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Abstract

Nanoparticles (NPs) promise to advance strategies to treat vascular disease. Since being harnessed 

by the cancer field to deliver safer and more effective chemotherapeutics, nanoparticles have been 

translated into applications for cardiovascular disease. Systemic exposure and drug-drug 

interactions remain a concern for nearly all cardiovascular therapies, including statins, 

antithrombotic, and thrombolytic agents. Moreover, off-target effects and poor bioavailability have 

limited the development of completely new approaches to treat vascular disease. Through the 

rational design of nanoparticles, nano-based delivery systems enable more efficient delivery of a 

drug to its therapeutic target or even directly to the diseased site, overcoming biological barriers 

and enhancing a drug’s therapeutic index. In addition, advances in molecular imaging have led to 

the development of “theranostic” NPs that may simultaneously act as carriers of both therapeutic 

and imaging payloads. The following is a summary of nanoparticle therapy for atherosclerosis, 

thrombosis, and restenosis, and an overview of recent major advances in the targeted treatment of 

vascular disease.

Introduction

Cardiovascular disease is the number one cause of death globally.1 The low delivery 

efficiency, poor target specificity and/or off-target activity of our therapies has contributed to 
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the challenges we face in cardiovascular medicine.2 Nanoparticles, on the scale of less than 

0.1 microns in at least one dimension, have emerged as a powerful tool to increase the 

targeting selectivity of a drug and limit its distribution throughout the body. Their tunable 

shape, size, and surface chemistry enables nanoparticles to be “programmed” for site-

specific delivery.3 A central goal of nanotherapy is to enhance the efficacy of a therapy and 

minimize side effects caused by freely delivered drug.4 Nanoparticles achieve this through 

rational design, frequently incorporating knowledge of normal vs. diseased biology to 

optimize residence time in the diseased tissue.

Oncology was the first field to leverage the properties of nanoparticles for drug delivery with 

Doxil, a liposome-encapsulated doxorubicin formulation approved by the FDA in 1995 for 

the treatment of Kaposi’s sarcoma.5 Now widely used for the treatment of multiple myeloma 

and other malignancies, the nanoformulation enables preferential uptake by cancer cells and 

limits exposure to the heart, reducing the risk of doxorubicin-induced cardiotoxicity and 

heart failure.6 Currently, more than 50 nanoparticle-based therapies are used for a variety of 

indications including infections, chronic kidney disease, and even psychiatric conditions.7

Nanotechnology has also expanded into the realm of cardiovascular disease. Currently 

marketed nanoformulations of fenofibrate are used in patients with hypertriglyceridemia to 

help overcome challenges with drug solubility and absorption. A number of delivery systems 

are under development to therapeutically target pathways of vascular disease (Figure 1). 

Additionally, multi-functional “theranostic” NPs hold promise for combined delivery of 

therapeutic and imaging agents. These theranostic NPs can serve to blend treatment with 

information from one or even multiple imaging modalities to more comprehensively assess 

disease. Prior work has highlighted the status of nanomaterials in cardiovascular imaging, 

including their potential to separately identify “vulnerable” plaques at risk for rupture.8 This 

review discusses advances in the application of nanoparticles for the treatment of vascular 

disease, their potential translation to the clinic, and challenges in their development. Greater 

emphasis is placed on nanoparticle-directed therapy for atherosclerosis and its associated 

complications, including thrombosis and restenosis, given their role in ischemic heart 

disease (Table 1).

Resolving inflammation and defective efferocytosis

Atherosclerosis is an inflammatory disease characterized by the accumulation of lipids, 

diseased cells, and necrotic debris. Pro-inflammatory leukocytes and cytokines act at 

different stages during the formation of the atherosclerotic plaque.9 Heightened 

inflammation is driven, in part, by the failure to clear apoptotic tissue from the diseased 

vessel wall due to a defect in efferocytosis (programmed cell removal), such that apoptotic 

cells accumulate, become secondarily necrotic, and release their pro-inflammatory 

intracellular contents.10, 11 Importantly, this non-resolving inflammation drives clinically 

dangerous lesions that are at increased risk of rupture and thrombosis. The recent CANTOS 

(Canakinumab Anti-inflammatory Therapy Outcomes Study) trial demonstrated the benefit 

of suppressing inflammation on cardiovascular disease in high-risk patients.12, 13 However, 

targeting inflammation systemically also has significant potential to inhibit innate immunity 

and compromise host defense against infections.14 Indeed, deaths due to infection or sepsis 
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were more common among CANTOS trial patients who received the systemic anti-

inflammatory treatment. Because of their ability to achieve local delivery, atherosclerosis-

targeted nanoparticles may be able to address these risks.

Type IV collagen is a major sub-endothelial basement membrane protein that is exposed 

upon vascular injury and inflammation.15 When combining a Type IV-collagen targeting 

peptide and pro-resolving peptide derived from Annexin A1, there was a 70% increase in 

selectivity of the NPs for atherosclerotic lesions, relative to the spleen and liver.16 The 

targeted, inflammation-resolving NPs enhanced resolution to a much greater extent than the 

free-resolving peptide, where NP treatment effectively suppressed plaque oxidative stress, 

necrosis, and fibrous cap thinning. In another study using a similar Type IV-collagen 

targeting system, NPs that incorporate the anti-inflammatory cytokine IL-10 were 

engineered.17 IL-10 nanotherapy had similar protective effects on advanced atherosclerosis 

in Ldlr−/− mice, in addition to enhancing macrophage-mediated clearance of apoptotic 

debris. Resolving local inflammation thus also appeared to have a pro-efferocytic effect. 

Short-term toxicity studies revealed no alterations in blood cytokine levels, suggesting the 

IL-10 nanotherapy was specific to sites of inflammation and may not compromise host 

defense. In a study using an NP designed to attenuate inflammation due to the production of 

reactive oxygen species (ROS), delivery of a free-radical scavenging payload led to a 

decrease in cell apoptosis within the plaques of apoE−/− mice. Following internalization by 

macrophages and vascular smooth muscle cells (VSMCs), the “ROS-scavenging” NPs 

decreased cellular oxLDL uptake and subsequent transformation to foam cells. NPs were 

thus able to overcome the rapid elimination and short retention time of the free therapeutic 

agent in atherosclerotic plaques. Additionally, their benefit on plaque progression and 

stability was importantly observed without side effects, indicated by normal clinical 

chemistry, hematology, and viability of mice following treatment.18

Inflammation-targeting nanoparticles have also been formulated as theranostic NPs. In a 

rabbit model of atherosclerosis, magnetic resonance imaging (MRI)-detectable liposomes 

were developed for delivery of prednisolone to the inflamed vessel wall.19 Liposomal 

encapsulation improved the pharmacokinetics of prednisolone and prolonged its circulating 

half-life, without systemic toxicity. After a single dose, rapid and sustained decreases in 

plaque inflammation were observed by MRI and correlated with 18F-FDG-positron emission 

tomography/computed tomography (PET/CT), a validated method of tracking inflammation 

in atherosclerosis imaging.20 Decreases in plaque inflammation were attributable to a 

decrease in monocyte chemoattracts and lesional macrophage density, effects that were 

observed to a much lesser degree in rabbits treated with the free corticosteroid. Investigators 

then executed a pharmaceutical development program in which they optimized a scaled up 

synthesis method and formed a purified and storage-stable good manufacturing practice 

(GMP)-grade product.21 Following pharmacokinetic and toxicologic evaluation in healthy 

rats and rabbits, the prednisolone-containing liposomes failed to induce measurable effects 

on arterial wall inflammation in Phase I/II trials.22 Optimizing the dose and treatment 

schedule in larger animal models may have led to a more thorough understanding of the 

therapeutic margin and dose required to achieve efficient target engagement. Despite the 

lack of treatment benefit, multi-modal imaging demonstrated that the nanoparticles 

accumulated in plaque macrophages without adverse effects, thus serving as a guide for 
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imaging-based efficacy measures and demonstrating the feasibility of targeting nanoparticles 

to human atherosclerotic areas.

In a study specifically aiming to interfere with leukocyte recruitment into the atherosclerotic 

plaque, Sager and colleagues combined small interfering RNA (siRNA) targeting multiple 

cell adhesion molecules into a polymer-based NP.23 Made up of a variety of synthetic or 

natural polymers, polymeric NPs are more resistant to degradation and offer a more tunable 

architecture than liposomes.24 In apoE−/− mice that underwent coronary ligation, treatment 

with NPs encapsulating five siRNAs targeting leukocyte adhesion molecules significantly 

reduced vascular inflammation after myocardial infarction.23 The resultant decrease in 

leukocyte accumulation led to a decrease in tissue injury and necrotic core formation 

following ischemic insult. Altogether, these studies exemplify the exciting possibility that 

plaque inflammation and apoptotic cell accumulation can be directly addressed using 

targeted NPs.

Preventing plaque neovascularization

Advanced atherosclerotic plaques frequently display extensive adventitial and neointimal 

neovascularization. In humans, increased plaque vascularity has been observed in lesions 

from patients with acute coronary syndrome and symptomatic carotid stenosis, relative to 

individuals with stable or asymptomatic disease.25, 26 These data suggest that plaque 

neovascularization may have an important role in atherogenesis and intraplaque hemorrhage.
27 Angiogenesis is coordinated by a number of cytokines, including vascular endothelial 

growth factor (VEGF) and platelet-derived growth factor.28 Anti-VEGF therapies and other 

anti-angiogenic agents have successfully been used to promote regression of tumor vessels 

and prolong survival in cancer patients in some studies29, 30, but come with an increased risk 

of arterial thromboembolic events that is further compounded in patients with a history of 

cardiovascular disease.31 Based on prior work demonstrating that high dose anti-angiogenic 

therapy reduces plaque development in apoE−/− mice, investigators developed a targeted 

theranostic NP in efforts to avoid the drug’s neurocognitive effects and combine an imaging 

agent for serial monitoring of neovessel formation.32 Using a ligand for the αvβ3-integrins 

that are up-regulated during angiogenesis, hyperlipidemic rabbits treated with the MRI-

detectable NPs exhibited a reduction in αvβ3-related signal enhancement in the aorta. T1-

weighted MRI signal in the aorta correlated with the degree of neovessel formation in the 

atherosclerotic aorta. Interestingly, this benefit occurred at a dosage of 50,000 times less 

when the anti-angiogenic agent was encapsulated as a nanoformulation than when the 

therapy was delivered alone. In a follow-up study, combining their αvβ3-targeted anti-

angiogenic treatment with atorvastatin achieved a greater and more sustained decrease in 

MR signal and plaque neovessel count of hyperlipidemic rabbits.33 This finding is in line 

with work suggesting that statins inhibit endothelial proliferation and VEGF production, 

potentially explaining the synergistic effect on plaque neovessel formation.34 By leveraging 

plaque biology, these studies highlight the potential of NPs to feature an imaging/therapeutic 

payload and prevent disease in ways that were previously inaccessible due to off-target 

effects.
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Targeting macrophages

Macrophages have a key role in atherosclerosis, from lesion initiation, foam cell formation, 

and by contributing to the pool of apoptotic cells that affect plaque size and vulnerability.
35, 36 Importantly, in advanced lesions, defective efferocytic activity by lesional 

macrophages is what causes the build-up of toxic intracellular material and subsequent 

plaque necrosis. Several nanotherapies have been described that target plaque monocyte 

recruitment and infiltration37–39, macrophage proliferation40, 41, cholesterol 

metabolism42, 43, and polarization to a less inflammatory M2 phenotype.44 In a study by 

Lewis and colleagues, sugar-based NPs were designed to block oxidized LDL uptake from 

macrophage scavenger receptors (SR) by both direct inhibition and long-term 

downregulation of SR expression on the cell surface.43 Binding to macrophage SRs was 

shown to directly correlate with targeting of NPs to established atherosclerotic plaques. They 

reported that treatment resulted in markedly reduced lipid burden and overall plaque 

occlusion in the aorta of apoE−/− mice. In another recent study, a targeted 

nanoimmunotherapy was developed to block CD40-induced tumor necrosis receptor-

associated factor 6 (TRAF6) in monocytes and macrophages, thereby preventing monocyte 

recruitment into the arterial wall.39, 45 While systemic inhibition of the CD40-TRAF6 axis 

results in serious complications such as thromboembolic events and immune suppression, 

investigators selectively targeted TRAF6 in monocytes by incorporating TRAF6 inhibitors 

into recombinant HDL NPs (TRAF6i-HDL). As an extension of the group’s experience with 

HDL particles in atherosclerosis nanotherapy40 and in vivo imaging46, TRAF6i-HDL was 

shown to both hamper the initiation of disease in young apoE−/− mice with no 

atherosclerosis and induce a more stable plaque phenotype in animals with established 

disease. Following incorporation with fluorescent dyes or radiolabeled molecules, TRAF6i-

HDL was shown to accumulate primarily in the liver and spleen of apoE−/− mice and non-

human primates. Investigators also provided evidence of the short-term safety of the 

nanoimmunotherapy in mice and cynomolgus monkeys.45 These safety experiments revealed 

that TRAF6i-HDL did not elicit adverse immune responses, alter major serological 

parameters, or cause any organ toxicity, although an acute increase in alkaline phosphatase 

levels and reticulocyte count was noted in mice treated for 1 week. In mice that received 

long-term treatment, these changes were not observed, although interestingly, cholesterol 

levels and white blood cell counts were both elevated in mice treated for 6 weeks.39 Because 

the HDL NPs primarily accumulate in the liver and spleen, further toxicological studies are 

needed for this promising nanoimmunotherapy.

The preferential uptake of NPs by inflammatory monocytes and macrophages has also 

served as a means for focal therapy of inflamed lesions. Iron-oxide NPs undergo uptake by 

macrophages (>75%) and to a lesser degree by neutrophils and other vascular cells.47 When 

modified with a near-infrared fluorophore, irradiation of the atheroma resulted in focal 

ablation of the macrophage-rich plaques of mice following carotid ligation.48 However, the 

authors note the phototoxicity also may affect other cell types with an affinity for the NPs, 

including VSMCs and endothelial cells. Subjecting these cell types to photothermal therapy 

could potentially make the plaques more dangerous and prone to rupture. Nanoparticles that 

may be more cell-specific are under development, including single-walled carbon nanotubes 
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(SWNTs, Figure 2A).49 SWNTs undergo highly selective uptake by inflammatory Ly-6Chi 

monocytes.50 Within the diseased vessels of carotid-ligated mice, SWNTs co-localized with 

lesional macrophages, with negligible amounts observed in VSMCs.49 Further exploration 

of in vivo efficacy and therapy-loading ability is needed. Given that inflammatory 

monocytes represent the majority of circulating cells recruited to the atherosclerotic plaque, 

there is compelling rationale for the use of SWNTs and other NPs that afford similar cell-

specific drug delivery. Moreover, SWNTs and other carbon nanomaterials exhibit a natural 

photoacoustic contrast and near-infrared fluorescence signal.49, 51 These intrinsic imaging 

capabilities make carbon nanomaterials particularly useful for theranostic strategies to detect 

and treat the inflamed “vulnerable” plaque.

Altering lipid metabolism

Nanoparticle delivery systems have particularly impacted the ability to target liver 

cholesterol metabolism using RNA interference (RNAi). A liposomal formulation of 

apolipoprotein B (apoB) siRNA resulted in specific silencing of apoB in hepatocytes and 

reductions in apoB, LDL, and total cholesterol levels in rodents and monkeys.52, 53 The 

opportunity to target apoB is particularly exciting given genetic and epidemiological studies 

that suggest the clinical benefit of lowering LDL may depend on a corresponding reduction 

in apoB levels.54

Most recently, siRNA silencing of proprotein convertase subtilisin/kexin type 9 (PCSK9) 

shows promise as a future strategy for reducing LDL cholesterol in a potent and convenient 

manner. The field of RNAi therapy has historically been impeded by the instability of naked 

siRNA in the bloodstream and their inability to cross the cell membrane. RNA silencing of 

PCKS9 using lipid-based nanoparticles, termed “lipidoids” (Figure 2B), has recently been 

shown to efficiently target and suppress PCSK9 synthesis in the liver. Unlike the currently 

available PCSK9 antibodies (i.e. Evolucumab) that require bi-weekly injections, the novel 

nanoformulations of PCSK9 siRNA (Inclisiran) caused rapid and durable effects after a 

single dose. First shown in rodents and monkeys55, Inclisiran effectively reduced levels of 

PCSK9 and LDL for at least 6 months in Phase 1/2 trials.56–59 Further evaluation is ongoing 

in Phase III trials (NCT03399370). This development is a major advance in cardiovascular 

medicine, and was driven by nanotechnology that enabled stable delivery of RNAi 

therapeutics.60

In another recent study, antibodies against the VSMC-expressed ion channel, transient 

receptor potential vanilloid subfamily 1 (TRPV1), were conjugated to copper sulfide (CuS) 

NPs.61 TRPV1 induces autophagy in VSMCs, reduces lipid accumulation, and prevents 

foam cell formation. Upon irradiation of the aortic arch of apoE−/− mice, the local increase 

of temperature opened TRPV1 channels and allowed an influx of calcium ions to activate 

autophagy. Excitingly, NPs provided highly precise, non-invasive treatment under image-

guidance due to the characteristic near infrared absorption of CuS NPs that generates a 

strong photoacoustic signal.
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Preventing neointimal growth

High restenosis and reintervention rates are still a significant limitation of revascularization 

procedures, particularly among patients with peripheral arterial disease. A number of NPs 

have been identified that enhance retention of anti-restenotic agents in the local vascular 

bed62, 63. These include NPs that are delivered locally via catheter, implanted in stents, and 

even systemically administered surrounding the time of revascularization.

Using an endovascular microinfusion catheter for local delivery, albumin-bound rapamycin 

NPs were concentrated in the adventitial and medial layers of the arterial wall, and reduced 

luminal stenosis in a porcine femoral artery balloon angioplasty model.64 Rapamycin levels 

in the femoral artery remained >100 times higher in the perivascular tissues than in the 

blood for 8 days. Importantly, this period was when cell proliferation rates were the highest 

in control animals, suggesting that the NPs promote drug retention during a particularly 

critical period of neointima formation. In another study, Cyrus and colleagues developed 

αvβ3-targeted paramagnetic NPs for delivery of rapamycin to balloon injured femoral 

arteries of rabbits.65 Local infusion of vessel wall-targeted NPs resulted in a decrease in 

neointimal formation, and their retention in the injured walls was amenable to MRI due to 

the high contrast potential of paramagnetic nanomaterials. Highlighting the tunable 

properties of NPs, nitric oxide gas and RNAi components have also been encapsulated 

within NPs and delivered locally to the diseased arterial wall.66, 67

The surfaces of stents may also be loaded or targeted with NPs. In a study by Chorny et al., 

“stent-targeted” magnetic NPs were designed.68 Following stent placement in the carotid 

artery of rats, these paclitaxel-loaded NPs were infused in the isolated artery and were 

targeted to the stent by applying a magnetic field to the body surface. Treatment effectively 

inhibited in-stent stenosis at drug doses below those provided by paclitaxel-eluting stents. 

Innovative NP-eluting stents have also been developed to prevent stenosis after stent 

implantation.69–71 Importantly, these stents were found to prevent in-stent restenosis without 

delayed endothelial healing, which is a central reason for late stent thrombosis following 

percutaneous interventions.

Rather than requiring stent placement or advancement of a catheter for local delivery, 

targeted NPs may enable systemic therapy for restenosis. Although a promising albumin-

stabilized nanoformulation of paclitaxel failed to show efficacy in early clinical trials72–74, 

this work highlighted the existing space for more targeted or “precision medicine” 

approaches to restenosis nanotherapy. Using lipid-polymeric NPs that were surface modified 

with Type IV-collagen targeting peptides, Chan and colleagues reported the efficacy of 

paclitaxel-encapsulated NPs that preferentially localized to the denuded vessel wall.75 

Systemically administered NPs led to a reduction in arterial stenosis in a rat carotid injury 

model. While 15 mg/kg doses of free paclitaxel induced signs of toxicity, NPs enabled 

higher 35 mg/kg doses that were well-tolerated in animals. Another group described a 

liposomal formulation of the bisphosphonate alendronate that reduced neointimal formation 

by transiently suppressing circulating monocyte levels in rabbits that had undergone iliac 

artery stenting.76 Early-phase clinical trials supported the safety of liposomal alendronate for 

infusion at the time of percutaneous coronary intervention. Although there was no difference 
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in restenosis rates between the treatment and placebo groups, the anti-inflammatory NP led 

to a significant reduction in in-stent late loss in an “inflammatory patient” subgroup with 

elevated baseline monocyte counts (NCT02645799).77 Other systemic nanoformulations that 

have prevented restenosis include nitric-oxide containing nanofibers78 and glucocorticoid-

encapsulated NPs that are targeted to subendothelial matrix proteins79. Taken together, NP-

based delivery may be a useful adjunct to revascularization procedures, particularly for 

patient-personalized treatment and for those with diffuse disease and other challenging 

lesion patterns.

Targeting thrombosis

Platelet activation, the coagulation cascade, and fresh thrombus include unique factors that 

enable targeted delivery of therapeutic agents. Thrombus-targeted NPs have been developed 

for delivery of thrombolytic agents and anti-coagulants, including tissue plasminogen 

activator (tPA)80–82 streptokinase83, 84, urokinase85, 86, and direct thrombin inhibitors.87 By 

encapsulating a von Willebrand factor-binding protein within NPs, investigators effectively 

targeted tPA to thrombi induced in swine coronary arteries.81 Intravenous delivery of NPs 

resulted in reperfusion and vessel recanalization in 90% of animals. Interestingly, NPs were 

designed for controlled release of tPA using transthoracic ultrasound, where application of 

ultrasound led to greater tPA off-loading and thrombolytic activity at the affected artery. In 

another study, anti-thrombin theranostic NPs directly attenuated plaque coagulant activity 

within the injured arteries of apoE−/− mice.87 Detectable by magnetic resonance 

spectroscopy, systemically administered NPs were retained within the plaques and exerted 

rapid inactivation of any locally produced thrombin. These effects were observed without 

altering activated partial thromboplastin time or other systemic effects on coagulation. 

Moreover, focal inhibition of plaque thrombin reduced the expression of plaque 

inflammatory molecules and enhanced restoration of the disrupted vascular endothelium, 

suggesting the anti-thrombin NPs promoted plaque stability. Taken together, these studies 

illustrate the broad potential that NPs have for reperfusion therapy and anticoagulation with 

decreased bleeding consequences.

Conclusions and future directions

Target-driven NPs have opened the door to improved and even novel treatment options for 

patients with vascular disease. Those that have advanced into early clinical trials provide 

important lessons, namely the need for (1) a well-defined patient population most likely to 

benefit from therapy, and (2) a thorough understanding of a formulation’s therapeutic 

margin. In addition to implementing clinically relevant animal models, these considerations 

will greatly draw from the use of biomarker and molecular imaging based-strategies to 

enable patient selection and assessment of drug accumulation and response.

Nonetheless, there are important limitations and challenges in cardiovascular nanomedicine 

that should be noted (Table 2). First, NPs are inherently heterogeneous in composition and 

can present challenges in synthesis of large volumes that adhere to pharmaceutical GMP 

guidelines (e.g. sterility, stability, and purity). It will be important to develop methods to 

scale-up production with high reliability and reproducibility, reasonable cost, and time-
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efficiency for successful translation from bench-to-bedside. Moreover, stability in circulation 

and during storage is a common pitfall of nanotechnology. Although conventional methods 

for quality control exist, each nanoformulation is a specialized unit and requires unique 

measurements of physicochemical properties and drug release rates. In particular, there is a 

need to develop a drug release profile under both physiological and storage conditions, such 

that the drug is not released too slowly, prematurely in circulation, or even during storage. In 

addition, although some nanoformulations use disease-targeting ligands, several NPs have 

been described to have an intrinsic affinity for certain cell types (e.g. intraplaque 

macrophages). The distinct mechanisms by which such NPs are taken up by cells are poorly 

understood and is an intriguing area for future study. Lastly, there is a major gap in the 

evaluation of the long-term safety of nanoformulations in vivo. Many currently available 

nanoformulations were developed to reduce the side effects of a loaded drug, but some 

nanoparticles undergoing preclinical development have retroactively been discovered to be 

cytotoxic and/or immunogenic.88 In an ideal situation these studies will be pursued in 

parallel as a means of informing decisions earlier in the development process. Coating NPs 

with polyethylene glycol (PEG), or “PEGylation” is a commonly used approach for reducing 

their systemic toxicity and interaction with plasma proteins and circulating cells.89 Further 

optimization of methods to reduce unwanted nano-bio interactions may be necessary.

While there has been substantial progress, the global epidemic of vascular disease and 

resultant deaths are predicted to increase over the next decades, affecting developed and 

developing nations alike.90 Lipid-lowering therapies are the dominant treatment for 

atherosclerosis, but there is much room for improvement with complementary therapies. Our 

understanding of plaque biology has evolved to include inflammatory mechanisms and 

impaired efferocytosis as causal drivers of lesion progression and instability. However, anti-

inflammatory therapies are known to cause immunosuppression. Additionally, reactivating 

efferocytosis has the drawback of inducing the off-target clearance of healthy tissues under 

some conditions. For example, in addition to efficiently restoring phagocytosis and 

preventing atherosclerosis, pro-efferocytic therapy also caused a clinically relevant anemia 

due to clearance of red blood cells in the spleen.91, 92 To overcome the toxicities associated 

with anti-inflammatory and pro-efferocytic approaches, it is likely that nanoparticles will 

serve as the innovative delivery systems that will enable targeting of these important 

pathways specifically within the vulnerable plaque.
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Abbreviations

NPs Nanoparticles

ROS Reactive oxygen species

VSMCs Vascular smooth muscle cells

MRI Magnetic resonance imaging

PET Positron emission tomography

CT Computed tomography

GMP Good manufacturing practice

siRNA small interfering RNA

VEGF Vascular endothelial growth factor

SR Scavenger receptor

TRAF6 Tumor necrosis receptor-associated factor 6

HDL high-density lipoprotein

SWNTs Single-walled carbon nanotubes

RNA RNA interference

PCSK9 Proprotein convertase subtilisin/kexin type 9

TRPV1 Transient receptor potential vanilloid subfamily 1

CuS Copper sulfide

tPA Tissue plasminogen activator

PEG Polyethylene glycol
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Highlights

• Nanoparticles have uniquely appealing features that enable them to be 

programmed as cell- and tissue-specific delivery systems, thus overcoming 

the low drug delivery and off-target effects which commonly impede 

developments in cardiovascular medicine.

• Nanotechnology is driving efforts to develop novel and more effective 

treatments for vascular disease, namely by targeting chronic inflammation, 

resolving defective efferocytosis, and producing more potent lipid-lowering 

therapies.

• This review discusses advances in the application of nanoparticles for the 

treatment of vascular disease, their potential translation to the clinic, and 

challenges in their development.
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Figure 1: 
Targeted therapeutic strategies enabled by nanoparticles. In order to avoid adverse effects 

and toxicities due to systemic exposure, targeted nanoparticles have been developed to 

resolve inflammation specifically at the inflamed plaque (e.g. Collagen-IV targeted IL-10 

NPs17), prevent plaque neovascularization (e.g. αvβ3-targed anti-angiogenic NPs65), and 

deliver anti-proliferative or thrombolytic drugs to address restenosis and atherothrombotic 

events (e.g. endothelial-targeted NPs encapsulating paclitaxel75, vWF-targeted NPs 

encapsulating tPA81). Nanoparticles have also enabled cell-specific modulation of molecules 

that drive atherosclerosis, such as CD40-induced TRAF6 signaling in macrophages45 and 

regulation of PCSK9 in hepatocytes.55
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Figure 2: 
Schematic of nanoparticles functionalized with agents that control their stability and 

interactions with the biological environment. A. Single-walled carbon nanotube (SWNT) 

tailored for vessel delivery of a therapeutic payload by coating the SWNT with polyethylene 

glycol (PEG) chains linked to arginine-glycine-aspartic acid (RGD), a potent αvβ3 integrin-

binding peptide. B. Lipidoid nanoparticles that are formulated with phospholipids and 

cholesterol to facilitate intracellular delivery of siRNA for potent gene knockdown. Figures 

modified from [50] and [60].
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