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Abstract

Nanoparticles (NPs) promise to advance strategies to treat vascular disease. Since being harnessed
by the cancer field to deliver safer and more effective chemotherapeutics, nanoparticles have been
translated into applications for cardiovascular disease. Systemic exposure and drug-drug
interactions remain a concern for nearly all cardiovascular therapies, including statins,
antithrombotic, and thrombolytic agents. Moreover, off-target effects and poor bioavailability have
limited the development of completely new approaches to treat vascular disease. Through the
rational design of nanoparticles, nano-based delivery systems enable more efficient delivery of a
drug to its therapeutic target or even directly to the diseased site, overcoming biological barriers
and enhancing a drug’s therapeutic index. In addition, advances in molecular imaging have led to
the development of “theranostic” NPs that may simultaneously act as carriers of both therapeutic
and imaging payloads. The following is a summary of nanoparticle therapy for atherosclerosis,
thrombosis, and restenosis, and an overview of recent major advances in the targeted treatment of
vascular disease.

Introduction

Cardiovascular disease is the number one cause of death globally.! The low delivery

efficiency, poor target specificity and/or off-target activity of our therapies has contributed to

Corresponding author: Nicholas J. Leeper, MD, Divisions of Vascular Surgery and Cardiovascular Medicine, Stanford University,
300 Pasteur Drive, Room H3638, Stanford, CA 94305, USA. nleeper@stanford.edu, Phone: +1-650-725-5227.

Disclosures

Dr. Leeper is a co-founder and holds equity interest in 47 Incorporated. A.M. Flores, J. Ye, B.R. Smith, and N.J. Leeper are co-
inventors on patents regarding vascular nanotherapies that have been licensed to Stanford University.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Flores et al.

Page 2

the challenges we face in cardiovascular medicine.2 Nanoparticles, on the scale of less than
0.1 microns in at least one dimension, have emerged as a powerful tool to increase the
targeting selectivity of a drug and limit its distribution throughout the body. Their tunable
shape, size, and surface chemistry enables nanoparticles to be “programmed” for site-
specific delivery.3 A central goal of nanotherapy is to enhance the efficacy of a therapy and
minimize side effects caused by freely delivered drug.* Nanoparticles achieve this through
rational design, frequently incorporating knowledge of normal vs. diseased biology to
optimize residence time in the diseased tissue.

Oncology was the first field to leverage the properties of nanoparticles for drug delivery with
Doxil, a liposome-encapsulated doxorubicin formulation approved by the FDA in 1995 for
the treatment of Kaposi’s sarcoma.> Now widely used for the treatment of multiple myeloma
and other malignancies, the nanoformulation enables preferential uptake by cancer cells and
limits exposure to the heart, reducing the risk of doxorubicin-induced cardiotoxicity and
heart failure.6 Currently, more than 50 nanoparticle-based therapies are used for a variety of
indications including infections, chronic kidney disease, and even psychiatric conditions.”

Nanotechnology has also expanded into the realm of cardiovascular disease. Currently
marketed nanoformulations of fenofibrate are used in patients with hypertriglyceridemia to
help overcome challenges with drug solubility and absorption. A number of delivery systems
are under development to therapeutically target pathways of vascular disease (Figure 1).
Additionally, multi-functional “theranostic” NPs hold promise for combined delivery of
therapeutic and imaging agents. These theranostic NPs can serve to blend treatment with
information from one or even multiple imaging modalities to more comprehensively assess
disease. Prior work has highlighted the status of nanomaterials in cardiovascular imaging,
including their potential to separately identify “vulnerable” plaques at risk for rupture.8 This
review discusses advances in the application of nanoparticles for the treatment of vascular
disease, their potential translation to the clinic, and challenges in their development. Greater
emphasis is placed on nanoparticle-directed therapy for atherosclerosis and its associated
complications, including thrombosis and restenosis, given their role in ischemic heart
disease (Table 1).

Resolving inflammation and defective efferocytosis

Atherosclerosis is an inflammatory disease characterized by the accumulation of lipids,
diseased cells, and necrotic debris. Pro-inflammatory leukocytes and cytokines act at
different stages during the formation of the atherosclerotic plaque.? Heightened
inflammation is driven, in part, by the failure to clear apoptotic tissue from the diseased
vessel wall due to a defect in efferocytosis (programmed cell removal), such that apoptotic
cells accumulate, become secondarily necrotic, and release their pro-inflammatory
intracellular contents.1%: 11 Importantly, this non-resolving inflammation drives clinically
dangerous lesions that are at increased risk of rupture and thrombosis. The recent CANTOS
(Canakinumab Anti-inflammatory Therapy Outcomes Study) trial demonstrated the benefit
of suppressing inflammation on cardiovascular disease in high-risk patients.12: 13 However,
targeting inflammation systemically also has significant potential to inhibit innate immunity
and compromise host defense against infections.1 Indeed, deaths due to infection or sepsis
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were more common among CANTOS trial patients who received the systemic anti-
inflammatory treatment. Because of their ability to achieve local delivery, atherosclerosis-
targeted nanoparticles may be able to address these risks.

Type 1V collagen is a major sub-endothelial basement membrane protein that is exposed
upon vascular injury and inflammation.1®> When combining a Type IV-collagen targeting
peptide and pro-resolving peptide derived from Annexin Al, there was a 70% increase in
selectivity of the NPs for atherosclerotic lesions, relative to the spleen and liver.16 The
targeted, inflammation-resolving NPs enhanced resolution to a much greater extent than the
free-resolving peptide, where NP treatment effectively suppressed plaque oxidative stress,
necrosis, and fibrous cap thinning. In another study using a similar Type IV-collagen
targeting system, NPs that incorporate the anti-inflammatory cytokine IL-10 were
engineered.’ 1L-10 nanotherapy had similar protective effects on advanced atherosclerosis
in Lalr”~ mice, in addition to enhancing macrophage-mediated clearance of apoptotic
debris. Resolving local inflammation thus also appeared to have a pro-efferocytic effect.
Short-term toxicity studies revealed no alterations in blood cytokine levels, suggesting the
IL-10 nanotherapy was specific to sites of inflammation and may not compromise host
defense. In a study using an NP designed to attenuate inflammation due to the production of
reactive oxygen species (ROS), delivery of a free-radical scavenging payload led to a
decrease in cell apoptosis within the plaques of 400£~~ mice. Following internalization by
macrophages and vascular smooth muscle cells (VSMCs), the “ROS-scavenging” NPs
decreased cellular oxLDL uptake and subsequent transformation to foam cells. NPs were
thus able to overcome the rapid elimination and short retention time of the free therapeutic
agent in atherosclerotic plaques. Additionally, their benefit on plaque progression and
stability was importantly observed without side effects, indicated by normal clinical
chemistry, hematology, and viability of mice following treatment.18

Inflammation-targeting nanoparticles have also been formulated as theranostic NPs. In a
rabbit model of atherosclerosis, magnetic resonance imaging (MRI)-detectable liposomes
were developed for delivery of prednisolone to the inflamed vessel wall.1° Liposomal
encapsulation improved the pharmacokinetics of prednisolone and prolonged its circulating
half-life, without systemic toxicity. After a single dose, rapid and sustained decreases in
plague inflammation were observed by MRI and correlated with 18F-FDG-positron emission
tomography/computed tomography (PET/CT), a validated method of tracking inflammation
in atherosclerosis imaging.2° Decreases in plaque inflammation were attributable to a
decrease in monocyte chemoattracts and lesional macrophage density, effects that were
observed to a much lesser degree in rabbits treated with the free corticosteroid. Investigators
then executed a pharmaceutical development program in which they optimized a scaled up
synthesis method and formed a purified and storage-stable good manufacturing practice
(GMP)-grade product.?! Following pharmacokinetic and toxicologic evaluation in healthy
rats and rabbits, the prednisolone-containing liposomes failed to induce measurable effects
on arterial wall inflammation in Phase 1/11 trials.22 Optimizing the dose and treatment
schedule in larger animal models may have led to a more thorough understanding of the
therapeutic margin and dose required to achieve efficient target engagement. Despite the
lack of treatment benefit, multi-modal imaging demonstrated that the nanoparticles
accumulated in plaque macrophages without adverse effects, thus serving as a guide for
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imaging-based efficacy measures and demonstrating the feasibility of targeting nanoparticles
to human atherosclerotic areas.

In a study specifically aiming to interfere with leukocyte recruitment into the atherosclerotic
plaque, Sager and colleagues combined small interfering RNA (siRNA) targeting multiple
cell adhesion molecules into a polymer-based NP.23 Made up of a variety of synthetic or
natural polymers, polymeric NPs are more resistant to degradation and offer a more tunable
architecture than liposomes.24 In 4p0£~~ mice that underwent coronary ligation, treatment
with NPs encapsulating five siRNAs targeting leukocyte adhesion molecules significantly
reduced vascular inflammation after myocardial infarction.23 The resultant decrease in
leukocyte accumulation led to a decrease in tissue injury and necrotic core formation
following ischemic insult. Altogether, these studies exemplify the exciting possibility that
plaque inflammation and apoptotic cell accumulation can be directly addressed using
targeted NPs.

Preventing plague neovascularization

Advanced atherosclerotic plaques frequently display extensive adventitial and neointimal
neovascularization. In humans, increased plaque vascularity has been observed in lesions
from patients with acute coronary syndrome and symptomatic carotid stenosis, relative to
individuals with stable or asymptomatic disease.?> 26 These data suggest that plaque
neovascularization may have an important role in atherogenesis and intraplaque hemorrhage.
21 Angiogenesis is coordinated by a number of cytokines, including vascular endothelial
growth factor (VEGF) and platelet-derived growth factor.28 Anti-VEGF therapies and other
anti-angiogenic agents have successfully been used to promote regression of tumor vessels
and prolong survival in cancer patients in some studies?: 30, but come with an increased risk
of arterial thromboembolic events that is further compounded in patients with a history of
cardiovascular disease.3! Based on prior work demonstrating that high dose anti-angiogenic
therapy reduces plaque development in apo£~~ mice, investigators developed a targeted
theranostic NP in efforts to avoid the drug’s neurocognitive effects and combine an imaging
agent for serial monitoring of neovessel formation.32 Using a ligand for the a.,B3-integrins
that are up-regulated during angiogenesis, hyperlipidemic rabbits treated with the MRI-
detectable NPs exhibited a reduction in a.,B3-related signal enhancement in the aorta. T;-
weighted MRI signal in the aorta correlated with the degree of neovessel formation in the
atherosclerotic aorta. Interestingly, this benefit occurred at a dosage of 50,000 times less
when the anti-angiogenic agent was encapsulated as a nanoformulation than when the
therapy was delivered alone. In a follow-up study, combining their o, p3-targeted anti-
angiogenic treatment with atorvastatin achieved a greater and more sustained decrease in
MR signal and plaque neovessel count of hyperlipidemic rabbits.33 This finding is in line
with work suggesting that statins inhibit endothelial proliferation and VEGF production,
potentially explaining the synergistic effect on plague neovessel formation.34 By leveraging
plaque biology, these studies highlight the potential of NPs to feature an imaging/therapeutic
payload and prevent disease in ways that were previously inaccessible due to off-target
effects.
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Targeting macrophages

Macrophages have a key role in atherosclerosis, from lesion initiation, foam cell formation,
and by contributing to the pool of apoptotic cells that affect plaque size and vulnerability.
35,36 |mportantly, in advanced lesions, defective efferocytic activity by lesional
macrophages is what causes the build-up of toxic intracellular material and subsequent
plaque necrosis. Several nanotherapies have been described that target plaque monocyte
recruitment and infiltration37-39, macrophage proliferation®?: 41, cholesterol

metabolism#2 43, and polarization to a less inflammatory M2 phenotype.** In a study by
Lewis and colleagues, sugar-based NPs were designed to block oxidized LDL uptake from
macrophage scavenger receptors (SR) by both direct inhibition and long-term
downregulation of SR expression on the cell surface.*3 Binding to macrophage SRs was
shown to directly correlate with targeting of NPs to established atherosclerotic plaques. They
reported that treatment resulted in markedly reduced lipid burden and overall plaque
occlusion in the aorta of apoE~~ mice. In another recent study, a targeted
nanoimmunotherapy was developed to block CD40-induced tumor necrosis receptor-
associated factor 6 (TRAF6) in monocytes and macrophages, thereby preventing monocyte
recruitment into the arterial wall.3% 45 While systemic inhibition of the CD40-TRAF6 axis
results in serious complications such as thromboembolic events and immune suppression,
investigators selectively targeted TRAF6 in monocytes by incorporating TRAF6 inhibitors
into recombinant HDL NPs (TRAF6i-HDL). As an extension of the group’s experience with
HDL particles in atherosclerosis nanotherapy“ and in vivo imaging*®, TRAF6i-HDL was
shown to both hamper the initiation of disease in young gpo£-/—mice with no
atherosclerosis and induce a more stable plaque phenotype in animals with established
disease. Following incorporation with fluorescent dyes or radiolabeled molecules, TRAF6i-
HDL was shown to accumulate primarily in the liver and spleen of 4p0£—/—mice and non-
human primates. Investigators also provided evidence of the short-term safety of the
nanoimmunotherapy in mice and cynomolgus monkeys.*® These safety experiments revealed
that TRAF6i-HDL did not elicit adverse immune responses, alter major serological
parameters, or cause any organ toxicity, although an acute increase in alkaline phosphatase
levels and reticulocyte count was noted in mice treated for 1 week. In mice that received
long-term treatment, these changes were not observed, although interestingly, cholesterol
levels and white blood cell counts were both elevated in mice treated for 6 weeks.3 Because
the HDL NPs primarily accumulate in the liver and spleen, further toxicological studies are
needed for this promising nanoimmunotherapy.

The preferential uptake of NPs by inflammatory monocytes and macrophages has also
served as a means for focal therapy of inflamed lesions. Iron-oxide NPs undergo uptake by
macrophages (>75%) and to a lesser degree by neutrophils and other vascular cells.*” When
modified with a near-infrared fluorophore, irradiation of the atheroma resulted in focal
ablation of the macrophage-rich plagues of mice following carotid ligation.*8 However, the
authors note the phototoxicity also may affect other cell types with an affinity for the NPs,
including VSMCs and endothelial cells. Subjecting these cell types to photothermal therapy
could potentially make the plaques more dangerous and prone to rupture. Nanoparticles that
may be more cell-specific are under development, including single-walled carbon nanotubes
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(SWNTs, Figure 2A).49 SWNTs undergo highly selective uptake by inflammatory Ly-6CNi
monocytes.>0 Within the diseased vessels of carotid-ligated mice, SWNTSs co-localized with
lesional macrophages, with negligible amounts observed in VSMCs.#9 Further exploration
of in vivo efficacy and therapy-loading ability is needed. Given that inflammatory
monocytes represent the majority of circulating cells recruited to the atherosclerotic plaque,
there is compelling rationale for the use of SWNTSs and other NPs that afford similar cell-
specific drug delivery. Moreover, SWNTSs and other carbon nanomaterials exhibit a natural
photoacoustic contrast and near-infrared fluorescence signal.® 5! These intrinsic imaging
capabilities make carbon nanomaterials particularly useful for theranostic strategies to detect
and treat the inflamed “vulnerable” plaque.

Altering lipid metabolism

Nanoparticle delivery systems have particularly impacted the ability to target liver
cholesterol metabolism using RNA interference (RNAI). A liposomal formulation of
apolipoprotein B (apoB) siRNA resulted in specific silencing of apoB in hepatocytes and
reductions in apoB, LDL, and total cholesterol levels in rodents and monkeys.52: 53 The
opportunity to target apoB is particularly exciting given genetic and epidemiological studies
that suggest the clinical benefit of lowering LDL may depend on a corresponding reduction
in apoB levels.>*

Most recently, siRNA silencing of proprotein convertase subtilisin/kexin type 9 (PCSK9)
shows promise as a future strategy for reducing LDL cholesterol in a potent and convenient
manner. The field of RNAI therapy has historically been impeded by the instability of naked
SiRNA in the bloodstream and their inability to cross the cell membrane. RNA silencing of
PCKS9 using lipid-based nanoparticles, termed “lipidoids” (Figure 2B), has recently been
shown to efficiently target and suppress PCSK9 synthesis in the liver. Unlike the currently
available PCSK9 antibodies (i.e. Evolucumab) that require bi-weekly injections, the novel
nanoformulations of PCSK9 siRNA (Inclisiran) caused rapid and durable effects after a
single dose. First shown in rodents and monkeys®®, Inclisiran effectively reduced levels of
PCSK9 and LDL for at least 6 months in Phase 1/2 trials.56-59 Further evaluation is ongoing
in Phase 111 trials (NCT03399370). This development is a major advance in cardiovascular
medicine, and was driven by nanotechnology that enabled stable delivery of RNAI
therapeutics.50

In another recent study, antibodies against the VSMC-expressed ion channel, transient
receptor potential vanilloid subfamily 1 (TRPV1), were conjugated to copper sulfide (CuS)
NPs.81 TRPV1 induces autophagy in VSMCs, reduces lipid accumulation, and prevents
foam cell formation. Upon irradiation of the aortic arch of 4p0£~~ mice, the local increase
of temperature opened TRPV1 channels and allowed an influx of calcium ions to activate
autophagy. Excitingly, NPs provided highly precise, non-invasive treatment under image-
guidance due to the characteristic near infrared absorption of CuS NPs that generates a
strong photoacoustic signal.
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Preventing neointimal growth

High restenosis and reintervention rates are still a significant limitation of revascularization
procedures, particularly among patients with peripheral arterial disease. A number of NPs
have been identified that enhance retention of anti-restenotic agents in the local vascular
bed®2 63, These include NPs that are delivered locally via catheter, implanted in stents, and
even systemically administered surrounding the time of revascularization.

Using an endovascular microinfusion catheter for local delivery, albumin-bound rapamycin
NPs were concentrated in the adventitial and medial layers of the arterial wall, and reduced
luminal stenosis in a porcine femoral artery balloon angioplasty model.8* Rapamycin levels
in the femoral artery remained >100 times higher in the perivascular tissues than in the
blood for 8 days. Importantly, this period was when cell proliferation rates were the highest
in control animals, suggesting that the NPs promote drug retention during a particularly
critical period of neointima formation. In another study, Cyrus and colleagues developed
ayf3-targeted paramagnetic NPs for delivery of rapamycin to balloon injured femoral
arteries of rabbits.55 Local infusion of vessel wall-targeted NPs resulted in a decrease in
neointimal formation, and their retention in the injured walls was amenable to MRI due to
the high contrast potential of paramagnetic nanomaterials. Highlighting the tunable
properties of NPs, nitric oxide gas and RNAi components have also been encapsulated
within NPs and delivered locally to the diseased arterial wall.6: 67

The surfaces of stents may also be loaded or targeted with NPs. In a study by Chorny et al.,
“stent-targeted” magnetic NPs were designed.58 Following stent placement in the carotid
artery of rats, these paclitaxel-loaded NPs were infused in the isolated artery and were
targeted to the stent by applying a magnetic field to the body surface. Treatment effectively
inhibited in-stent stenosis at drug doses below those provided by paclitaxel-eluting stents.
Innovative NP-eluting stents have also been developed to prevent stenosis after stent
implantation.5%-71 Importantly, these stents were found to prevent in-stent restenosis without
delayed endothelial healing, which is a central reason for late stent thrombosis following
percutaneous interventions.

Rather than requiring stent placement or advancement of a catheter for local delivery,
targeted NPs may enable systemic therapy for restenosis. Although a promising albumin-
stabilized nanoformulation of paclitaxel failed to show efficacy in early clinical trials’2-"4,
this work highlighted the existing space for more targeted or “precision medicine”
approaches to restenosis nanotherapy. Using lipid-polymeric NPs that were surface modified
with Type 1VV-collagen targeting peptides, Chan and colleagues reported the efficacy of
paclitaxel-encapsulated NPs that preferentially localized to the denuded vessel wall.”®
Systemically administered NPs led to a reduction in arterial stenosis in a rat carotid injury
model. While 15 mg/kg doses of free paclitaxel induced signs of toxicity, NPs enabled
higher 35 mg/kg doses that were well-tolerated in animals. Another group described a
liposomal formulation of the bisphosphonate alendronate that reduced neointimal formation
by transiently suppressing circulating monocyte levels in rabbits that had undergone iliac
artery stenting.”8 Early-phase clinical trials supported the safety of liposomal alendronate for
infusion at the time of percutaneous coronary intervention. Although there was no difference
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in restenosis rates between the treatment and placebo groups, the anti-inflammatory NP led
to a significant reduction in in-stent late loss in an “inflammatory patient” subgroup with
elevated baseline monocyte counts (NCT02645799).”7 Other systemic nanoformulations that
have prevented restenosis include nitric-oxide containing nanofibers’® and glucocorticoid-
encapsulated NPs that are targeted to subendothelial matrix proteins’®. Taken together, NP-
based delivery may be a useful adjunct to revascularization procedures, particularly for
patient-personalized treatment and for those with diffuse disease and other challenging
lesion patterns.

Targeting thrombosis

Platelet activation, the coagulation cascade, and fresh thrombus include unique factors that
enable targeted delivery of therapeutic agents. Thrombus-targeted NPs have been developed
for delivery of thrombolytic agents and anti-coagulants, including tissue plasminogen
activator (tPA)8%-82 streptokinase®3: 84, urokinase8® 86, and direct thrombin inhibitors.8” By
encapsulating a von Willebrand factor-binding protein within NPs, investigators effectively
targeted tPA to thrombi induced in swine coronary arteries.8 Intravenous delivery of NPs
resulted in reperfusion and vessel recanalization in 90% of animals. Interestingly, NPs were
designed for controlled release of tPA using transthoracic ultrasound, where application of
ultrasound led to greater tPA off-loading and thrombolytic activity at the affected artery. In
another study, anti-thrombin theranostic NPs directly attenuated plaque coagulant activity
within the injured arteries of apoE~~ mice.8” Detectable by magnetic resonance
spectroscopy, systemically administered NPs were retained within the plaques and exerted
rapid inactivation of any locally produced thrombin. These effects were observed without
altering activated partial thromboplastin time or other systemic effects on coagulation.
Moreover, focal inhibition of plaque thrombin reduced the expression of plaque
inflammatory molecules and enhanced restoration of the disrupted vascular endothelium,
suggesting the anti-thrombin NPs promoted plaque stability. Taken together, these studies
illustrate the broad potential that NPs have for reperfusion therapy and anticoagulation with
decreased bleeding consequences.

Conclusions and future directions

Target-driven NPs have opened the door to improved and even novel treatment options for
patients with vascular disease. Those that have advanced into early clinical trials provide
important lessons, namely the need for (1) a well-defined patient population most likely to
benefit from therapy, and (2) a thorough understanding of a formulation’s therapeutic
margin. In addition to implementing clinically relevant animal models, these considerations
will greatly draw from the use of biomarker and molecular imaging based-strategies to
enable patient selection and assessment of drug accumulation and response.

Nonetheless, there are important limitations and challenges in cardiovascular nanomedicine
that should be noted (Table 2). First, NPs are inherently heterogeneous in composition and
can present challenges in synthesis of large volumes that adhere to pharmaceutical GMP
guidelines (e.qg. sterility, stability, and purity). It will be important to develop methods to
scale-up production with high reliability and reproducibility, reasonable cost, and time-
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efficiency for successful translation from bench-to-bedside. Moreover, stability in circulation
and during storage is a common pitfall of nanotechnology. Although conventional methods
for quality control exist, each nanoformulation is a specialized unit and requires unique
measurements of physicochemical properties and drug release rates. In particular, there is a
need to develop a drug release profile under both physiological and storage conditions, such
that the drug is not released too slowly, prematurely in circulation, or even during storage. In
addition, although some nanoformulations use disease-targeting ligands, several NPs have
been described to have an intrinsic affinity for certain cell types (e.g. intraplaque
macrophages). The distinct mechanisms by which such NPs are taken up by cells are poorly
understood and is an intriguing area for future study. Lastly, there is a major gap in the
evaluation of the long-term safety of nanoformulations in vivo. Many currently available
nanoformulations were developed to reduce the side effects of a loaded drug, but some
nanoparticles undergoing preclinical development have retroactively been discovered to be
cytotoxic and/or immunogenic.88 In an ideal situation these studies will be pursued in
parallel as a means of informing decisions earlier in the development process. Coating NPs
with polyethylene glycol (PEG), or “PEGylation” is a commonly used approach for reducing
their systemic toxicity and interaction with plasma proteins and circulating cells.8® Further
optimization of methods to reduce unwanted nano-bio interactions may be necessary.

While there has been substantial progress, the global epidemic of vascular disease and
resultant deaths are predicted to increase over the next decades, affecting developed and
developing nations alike.%0 Lipid-lowering therapies are the dominant treatment for
atherosclerosis, but there is much room for improvement with complementary therapies. Our
understanding of plaque biology has evolved to include inflammatory mechanisms and
impaired efferocytosis as causal drivers of lesion progression and instability. However, anti-
inflammatory therapies are known to cause immunosuppression. Additionally, reactivating
efferocytosis has the drawback of inducing the off-target clearance of healthy tissues under
some conditions. For example, in addition to efficiently restoring phagocytosis and
preventing atherosclerosis, pro-efferocytic therapy also caused a clinically relevant anemia
due to clearance of red blood cells in the spleen.®1: 92 To overcome the toxicities associated
with anti-inflammatory and pro-efferocytic approaches, it is likely that nanoparticles will
serve as the innovative delivery systems that will enable targeting of these important
pathways specifically within the vulnerable plaque.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

Nanoparticles have uniquely appealing features that enable them to be
programmed as cell- and tissue-specific delivery systems, thus overcoming
the low drug delivery and off-target effects which commonly impede
developments in cardiovascular medicine.

Nanotechnology is driving efforts to develop novel and more effective
treatments for vascular disease, namely by targeting chronic inflammation,
resolving defective efferocytosis, and producing more potent lipid-lowering
therapies.

This review discusses advances in the application of nanoparticles for the
treatment of vascular disease, their potential translation to the clinic, and
challenges in their development.
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Figure 1:

Targeted therapeutic strategies enabled by nanoparticles. In order to avoid adverse effects
and toxicities due to systemic exposure, targeted nanoparticles have been developed to
resolve inflammation specifically at the inflamed plaque (e.g. Collagen-1V targeted IL-10
NPsl7), prevent plague neovascularization (e.g. a,B3-targed anti-angiogenic NPs6%), and
deliver anti-proliferative or thrombolytic drugs to address restenosis and atherothrombotic
events (e.g. endothelial-targeted NPs encapsulating paclitaxel”>, vWF-targeted NPs
encapsulating tPA81). Nanoparticles have also enabled cell-specific modulation of molecules
that drive atherosclerosis, such as CD40-induced TRAF6 signaling in macrophages*® and
regulation of PCSK9 in hepatocytes.5®

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2020 April 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Flores et al. Page 18

A B
Encapsulated drug
PEG phospholipid for water (e.g. PCSK siRNA) &A ;}:’Sﬁf;:ll'o‘l:g;on
= 3 ol )

solubility and biocompatibility
RGD for vascular (PP Y
targeting \V\’V NPy v e~ 7/\/\
- X o

; Lipidoid membrane
TR O A 5 for intracellular
S @ release of cargo
CyS5.5 fluorescent \/\-/‘ O  f .A,\’\
probe forin vivo / o LX)

tracking Therapeutic payload

delivery imparted by high- PEG-DMG lipid to
surface area material minimize aggregation

Figure 2:
Schematic of nanoparticles functionalized with agents that control their stability and

interactions with the biological environment. A. Single-walled carbon nanotube (SWNT)
tailored for vessel delivery of a therapeutic payload by coating the SWNT with polyethylene
glycol (PEG) chains linked to arginine-glycine-aspartic acid (RGD), a potent a.,f3 integrin-
binding peptide. B. Lipidoid nanoparticles that are formulated with phospholipids and
cholesterol to facilitate intracellular delivery of siRNA for potent gene knockdown. Figures
modified from [50] and [60].
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