chewing patterns, and diets compared to humans, and ease of surgical access are included in 
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the design criteria. In addition, relative size of TMJ structures and animal cost may also 

determine which model to use. Animal models exist for various purposes such as observing 

the adverse reactions to an implant subcutaneously to examining surgically induced 

pathologies in orthotopic studies. Small animals such as mice and rats are economical, serve 

as pain models [72,73], and simulate OA and associated degenerative changes in the joint 

[74,75]. However, their small TMJ disc size limits studies to simple subcutaneous 

implantation as opposed to orthotopic studies in larger animals such as rabbits [43]. Moving 

toward orthotopic studies, rabbits allow for additional biochemical and histological analysis, 

and reliable mechanical testing [42], but present substantial differences from human size and 

loading conditions [43]. This motivates the use of large animal models that more closely 

resemble human anatomies and conditions [42].

Many preliminary studies involve subcutaneous implantation to examine possible adverse 

reactions and establish proof-of-concept. These studies, as reviewed [43], are commonly 

performed in mice or rats due to their low cost, without much consideration of anatomical or 

dietary similarities. For example, a fibrin-chitosan scaffold with synovium-derived rat MSCs 

was embedded into explanted TMJ discs with perforation defects and implanted into nude 

mice subcutaneously in a xenogeneic approach [40]. Histological analysis showed increased 

type I and II collagen deposition in the fibrin-chitosan scaffold, compared to the pure 

chitosan scaffold [40]. Although this study represents a disc perforation model, additional 

biochemical and mechanical analyses must be performed in larger animals to show 

reparative ability in the fully loaded orthotopic environment.

Recent studies employed the rabbit for orthotopic evaluation of tissue-engineered TMJ discs 

[36,41]. For example, 3D printed PCL-PLGA microsphere scaffolds seeded with allogeneic, 

synovium-derived MSCs were implanted into the disc and noted histologically to degrade by 

6 weeks [36]. Cells retained their chondrocyte-like phenotype in vivo [36]. Scoring of the 

condylar surfaces with an OA score resulted in values of approximately 3.9 and 2.4 for the 

scaffolds without and with growth factors, respectively, where a lower score represents a 

better outcome [36]. While these studies [36,41] demonstrate feasibility for implantation of 

tissue-engineered TMJ discs via histological analysis, mechanical testing is of paramount 

importance to show the integrity of tissue-engineered constructs.

Strides in animal studies are promising to the research community as they point to a feasible 

translation pathway for tissue-engineered constructs. The use of ectopic small animal and 

larger orthotopic models (e.g., the mouse and rabbit models) is a crucial first step in proof-

of-concept work for the field. However, it will ultimately be regenerative studies in 

orthotopic animal models in species such as the minipig that will be most impactful for 

translation of tissue-engineered TMJ discs toward human clinical studies.

The Path to Translation

Translational hurdles that remain (see Outstanding Questions) include tuning of construct 

mechanical properties toward biomimicry (Figure 3) as well as scale-up of area and 

thickness of implants (Figure 4, Key Figure). A recent minipig study, showing safe and 

efficacious implantation of TMJ constructs [39], establishes this orthotopic large animal 
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model as a cogent element in the translational pathway (Figure 4). Clinical and regulatory 

hurdles are also significant for translation of TMJ disc constructs (Figure 4).

Application of Proper Tissue-Engineering Parameters for Tuning of TMJ Disc Constructs to 
the TMJ Mechanical Environment

Constructs must be tuned to the mechanical environment of the TMJ disc because they will 

be subject to compressive, tensile, and shear forces [63,64]. Theoretically, the required 

mechanical properties will depend on surgical technique, model, and animal. For example, it 

was shown that an FI (Box 1) of 42% was shown to be sufficient when implanted via the 

intralaminar fenestration surgical technique (Figure 5) in a focal thinning model in the 

Yucatan minipig [39]. When moving toward perforation or larger defects, this implant might 

be insufficient. On the opposite end, some constructs might be too stiff or strong compared 

to native values, as observed in some scaffold-based approaches [35], causing stress 

concentrations and possible degeneration on the articulating surfaces. Also, a mismatch in 

the rates of scaffold degradation versus tissue formation can lead to failure. Therefore, it is 

important to consider tuning mechanical properties by application of proper stimulation 

regimens, whether using a scaffold-based or scaffold-free tissue-engineering approach 

(Figure 3).

Tailoring of Tissue-Engineered TMJ Discs to Human Discal Pathologies and Size

As the translational direction points to additional large animal orthotopic studies before 

human clinical trials commence, defect models must increase in size. As such, constructs 

must also scale-up (Figure 4). In the recent minipig study [39], a one-sided 3mm defect, 

mimicking disc thinning, was used. Future studies need to scale-up to a larger defect area to 

mimic increased disc thinning, in addition to two-sided defects to mimic disc perforation. To 

scale-up constructs to larger thicknesses, one might consider using larger scaffolds. But as 

scaffolds and constructs trend upward in thickness, it should be kept in mind that diffusion 

limitations increase. Decreased diffusion can result in shell-like neotissues with necrotic 

centers, that display inadequate mechanics. However, scaffold-free approaches might prove 

advantageous for creation of larger constructs to mimic disc thinning. Self-assembled 

articular cartilage constructs made of passaged ACs up to 25 mm dia. have been made by 

combining cytochalasin D, TGF-β1, C-ABC, and LOXL2, under a compressive load and in 

mechanical confinement [76]. This approach may allow for examining TMJ disc healing in 

larger defects that mimic clinically observed disc thinning. As such, a significant portion of 

future TMJ disc studies should investigate the scale-up of defects and constructs for 

relevance to human TMJ anatomy.

Novel and Cogent Translational Studies

Orthotopic large animal models need to be performed to examine the safety and efficacy of 

tissue-engineered constructs prior to translation. Toward selection, possible species for 

performing regenerative studies include sheep [77], goats [78], dogs [79], farm pigs [80], 

and minipigs [81]. The farm pig and minipig are two suitable models that have been recently 

used for regenerative studies due to their similarities to humans in chewing patterns, diet, 

and anatomy [3,81–85].
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In a recent study demonstrating safety and efficacy of a self-assembled, allogeneic, tissue-

engineered implant for disc repair, a novel TMJ disc thinning model was created in the 

Yucatan minipig [39]. Because the implants were created from a CC source, implantation 

into the TMJ disc represented non-homologous use. Implants approaching native tissue 

values were stimulated by a regimen of biochemical and mechanical stimulation. To affix 

implants securely, the intralaminar fenestration surgical technique was developed (Figure 5) 

[39]. Although this was an allogeneic, non-homologous use which has potential to elicit an 

immune response, implant safety was shown by minimal to no immune response to the 

constructs, as assayed by histological staining for CD3, CD20, and CD68 for T cells, B 

cells, and macrophages. However, it was specified that additional work needs to further 

elucidate the immunological response [39], such as macrophage activation due to tissue-

engineered implants [86–88] (Figure 4). In terms of efficacy, results showed that the tensile 

Young’s modulus, integration at the repair-to-native tissue interface, and percent of defect 

closure were 3.4-fold, 3.2-fold, and 4.4-fold higher, respectively, compared to empty defect 

controls [39]. OA scores of the condylar surface treated with implants were 3.0-fold less 

than the empty defect controls [39], yielding a better clinical outcome overall. Together, 

these results demonstrate the feasibility of allogeneic TMJ disc tissue-engineered constructs 

in the orthotopic environment and pave the way for additional orthotopic large animal 

studies and future human clinical trials (Figure 4).

Overcoming Additional Clinical and Regulatory Hurdles

In stark contrast to diarthrodial joints such as the knee, there is limited knowledge 

surrounding the TMJ, especially when it comes to developing new processes and products 

for repair or replacement of the TMJ disc. Compared to the TMJ, a greater variety of 

products, treatments, and studies exist for the knee. To illustrate these differences, one can 

consider indications and contraindications in the TMJ versus the knee. For example, in the 

knee, there are clear guidelines as to what constitutes small, large, partial thickness, and full 

thickness defects with concomitant treatment algorithms [89]. In contrast, it is not clear 

when a tissue-engineered treatment would be indicated in the TMJ. Currently, in the knee, 

tissue-engineered products are contraindicated for the OA milieu [90]. This has not been 

confirmed for the TMJ, though the expectation is that the constructs under OA conditions 

might succumb to the same fate as the native tissue [91]. Development of treatment 

guidelines and additional studies specific to the TMJ should continue, toward bringing TMJ-

related knowledge to levels of other diarthrodial joints.

One must also consider fixation and associated surgical approaches. The intralaminar 

fenestration surgical technique (Figure 5) was successful in treating early-stage disc 

thinning, but in the minipig [39]. However, in 5% of TMD cases requiring surgery [26], it is 

not yet obvious how one may be able to attach a partial or whole, tissue-engineered disc 

(Figure 4). Surgeons and researchers must continue to collaborate to develop surgical 

approaches for implantation of tissue-engineered implants, as they are of utmost importance 

to the success of the tissue-engineered treatment.

With regard to clearing the regulatory hurdle, the TMJ’s proximity to the brain (Figure 4) 

may necessitate more stringent safety requirements than products for other joints such as the 
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knee. These requirements may include analysis of the synovial fluid in the TMJ, but also the 

neighboring cerebrospinal fluid. Notoriously, mechanical failure and resulting degradation 

of the Proplast-Teflon disc implants resulted in exposure of the brain cavity [92–94]. 

Additionally, current large animal work has yet to investigate fully immunological 

implications related to TMJ disc implants (Figure 4) or how immunomodulation may be 

used in a proinflammatory environment [95]. In terms of regulation, the FDA has not 

previously guided a tissue-engineered TMJ disc product [96], thus raising the question of 

establishing TMJ-specific safety and efficacy guidance documents. Future research in the 

field needs to establish the safety of tissue-engineered TMJ discs by elucidating the immune 

response. Additionally, researchers need to communicate with regulatory bodies, such as the 

FDA, to obtain guidance on how tissue-engineered TMJ disc products need to be 

demonstrated as safe and efficacious.

Concluding Remarks

While recent advances propel TMJ disc tissue-engineering forward, many hurdles still exist. 

To summarize, the pressing challenges include improvement of mechanical properties of 

constructs, scale-up of implant dimensions, determination of indications for tissue-

engineered discs, development of surgical techniques, analysis of the immunological 

response, and regulation by the FDA (see Outstanding Questions). Tissue-engineering and 

basic science investigations for TMDs will continue to drive the field. The field should focus 

toward addressing questions in the clinical and regulatory spaces. Specifically, studies 

should pay attention to developing novel surgical techniques and associated fixation methods 

toward human clinical trials. For each new tissue-engineering approach, regulatory 

requirements need to be satisfied by demonstration of TMJ-specific safety and efficacy in 

large animal models. As regulatory bodies turn their attention toward clinical trials, these 

data will be the primary preclinical assessment of implants. Considering the momentum 

toward significant preclinical studies, it is an exciting time to be in the field of TMJ disc 

tissue-engineering. After the early success shown in the orthotopic study performed in the 

Yucatan minipig [39] and the identification of clinical and regulatory hurdles discussed here, 

there is new impetus to develop tissue-engineering solutions to begin addressing the various 

intractable TMJ trauma and degenerative ailments. The possibility of translating tissue-

engineered TMJ discs is increasingly being realized.
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Glossary

Ginglymoarthrodial joint
a joint functioning in both rotation and translation
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Internal derangement (ID)
misalignment or displacement of the TMJ disc from a normal anatomic position

Mastication
the mechanical grinding of food into smaller pieces by teeth

Osteoarthritis (OA)
a slowly progressing joint disease characterized by degenerative changes in the cartilage and 

subchondral bone; presents through wear of the cartilage or underlying bone and presence of 

osteophytes; commonly affects large diarthrodial joints such as the knee, but also joints such 

as the TMJ

OA score
a semi-quantitative measure of the severity of osteoarthritis based on histomorphological 

analysis of cartilage, underlying bone, and degenerative marks such as osteophytes; a higher 

number indicates increased degeneration; standardized by various groups including the 

Osteoarthritis Research Society International (OARSI) or the International Cartilage 

Regeneration and Joint Preservation Society (ICRS)

Ruminants
an even-toed, hoofed mammal (e.g., bovine, ovine) that chews regurgitated food from its 

first stomach

Young’s modulus
a material property defining the stiffness of a material when deformed by uniaxial tension or 

compression; measured as the ratio of stress (force per unit area) to strain (change in length 

divided by original length)
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Highlights

• Current treatments for TMJ disorders lack long-term efficacy and are 

palliative, motivating tissue-engineering for repair or replacement of the 

injured or ailing tissues in the TMJ, such as the disc.

• Scaffold-based or scaffold-free approaches, cell sources, biochemical stimuli, 

and mechanical stimuli are all elements of the tissue-engineering process that 

need to be considered to tailor TMJ disc construct properties.

• Large animals can serve as models of human TMD; orthotopic implantation 

in large animal models is a necessary translational step.

• The first successful orthotopic study of the TMJ disc in a large animal model 

has primed the field for translation of tissue-engineered constructs; however, 

there are still numerous hurdles prior to human clinical trials.
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Outstanding Questions

• How do researchers achieve tuning of tissue-engineered constructs to the 

mechanical environment of the TMJ disc?

• Can researchers scale-up constructs, in area and thickness, to be relevant to 

human discal pathologies and size?

• For what cases will tissue-engineered products be indicated (or 

contraindicated)?

• Can novel surgical procedures be developed for accessing the TMJ, and fixing 

and implanting tissue-engineered TMJ disc constructs orthotopically?

• What is the local and systemic responses to tissue-engineered TMJ discs in 
vivo?

• How would tissue-engineered constructs for the TMJ disc be regulated by the 

FDA?
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Box 1:

The functionality index compares constructs properties to native tissue 
values.

Values for biochemical content, such as overall collagen (Col) and glycosaminoglycan 

(GAG) content, accompany values for various mechanical properties such as ultimate 

tensile strength (UTS), Young’s modulus (ET), compressive relaxation modulus (Er), and 

compressive instantaneous modulus (Ei). Ranging from 0% to 100%, a value of 100% 

represents perfect recapitulation of native values. Subscripts serve to designate native (N) 

or tissue-engineered (TE) values.

FI(TE ∣ N) = 1
6

1 −
GAGN − GAGTE

GAGN
+ 1 −

ColN − ColTE
ColN

+ 1 −
EN

i − ETE
i

EN
i

+ 1 −
EN

r − ETE
r

EN
r + 1 −

EN
T − ETE

T

EN
T + 1 −

UTSN − UTSTE
UTSN

∗ 100 %
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Figure 1: TMJ disc anatomy.
(A) Depending on the open or closed position of the joint, the TMJ disc is situated between 

the mandibular condyle and the articular eminence-mandibular fossa region. In this sagittal 

view, the disc is held in place by disc attachments, present at all angles (e.g., lateral, medial, 

posterior, anterior), surrounding the disc. The joint is separated into two joint capsules 

delineated by the TMJ disc. (B) The disc is regionally composed of two bands in the anterior 

and posterior portions of the disc. The middle portion of the disc is referred to as the 

intermediate zone. S – superior, I – inferior, A – anterior, P – posterior, M – medial, L – 

lateral.
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Figure 2: Internal derangement of the TMJ disc.
(A) A healthy closed jaw position is shown. (B) The most common type of internal 

derangement is shown, where the disc is displaced anteriorly. Progression of the joint in this 

configuration often causes (C) disc thinning and (D) eventual disc perforation.
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Figure 3: Tissue-engineering paradigm of TMJ disc constructs.
Combination of an appropriate cell source and scaffold-based or scaffold-free approaches 

can be used for fabrication of a TMJ disc construct (upper panels). Via the application of 

various biochemical and mechanical stimuli, an enhanced, biomimetic construct can be 

tissue-engineered (lower panels). ACs – hyaline articular chondrocytes, MSCs – 

mesenchymal stem cells, MCs – knee meniscus cells, LBL – layer-by-layer, 3D – three-

dimensional, C-ABC – chondroitinase ABC, LOXL2 – lysyl oxidase-like 2, TGF-β – 

transforming growth factor beta.

Donahue et al. Page 21

Trends Mol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Toward the path to translation.
(A) Constructs should be tailored for human discal pathologies and size, potentially 

increasing in both area and thickness. (B) Prior to translation through regulatory bodies such 

as the FDA, animal studies must be performed in proper large animals, such as the minipig. 

(C) Novel surgical procedures for disc repair and disc replacement need to be developed as 

well. (D) Additional studies also need to be performed to examine local and systemic 

responses to tissue-engineered TMJ discs in the orthotopic environment. Upon overcoming 

these hurdles, the TMJ disc tissue-engineering field will be closer to human clinical trials.
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Figure 5: The intralaminar fenestration surgical technique.
(A-B) Through a preauricular incision, the TMJ was exposed. (C-E) Surgeons fileted the 

disc open with a scalpel, and (F-G) created a one-sided thinning defect via a biopsy punch. 

(H) A tissue-engineered disc was placed between the two laminae and (I) sutured back 

together. Sutures attached to the side of the disc instead of on the articulating surfaces 

allowed for continued loading of the TMJ disc while healing; this placement avoided 

possible stress concentrations and resulting degeneration. (J) The lateral attachment is 

recreated by use of an anchoring system. From Vapniarsky, et al., 2018 [39]. Reprinted with 

permission from AAAS.
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