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Abstract

Inflammatory cytokines are necessary for an acute response to injury and the progressive healing 

process. However, when this acute response does not resolve and becomes chronic, the same 

proteins that once promoted healing then contribute to chronic inflammatory pathologies, such as 

atherosclerosis. Osteopontin (OPN) is a secreted matricellular cytokine that signals through 

integrin and CD44 receptors, is highly upregulated in acute and chronic inflammatory settings, and 

has been implicated in physiologic and pathophysiologic processes. Evidence from the literature 

suggests that OPN may fit within the “Goldilocks” paradigm with respect to cardiovascular 

disease, where acute increases are protective, attenuate vascular calcification, and promote post-

ischemic neovascularization. In contrast, chronic increases in OPN are clinically associated with 

an increased risk for a major adverse cardiovascular event and OPN expression is a strong 

predictor of cardiovascular disease independent of traditional risk factors. With the recent finding 

that humans express multiple OPN isoforms as the result of alternative splicing and that these 

isoforms have distinct biologic functions, future studies are required to determine what OPN 

isoform(s) are expressed in the setting of vascular disease and what role each of these isoforms 

plays in vascular disease progression. This review aims to discuss our current understanding of the 

role(s) of OPN in vascular disease pathologies using evidence from in vitro, animal and clinical 

studies. Where possible, we discuss what is known about OPN isoform expression and our 

understanding of OPN isoform contributions to cardiovascular disease pathologies.
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1. Introduction

Osteopontin (OPN) is a secreted multifunctional glyco-phosphoprotein that plays important 

roles in physiological and pathophysiological processes. As the name implies, OPN is 

produced by cells involved in bone morphogenesis and one major physiological role of OPN 
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is in the control of biomineralization and calcification.1 In this brief review, we aim to 

examine OPN functions specifically in the vasculature and additional physiological 

functions of OPN have been reviewed previously. Under physiologic conditions, circulating 

and tissue OPN expression levels in the vasculature are quite low, but are important for 

normal arterial physiology.2 Indeed, these low OPN expression levels were shown to be 

necessary for normal arterial mechanics and it is also know that OPN acts as a physiological 

inhibitor of vascular calcification. In response to injury, OPN is acutely upregulated and 

promotes cell adhesion, proliferation, migration and survival to aid in the healing process, 

but expression typically resolves over time.3, 4 Vascular cell types that upregulate and secrete 

OPN include endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages.3, 5 

In contrast, OPN expression levels remain elevated in several disease pathologies with a 

chronic inflammatory component including Crohn’s disease, multiple sclerosis and other 

autoimmune disorders, wound healing, various cancer types and cardiovascular disease 

(CVD) pathologies.

More recently, there has been considerable interest in OPN as a biomarker for various 

pathological conditions. Peripheral blood and cerebrospinal fluid concentrations of OPN are 

elevated in multiple sclerosis patients6 and neurodegenerative diseases like Alzheimer’s.7 

There is also interest in OPN as a prognostic and diagnostic marker for diseases including, 

but not limited to, multiple sclerosis,6 coronary artery disease,8 and several cancer types9 

with a recent specific focus on individual OPN isoforms for this purpose.10, 11 Increased 

OPN expression is also a strong predictor of outcomes in patients with calcific aortic valve 

disease12, 13 and ischemic vascular pathologies including stroke,14, 15 myocardial infarction,
16–18 and peripheral artery disease.19, 20 While interest in OPN as a potential biomarker 

increases, there is a large body of evidence that clearly establishes that OPN is specific 

driver of cellular functions that impact physiologic and pathophysiologic processes in the 

vascular setting, as discussed in more detail below, and ultimately point to OPN as a 

potential therapeutic target.21 In this review, we will examine our current understanding of 

OPN protein structure and function, regulation of OPN expression, and role(s) of OPN in 

vascular disease pathologies while introducing what is currently understood about OPN 

isoform contributions.

2. Osteopontin Structure and Function

Osteopontin was first described in 1985 by Franzen, et al. as one of two sialoproteins 

derived from bovine bone matrix.22 Osteopontin was previously identified as secreted 

phosphoprotein 1 (SPP1), bone sialoprotein 1 (BSP-1), and early T-lymphocyte activation-1 

(Eta-1). This plurality of names reflects the range of functions attributable to OPN. As a 

matricellular protein, OPN differs from the structural extracellular matrix proteins, such as 

collagen, in that it does not serve a primary structural role.23 Matricellular proteins do, 

however, function as modulators of cell-matrix interactions, often achieved by binding to 

cell-surface receptors, growth factors, proteases, and structural matrix proteins, making them 

important components of the extracellular matrix environment.24 Indeed, matricellular 

proteins like OPN are often induced during tissue remodeling and repair, as well as in 

disease states.23 The original members of the matricellular protein family included secreted 
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protein acidic and rich in cysteine (SPARC), thrombospondin 1 (TSP-1), and tenascin-C and 

has expanded to include CCN proteins (Cyr61, CCN2, CCN3) and OPN.23

Osteopontin Receptor Binding Domains

OPN contains several functional domains that allow for receptor binding to promote various 

biological functions and include: 1) Arg-Gly-Asp (RGD) binding domain that allows 

interaction with integrin receptors including: αvβ1, αvβ3, αvβ5, αvβ6, α5β1,
25 2) 

SVVYGLR domain that interacts with α9β1, α4β1, and α4β, 3) ELVTDFTDLPAT domain 

reported to bind to α4β1,26 4) calcium binding domain (aa 216–228) and 5) heparin binding 

domain. Furthermore, OPN has been shown to interact with several splice variants of the 

hyaluronic acid receptor, known as CD44, via the C-terminal calcium binding domain 

including: CD44v3 and CD44v6–7. Katagiri et al. suggested that multiple CD44 binding 

domains are present in the N- and C-terminal regions of OPN.27 This same study proposed a 

potential complex between CD44 variants and integrin receptors, since the binding of CD44 

variants to OPN was inhibited by anti-β1 antibodies.27 OPN has primarily been described as 

a secreted protein; however, an intracellular form of OPN, made possible by a non-AUG 

alternative start codon that omits the N-terminal secretion peptide,28 has been reported in 

rodents and localizes to the cell membrane where it binds to CD44 to regulate cell 

migration.29, 30

Post-translational Modifications of Osteopontin

OPN is a complex protein that is aspartic-acid rich, contains long stretches of negatively 

charged sequences that bind calcium, and can be cleaved by thrombin and matrix 

metalloproteinases (MMPs). OPN is subjected to numerous post-translational modifications 

(PTMs) including serine/threonine phosphorylation, glycosylation, and tyrosine sulfation, 

which increase the monomeric molecular weight from the predicted ~35 kDa to 41–75 kDa.
31 A polymeric form of OPN with a mass of >200 kDa can also be generated upon protein 

transglutamination.32 Importantly, it has been shown that many of these PTMs regulate and 

alter OPN function.

Phosphorylation—The OPN sequence contains 36 predicted phosphorylation sites that 

include serine, threonine and tyrosine residues.33 The serine/threonine phosphorylation of 

OPN has been primarily attributed to a golgi apparatus casein kinase over casein kinases-1 

and −2,34 identified recently as FAM20C, which phosphorylates numerous secreted proteins 

with S-x-E motifs.33, 35 The distinct functional properties of OPN are dependent, in part, on 

the nature and extent of phosphorylation. Interestingly, Christensen et al. demonstrated that 

the degree of OPN phosphorylation can be cell-type specific, where they showed a 

osteoblast cell line (MC3T3-E1) added 21 phosphates, while only ~4 phosphates were added 

by a ras-transformed fibroblast cell line (275–3-2).36 This same study demonstrated that 

fibroblast-derived OPN (low phosphorylation) mediated greater adherence of human breast 

cancer cells than the highly phosphorylated osteoblast-derived OPN.36 Therefore, OPN 

generated by different cell types and, thus, differentially phosphorylated may exhibit 

different biologic effects. Indeed, phosphorylated OPN can inhibit calcification in cultured 

human VSMCs, which was not observed with recombinant bacterial OPN that lacks PTMs.
37 Additionally, OPN phosphorylation is necessary for interleukin-12 expression in 
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macrophages, while dephosphorylation abolishes this effect.38 The differences in PTMs 

made by vascular wall cell types, such as endothelial cells and VSMCs, remains to be 

established. Furthermore, there is a lack of understanding with respect to how OPN 

phosphorylation patterns change in physiologic vs. pathophysiologic settings and the few 

studies that have explored this in the setting of CVD are discussed below.

Glycosylation—Exon 6 of human OPN contains five O-glycosylation sites.31, 33 

Glycosylation influences the folding structure, proteolytic cleavage and, subsequently, the 

functional properties of OPN.39 Indeed, deletion of multiple O-glycosylation sites in OPN 

affects cell adhesion activity and phosphorylation state.4041 Similarly, lung cancer cells that 

stably expressed an OPN mutant lacking three O-glycosylation sites exhibit a reduction in 

cell growth and migration.42 To our knowledge, N-glycosylation has so far only been 

reported in rat and human bone OPN43, 44 and no apparent N-linked oligosaccharides were 

found in human milk OPN, suggesting that this form of glycosylation may be tissue specific.
33

Transglutamination—Osteopontin can serve as a substrate for transglutaminase 2 (TG2).
45 TG2 is a ubiquitously expressed calcium-dependent enzyme that catalyzes cross-linking 

of glutamine and lysine residues.45, 46 TG2 cross-linking of OPN can be both inter- and 

intra-molecular.47 TG2-mediated OPN polymerization alters both conformation and 

function, which is attributed to the exposure a new integrin binding site that allows 

polymeric OPN to bind the α9β1 receptor independent of the SVVYGLR sequence.48 Other 

in vitro studies show that polymeric OPN displays increased collagen type I binding 

affinity49 and promotes enhanced cell adhesion and migration compared to monomeric 

OPN.45, 50 The significance of OPN polymerization in vivo was highlighted by Nishimichi 

et al., who demonstrated OPN polymerization is required for neutrophil recruitment.32 

Originally, two TG2 reactive glutamine (Gln) residues were described in bovine exon 4, 

Gln34 and Gln36,51 which correspond to Gln50 and Gln52 in OPNa when designating the 

initial methionine (Met) residue as aa 1*; however, OPN was recently reported to have 12 

TG2 reactive residues, with Gln34, Gln42, Gln193 and Gln248 (corresponding to Gln50, 

Gln58, Gln209, and Gln264 in OPNa*) exhibiting the highest reactivity.52 This could 

explain why polymerization of OPN-c, a splice variant lacking exon 4 and two glutamine 

residues, could still be observed with high TG2 concentrations.32

Cleavage—In addition to PTMs, OPN can also undergo proteolytic cleavage by thrombin 

and MMPs. A conserved thrombin cleavage site at Arg168-Ser169 can be found seven amino 

acids downstream of the RGD integrin receptor binding site. OPN function is altered when 

cleaved by thrombin, which generates N-terminal and C-terminal fragments. The cryptic 
162SVVYGLR168 motif, just c-terminal to the RGD site, also allows OPN to interact integrin 

receptors, including: α4β1, α9β1 and α4β7 integrin receptors.53 Recently, it was shown that 

phosphorylation of the C-terminal fragment could inhibit OPN binding to αvβ3.54 This 

could potentially explain the conflicting findings by various studies suggesting that thrombin 

cleavage was not a prerequisite for adhesion to αvβ3, αvβ5 and αvβ6 as they could bind 

*Note: Amino acid numbers identified in this review are identified using the initial methionine (Met) residue as aa 1 and, therefore, 
differ from some publications in which the first residue after the 16 aa signal peptide is cleaved off, aa 17 Isoleucine, as aa 1.
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equally well to full-length OPN or to the RGD sequence at its N-terminal end. 25 Several 

members of the MMP family have also been reported to cleave OPN at various sites. These 

include MMP-2, MMP-3, MMP-7, MMP-9 and MMP-12. Interestingly, cleavage of OPN by 

MMP-3 and MMP-7 within the SVVGLR motif sequence interferes with α4β1 and α9β1 

binding.25, 55 Evidence points to OPN fragments generated by thrombin and MMP cleavage 

having important pathophysiological functions. For instance, the N-terminal OPN fragment 

is associated greater degrees of inflammation in carotid plaques in patients with 

hypertension (HTN).56 Additionally, the thrombin-cleaved N–terminal fragment with 

SVVYGLR motif promotes synthesis of collagen type III in cardiac fibrosis.57 And finally, 

several in vitro studies have shown that the N-terminal fragment of OPN, rather than full 

length OPN, promotes adhesion due to a conformational change that increases its binding 

activity.1

Osteopontin Isoforms—Humans express five OPN isoforms due to alternative splicing 

of a single SPP1 mRNA transcript to generate: 1) full length OPN, known as OPNa 

(NP_001035147.1), 2) OPNb, which lacks exon 5 (NP_000573.1), 3) OPNc, which lacks 

exon 4 (NP_001035149.1), 4) OPN4, which lacks exons 4 and 5 (NP_001238758.1), and 5) 

OPN5, which contains an extra exon due to the retention of a portion of intron 3 

(NP_001238759.1). Whether OPN4 and OPN5 are translated to protein remains to be 

determined; therefore, in this review we focus on OPNa, OPNb and OPNc. OPN splice 

variants were first described in glioma cells58, are differentially expressed, and display 

isoform-specific biologic functions. The RGD and SVVYGLR integrin receptor binding 

domains and the CD44 binding domain are conserved across all three isoforms. Despite 

intact receptor binding domains, OPN isoforms clearly exhibit different intrinsic biological 

functions.59, 60 Isoforms differ in that OPNb lacks three serine/threonine residues and one 

glutamine residue due to deletion of exon 5, whereas OPNc lacks two tyrosine, two serine/

threonine, and three glutamine residues due to deletion of exon 4. Whether these missing 

exons lend to changes in protein folding, as suggested by predictive modeling,61 and/or 

receptor binding remains to be investigated and additional studies are required to define the 

molecular mechanisms underlying OPN isoform-specific biological effects. With a growing 

interest in the roles OPN isoforms may play in cardiovascular physiology and 

pathophysiology, we will discuss what is established thus far in this review.

3. Osteopontin in Vascular Physiology and Pathophysiology

Osteopontin in Acute and Chronic Ischemia

Inflammation is a central component of numerous diseases and can promote tissue damage 

and inhibit healing if unresolved; however, it is also well understood that immune 

suppression can limit successful tissue regeneration and recovery of homeostasis. 

Osteopontin is a secreted protein that is highly upregulated in settings of both acute and 

chronic ischemia and functions, in part, as an inflammatory cytokine that can promote 

recruitment of multiple inflammatory cell types and, thus, modulate the inflammatory 

response. In this section, we will discuss OPN and the “Goldilocks” principle using 

ischemia-mediated neovascularization as a model, since OPN expression is upregulated in 
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response to ischemia in stroke,14, 15 myocardial infarction,16, 17 and peripheral artery 

disease.19, 20

OPN expression is often upregulated 20–50 fold in response to ischemic insult, but typically 

resolves over time in murine models of stroke,62 myocardial infarction,63 and hindlimb 

ischemia.3, 64 Studies have established that OPN is a clear driver of the immune response in 

ischemic conditions, demonstrating that OPN is necessary for macrophage infiltration in 
vivo.59, 65 Indeed, OPN is required for post-ischemic neovascularization3, 65 and ischemia-

induced OPN expression is reactive oxygen species (ROS)-dependent.3 More recently, it was 

established that OPN isoforms have differential effects on macrophage migration and 

accumulation and arteriogenesis in vivo, where OPNc was the most potent mediator of these 

processes.59 With respect to macrophage function, phagocytosis is diminished in OPN−/− 

macrophages, but can be rescued by recombinant OPN.66 Pharmacological inhibition or 

genetic ablation of OPN has also been found to greatly impair macrophage infiltration in 

various models of acute inflammation.67 Furthermore, OPN induces macrophage migration 

via interaction of C-terminal fragment with CD44 surface receptors68 and more recently, via 

SLAYGLR domain (SVVYGRL in human OPN) with α4 and α9-integrin receptors.69 

Effects of OPN on macrophage polarization remain controversial. While one group reported 

OPN knockdown polarizes macrophages toward an M2c subtype, recently accepted as a pro-

regenerative phenotype,70 another study using OPN−/− macrophages showed no effects on 

polarization.71 Similarly, we did not observe differences in OPN−/− macrophage 

polarization, nor did macrophage polarization shift in response to stimulation with purified 

recombinant human OPN isoforms, suggesting OPN isoforms do not differentially effect 

polarization of macrophages.59 One recent study reports that CD206+ macrophages strongly 

express OPN and suggests that specific macrophage subtypes involved in tissue repair may 

differentially express OPN,63 which requires further investigation. Another point that 

requires further investigation is whether macrophages at different points within the 

polarization spectrum respond differently to OPN.

Many of the stimuli known to promote OPN expression including ROS, angiotensin II (Ang 

II), high glucose and low oxygen tension also contribute to chronic vascular inflammation 

that, when unresolved, promote long-term, chronic expression of OPN. Recently, oxidized 

low-density lipoprotein was also shown to promote proliferation and migration of human 

coronary artery SMCs via upregulation of OPN and MMP-9.72 Additionally, hypoxia and 

hyperglycemia synergistically increase OPN expression in VSMCs.73 This is in line with 

clinical findings that show that OPN is highly and chronically upregulated in patients with 

peripheral artery disease and in patients with type 1 and type 2 diabetes mellitus and several 

studies establish OPN as a clear predictor of cardiovascular outcomes in these patient 

populations.74–77 Interestingly, a recent study demonstrated that high glucose-mediated OPN 

expression is mediated, in part, through changes in histone acetylation and methylation 

regulated by histone deacetylase and histone methyltransferase, respectively, which was 

reversed by histone methyltransferase inhibition.78 This suggests that high glucose-mediated 

OPN expression is regulated in some cells through epigenetic mechanisms; however, further 

studies are required to determine if this is true in vascular cells. Collectively, these findings 

point towards OPN as an integral part of the first line immune response to tissue injury and 

the tissue remodeling processes required for healing. However, in disease states in which the 
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inflammatory process fails to resolve and becomes chronic, OPN may be detrimental, as 

discussed further below.

Osteopontin in Atherosclerosis and Neo-intimal Hyperplasia

Atherosclerosis is characterized by a persistent inflammatory response in the vascular wall 

in response to noxious stimuli such as hypoxia, endothelial injury and hyperglycemia. The 

role of OPN in atherosclerotic plaque progression has been shown in human and murine 

vascular diseases and was reviewed in detail by Wolak.79 High concentrations of OPN are 

observed in human atherosclerotic plaques in the aorta, carotid and coronary arteries, and are 

primarily expressed in endothelial cells, macrophages and VSMCs.5, 80 In a high fat diet-

induced mouse model of atherosclerosis, OPN overexpression significantly increased fatty-

streak and mononuclear cell rich lesion formation, as well as decreased levels of 

interleukin-10, an anti-inflammatory atheroprotective cytokine.81 Likewise, Matsui et al. 

reported that OPN−/− mice had significantly smaller atherosclerotic lesions, but this was 

only true in female OPN−/− mice and the authors predominantly attributed this to higher 

triglyceride and total cholesterol levels in male OPN−/− mice.82 Worth noting, estrogen has 

been shown to induce OPN expression83 while testosterone was shown to suppress it.84 

However, there are conflicting reports in the literature of sex differences in OPN expression, 

which may be disease and/or context specific and this requires further investigation.85–87 In 

an Ang II-accelerated model of atherosclerosis and abdominal aortic aneurysm (AAA) 

formation, Bruemmer et al. showed that a partial or complete lack of OPN protects against 

atherosclerosis, partially due to reduced inflammatory macrophage accumulation and 

viability in atherosclerotic lesions.88 When Zheng et al. used a microarray to compare gene 

expression profiles in normal aortas and tissues from abdominal aortic aneurysm patients, 

they found that OPN mRNA is upregulated as much as 125 fold.89 In this same study, the 

authors demonstrate that stimulation with high doses of OPN (200 – 500 ng/mL) promotes 

increased autophagy,89 whereas lower doses of OPN have pro-survival effects59, 69, 90; 

however, the source of OPN used in these studies was not disclosed, suggesting that further 

studies are required to determine if cellular source, dose, PTMs, and/or isoforms are 

important for the survival vs. autophagy effects of OPN. In clinical studies, increased plasma 

OPN expression levels are associated with the presence and severity of coronary artery 

disease.91, 92 Interestingly, coronary revascularization and Ang II receptor blockers reduce 

plasma OPN levels,93–95 which is in line with in vitro studies that demonstrate that Ang II 

induces OPN expression.96, 97 Several clinical studies have also independently demonstrated 

that the use of plasma OPN expression levels alone can predict CVD events and all-cause 

mortality commensurate with other atherosclerosis prognostic markers including lipid 

profile and hsCRP in patients with HTN, type 1 diabetes, and type 2 diabetes.8, 98, 99

In addition to atherogenesis, OPN also contributes to the development of neo-intimal 

hyperplasia following vessel revascularization. Clinical studies have shown that higher 

baseline OPN levels are associated with rapid coronary plaque progress and in stent 

restenosis.100 OPN mRNA and protein were highly expressed during neo-intimal formation 

in mouse and human carotid vessels.5, 101 In a rat carotid artery injury model, blockade of 

OPN before endothelial denudation by balloon catheter decreases neo-intimal thickening of 

the artery.102 Similarly, a study by Isoda et al. demonstrated increased neo-intimal 
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thickening after femoral artery cuffing in OPN transgenic mice.103 More recently, OPN was 

found to be significantly upregulated over the first postoperative week in the porcine venous 

wall after saphenous-vein artery interposition graft.104 OPN expression also correlated well 

with the number of PCNA-positive cells and MMP expression, suggesting OPN is a key 

regulator of VSMC proliferation and migration.104 It is well-established that mature, 

differentiated VSMCs can dedifferentiate into a more proliferative, synthetic phenotype 

during vascular remodeling and OPN appears to downregulate two differentiation markers, 

α-SM actin and calponin in VSMCs. However, neither SM22-α nor tropomyosin marker 

expression was altered with overexpression of OPN in vitro hence, further studies will be 

required to understand the mechanism by which these genes are regulated by OPN.105

Osteopontin in Vascular Calcification

Vascular calcification was once considered an end-stage, degenerative process of aging. 

However, calcification is now recognized as an active, tightly-regulated biomineralization 

process that may be treatable.106 One proposed major mechanism that drives vascular 

calcification is the loss of mineral inhibiting factors, such as matrix G1a (MGP) and 

osteoprotegerin.107 OPN is also an important inhibitor of mineral deposition in the vascular 

wall and in cardiac valves. In vitro, OPN−/− VSMCs calcify significantly more than wild-

type VSMCs in the presence of elevated phosphate.108 Furthermore, the aortas of MGP
−/−OPN−/− mice exhibit 2 and 3 fold more calcification at 2 and 4 weeks, respectively, 

compared to mice only lacking MGP.109 Several in vivo subcutaneous implantation models 

using OPN−/− mice have demonstrated an inhibitory role for OPN in vascular calcification. 

A study by Steitz et al. clearly demonstrated that aortic valve leaflets subcutaneously 

implanted in OPN−/− mice showed accelerated calcification (4 – 5 fold greater) compared to 

wild-type mice and, conversely, that increased OPN and carbonic anhydrase II accumulation 

correlates with calcification regression.110 These data were corroborated by another study 

that showed increased calcification of subcutaneously implanted bovine pericardium tissue 

in OPN−/− mice, which was mitigated by the administration of histidine-fused OPN at the 

implant site or adsorption of the OPN onto the implant materials.111 Interestingly, 

calcification was only reversed by OPN containing a functional RGD-motif and that was 

adequately phosphorylated.111 A separate, independent study showed that only 

phosphorylated OPN can inhibit calcification in cultured human VSMCs.37 More recently, 

OPN levels were shown to be elevated in asymptomatic calcific aortic valve disease patients;
12 however, a separate study from the same group showed this circulating OPN is de-

phosphorylated.13 Importantly, OPN isoforms were differentially expressed during calcific 

aortic valve disease progression and functioned to inhibit bio-mineralization, but only when 

phosphorylated.12 Altogether, these data support that OPN inhibits calcification and 

promotes dissolution, however, OPN phosphorylation is critical for these effects.

Osteopontin in Hypertension

The vessel wall undergoes remodeling in response to elevated pressure and pulsatile flow. 

OPN expression is elevated in HTN,98 which is mediated, in part, by increased aortic strain 

and ROS production.112 Indeed, overexpression of catalase in VSMC in vivo reduced 

mechanical strain mediated OPN expression in hypertensive animals.112, 113 One of the 

mechanism by which mechanical strain increases OPN expression in VSMCs is through 
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activation of the phosphatidylinositol-3 kinase/Akt1 signaling pathway.113 Ang II, a peptide 

hormone that causes vasoconstriction and increases blood pressure, promotes HTN and has 

been shown to upregulate OPN expression,114 in part, via Ang II-mediated increases in ROS 

production.97, 112, 115 Vessel remodeling in HTN involves inflammatory cell infiltration, as 

well as MMP-mediated degradation and reorganization of the extracellular matrix.116 OPN 

has been linked to HTN-related vascular remodeling and inflammatory cell recruitment. 

Indeed, early macrophage infiltration into the vascular wall in response to HTN is blunted in 

OPN−/− mice compared to wild-type animals.112 Finally, OPN expression levels are 

significantly higher in plasma and aortic tissues in hypertensive rodents and expression 

positively correlates with systolic blood pressure,113 suggesting that OPN could be used as a 

clinical marker for HTN-induced vascular remodeling. One such study showed that 

treatment with Ang II blocker and statins significantly reduces plasma OPN level.94

Clinical Implications and Conclusions—Inflammation is a central component of 

numerous diseases and the discovery of inflammatory biomarkers highly predictive of CVD 

has the potential to improve targeted treatment strategies. Biomarkers are also of great 

interest because they can be utilized for diagnostic, prognostic and/or therapeutic purposes 

in the clinical setting.117, 118 As a secreted protein, OPN is of particular interest as a 

biomarker because of its detectability in body fluids that include plasma, urine, breast milk, 

and cerebrospinal fluid; thus, OPN is measurable by minimally invasive means and this 

allows for rapid repeated measures over time. Recent clinical studies have demonstrated that 

OPN expression levels are a strong predictor of CVD events and mortality in several patient 

populations and may prove to be a useful prognostic for disease activity and severity.
8, 74, 76, 77, 92, 100 The recent finding that humans express multiple isoforms that have 

different functional effects has added a new layer of complexity to this protein and much 

remains to be discovered regarding the function of the individual OPN isoforms in vascular 

physiology and pathophysiology, what mediates OPN splicing, and if specific isoforms are 

possible therapeutic targets. Indeed, it was shown recently that OPN isoforms are 

differentially upregulated in patients with end-stage heart failure, where OPNa was 

significantly upregulated in patients with dilated cardiomyopathy, while expression of OPNb 

and OPNc were only detected in patients with ischemic cardiomyopathy.119 Therefore, 

additional studies are required to determine if individual OPN isoforms are better diagnostic 

and/or prognostic biomarkers of CVD severity than total OPN levels.

Substantial progress has been made recently toward our understanding of the biological 

functions of OPN in several vascular disease pathologies. The cellular sources of OPN have 

been identified, which has led to the discovery of many of its important cell- and tissue-type 

specific functions. Evidence presented in this review suggest that the role of OPN in 

vascular disease may follow the Goldilocks principle, with too little OPN impeding the 

tissue injury and wound healing responses, while too much OPN leads to deleterious 

vascular remodeling. We also require a better understanding of how specific vascular cell 

types differentially post-translationally modify OPN and if and how these modifications vary 

with disease state. Additional work is also necessary to determine the underlying molecular 

mechanisms of OPN isoform-specific biologic functions. The future development of 

“humanized” transgenic animals and isoform specific tools should greatly facilitate this 
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work and will further our understanding of the physiologic and pathophysiologic roles of 

these newly defined OPN splice variants.
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Highlights

• Osteopontin (OPN) is a strong predictor of outcomes in patients with calcific 

aortic valve disease and ischemic vascular pathologies including stroke, 

myocardial infarction, and peripheral artery disease.

• Evidence clearly establishes that OPN is driver of cellular functions that 

impact physiologic and pathophysiologic processes in the vascular setting 

including cell survival, adhesion, migration and proliferation.

• Humans express multiple OPN isoforms, which have distinct biologic 

functions, and further investigation is required to determine what OPN 

isoform(s) are expressed in the setting of vascular disease and what role each 

isoform plays in vascular disease progression.
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Figure 1. OPN isoform primary domain structure.
Each block corresponds to an exon (numbered). OPNa is full length (top; 314 aa), OPNb 

lacks exon 5 (middle; 300 aa), and OPNc lacks exon 4 (bottom; 287 aa). Expanded amino 

acid sequences of exons 4 and 5, absent in OPNc and OPNb, respectively, are included and 

glutamine residues (Q) that are potential sites for transglutamination are indicated in blue. 

Also indicated are OPN structural features and cleavage sites present within each exon. 

Corresponding amino acid numbers listed are for the OPNa isoform (with Met as aa 1).
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