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Abstract

Haploinsufficiency occurs when loss of one copy of a diploid gene (hemizygosity) causes a 

phenotype. It is relatively rare, in that most genes can produce sufficient mRNA and protein from a 

single copy to prevent any loss of normal activity and function. Reproduction is a complex process 

relying on migration of GnRH neurons from the olfactory placode to the hypothalamus during 

development. We have studied 3 different homeodomain genes Otx2, Vax1, and Six3 and found 

that the deletion of one allele for any of these genes in mice produces subfertility or infertility in 

one or both sexes, despite the presence of one intact allele. All 3 heterozygous mice have reduced 

numbers of GnRH neurons, but the mechanisms of subfertility differ significantly. This review 

compares the subfertility phenotypes and their mechanisms.
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Introduction

Normosmic idiopathic hypogonadotropic hypogonadism (IHH) and its anosmic counterpart, 

Kallmann syndrome, are 2 rare genetic disorders leading to various degrees of subfertility, 

including complete infertility and absent puberty [1]. This subfertility is often due to a 

reduction in the number of GnRH expressing neurons or impairment of the rhythmic release 

of GnRH. Over the last decade, numerous genes have been identified as responsible for these 

2 conditions; however, more than 50% of IHH cases still have unknown origins [2, 3]. 
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Genetic mutations known to cause IHH are frequently either autosomal recessive or 

dominant. Of note, it is becoming increasingly clear that a number of unidentified genetic 

causes of IHH are the result of compound heterozygosity [3]. Compound heterozygosity is 

particularly hard to detect, as it requires identification of mutations in 2 distinct genes. 

Despite the difficulty in detecting polygenic IHH, haploinsufficiencies adversely affecting 

fertility have been reported in both rodents and humans [3–8].

In all mammals, including humans, GnRH neurons have a unique cellular origin in the nasal 

placode. In mice, GnRH neurons are first detected on embryonic day 11 (e11) in the 

olfactory placode, concurrent with the onset of GnRH expression (Fig. 1a). They then 

migrate from the vomeronasal organ (VNO) across the nasal septum into the developing 

basal forebrain, following the terminal nerve and the olfactory nerve (Fig. 1a) [9–12]. The 

terminal nerve (cranial nerve zero or nervus terminalis) extends from the nasal submucosa, 

is located medially and in very close proximity to the olfactory tract, and projects to 

important limbic structures (e.g., amygdala, hypothalamic nuclei) [13, 14]. The olfactory 

nerve (cranial nerve I) contains axons from the olfactory neuroepithelium, travels up through 

the cribriform plate, and extends into the brain to innervate the olfactory bulb [14]. At e14, a 

population of ~800 GnRH neurons [15] migrates, as a continuum, from the developing 

vomeronasal epithelium to the preoptic/hypothalamic area. As the neurons migrate and 

mature, they increase their expression of GnRH [16, 17]. In adulthood, the same number of 

GnRH cell bodies is found scattered in the preoptic area, among the fibers of the diagonal 

band of Broca, and in the medial septum. GnRH fibers extend their axons not only to the 

medial eminence, but also throughout the hypothalamus and midbrain [10, 18]. Defects in 

this migration causing abnormal GnRH neuron location in the brain and incomplete 

maturation can result in infertility and IHH [19, 20].

We have identified 3 homeodomain genes, which when heterozygous in mice, impair 

fertility. These genes first came to our attention as they were highly expressed in the mature 

immortalized mouse GnRH neuronal cell line, GT1–7 [21] as compared to the immature 

GnRH neuronal cell line, GN11 [22], and NIH-3T3 fibroblasts (Fig. 1b). Using RNA-seq 

comparing transcript levels in GT1–7, GN11, and NIH-3T3 cells to screen for candidates 

that may act in GnRH neuron maturation, we found a set of homeodomain transcription 

factors strongly expressed in GT1–7 cells (Fig. 1b). We have focused on Otx2, Vax1, Six3, 

and Six6. All of these homeodomain transcription factors directly bind to and regulate the 

Gnrh1 gene at conserved ATTA sites in the proximal promoter and/or the conserved 

enhancer [23–28]. Although Otx2, Vax1, and Six3 homozygous deletions (null mice) are all 

neonatal or perinatal lethal, the heterozygous (Het) mice are viable, overall healthy, and born 

in Mendelian ratios. This review will address the contrasting mechanisms and sex-specificity 

of the subfertility of the mice with heterozygous mutations in the Otx2, Vax1, and Six3 

genes.

Subfertility in Otx2 Heterozygous Mice

Otx2, the vertebrate homologue of Drosophila orthodenticle, is a transcription factor that has 

been shown to be critical for normal brain and eye development [29–32]. During 

embryogenesis, Otx2 is expressed in both the developing GnRH neurons [33] and 
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presumptive pituitary at e12.5 [30] indicating its role in development of the HPG axis. This 

hypothesis is supported by the identification of several heterozygous OTX2 loss-of-function 

mutations in patients with combined pituitary hormone deficiency [34–36]. Several germline 

and conditional knockout mice have been generated; they have emphasized a role for Otx2 

in head formation, postnatal survival, and growth [29, 37–39]. However, as Otx2-null mice 

are embryonic lethal due to a failure to develop the forebrain, midbrain, and anterior 

hindbrain, analysis of the development and maintenance of the HPG axis in these mice has 

not been possible.

We studied the role of Otx2 in GnRH neurons in heterozygotes Otx2 (Otx2Het) mice [18, 37] 

to investigate Otx2 in GnRH neuron differentiation and migration in vivo. Male Otx2Het 

mice [5] exhibit a progressive loss of fertility. To determine the origin of subfertility, we 

investigated the number and location of GnRH neurons during development in Otx2Het mice. 

At e13.5, Otx2Het embryos of both sexes have a > 50% reduction in the total number of 

GnRH neurons in the head (nasal area, cribriform plate and brain combined; Fig. 2). 

Furthermore, by e17.5, when the majority of GnRH neurons are normally in the 

hypothalamus (Fig. 2; Wildtype), in the Otx2Het mouse, GnRH neurons are still present in 

the nose and crossing the cribriform plate to a greater extent than controls. At e17.5, mutant 

males have a ~30% reduction in total GnRH neurons (Fig. 3). These data show that Otx2 is 

important for development and progression of migration of GnRH neurons, and for GnRH 

expression in mature neurons [5]. The male Otx2Het mice display compromised fertility, 

and, while the loss of Otx2 does not affect expression of pituitary gonadotropin genes, it 

produces a significant fall in luteinizing hormone (LH) serum levels [5]. In contrast, the 

female Otx2Het mice did not survive to adulthood in our studies. Thus, correct gene dosage 

of Otx2 is critical for normal development of the GnRH neurons and expression of GnRH in 

adult, male mice. Diaczok et al. [28] established that deletion of Otx2 specifically from 

GnRH neurons results in hypogonadotropic hypogonadism in mice, adding in vivo data to 

previously published reports demonstrating the important role Otx2 plays as a transcriptional 

regulator of GnRH expression [26, 27, 40].

Vax1 Heterozygous Mice Have Altered Hypothalamic Kiss1 and GnRH 

Expression Causing Subfertility

Ventral Anterior Homeobox (Vax1) is expressed in the eye, olfactory placode, and ventral 

hypothalamus and is known to have a role in neuronal fate determination [41–43]. It directs 

the formation of the ventral and rostral forebrain and Vax1-null mice have altered migration 

of olfactory placode neurons into the forebrain [44] and reduced neuronal proliferation [45]. 

The developmental defects in Vax1-null mice are in part caused by abnormal Sonic 

hedgehog signal transduction [45, 46]. Vax1-null mice are neonatal lethal due to severe 

holoprosencephaly and cleft palate [42, 44, 47]. Despite this severe phenotype, one report of 

a human child with a homozygous mutation in VAX1 phenocopies the findings in the 

Vax1null mouse model [48]. Interestingly, in humans, heterozygote mutations of VAX1 have 

been associated with cleft lip/palate [49–51], supporting a dosage effect of Vax1 [7].
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While Vax1-null mice are neonatal lethal, male and female Vax1Het mice are subfertile 

indicating dosage sensitivity of the Vax1 allele on GnRH neuron development [7]. Vax1Het 

females produced normal numbers of superovulated oocytes, but corpora lutea were reduced, 

along with a slight increase in basal LH and estrogen. The cause of the subfertility 

originated in the hypothalamus where Kiss1 and Gnrh1 mRNAs were altered, along with a 

substantial reduction in GnRH neuron number (Fig. 2, 3). Although the pituitary responded 

normally to a GnRH challenge, diestrus females had reduced circulating LHβ and FSHβ. 

Furthermore, Vax1Het males had reduced Gnrh1 mRNA and neurons, while the pituitary had 

normal transcript levels and responses to GnRH. Interestingly, Vax1Het males had an 88% 

reduction in motile sperm. Thus, our data showed that Vax1Het subfertility originates in the 

hypothalamus making it a candidate for haploinsufficient IHH. In addition to the critical role 

of Vax1 in establishing normal Kiss1 levels and a correct GnRH neuronal population, the 

Vax1Het male sub-fertility might be caused by a combined role of Vax1 in the brain and the 

testis. Indeed, we detected Vax1 expression in the testis, but not in the mature sperm [7]. 

Thus, Vax1 haploinsufficiency might impact testis/sperm function and contribute to Vax1Het 

sub-fertility, although at this point the mechanism remains unknown.

To determine when Vax1 was required for GnRH neuron development, we counted GnRH 

expressing neurons in the developing wildtype, Vax1Het, and Vax1-null embryo. We found 

that Vax1Het and Vax1-null embryos have normal numbers of GnRH expressing neurons at 

e13 (Fig. 2), but Vax1Het embryos have a ~50% reduction in GnRH neurons at e17 (Fig. 2, 

3), whereas no GnRH staining was observed in the Vax1-null embryo at this age (Fig. 3b). 

To identify the role of Vax1 specifically in GnRH neuron development, we generated 

Vax1flox mice. Lineage tracing in Vax1flox:GnRHcre:RosaLacZ mice identified Vax1 as 

essential for maintaining expression of GnRH, since the neurons survive but fail to express 

GnRH. The absence of GnRH staining in adult Vax1flox:GnRHcre mice results in delayed 

puberty, hypogonadism, and infertility [23, 52].

Defects in Olfaction Cause Male Infertility in Six3 Heterozygous Male Mice

Mammalian Six proteins are vertebrate homologues of Drosophila optix [53], and Six3 and 

Six6 are close homologs sharing partially overlapping expression patterns [53]. Six3 and 

Six6 are expressed early in development and strongly in the postnatal suprachiasmatic 

nucleus (SCN) [54]. However, despite their initial overlapping pattern, they become 

segregated in the postnatal brain [55], with Six6 confined to the adult hypothalamus, eye, 

and pituitary. Six6-null mice survive but have a hypoplastic pituitary and variable retinal 

hypoplasia, often with no optic chiasm or optic nerve [56, 57], traits that parallel defects 

associated with human chromosomal deletions that include the human SIX6 locus [56, 58]. 

Homozygous Six6-null mice survive but are subfertile (Fig. 3b) [25] and lack the structures 

of the SCN and circadian rhythms [57], while Six6 heterozygous mice are fertile [25]. In 

contrast, Six3-null mice die at birth, lacking most head structures anterior to the midbrain 

including the SCN, though the rest of the body appears normal [59].

Mating behavior in males and females is dependent on olfactory cues processed through 

both the main olfactory epithelium (MOE) and the VNO [60–63]. Signaling through the 

MOE is critical for male mating behavior. The development of olfactory neurons is closely 
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linked to the development of GnRH neurons [9, 64–68], which originate in the primordial 

nasal placode, and migrate along olfactory nerves into the forebrain [11, 66, 69], and both 

are compromised in Kallmann syndrome (anosmic IHH) [2, 70–74]. We found that dosage 

of Six3 affects the development of MOE but not the VNO [8]. Anomalous MOE 

development in Six3Het mice leads to hyposmia, specifically disrupting male mounting 

behavior by impairing detection of volatile female estrus pheromones. Six3 is highly 

expressed in the MOE, main olfactory bulb (MOB), and hypothalamus; all regions essential 

in the proper migration of the GnRH neurons. Six3Het mice have compromised development 

of the MOE and MOB, resulting in 45% loss of GnRH neurons due to improper olfactory 

axon targeting (Fig. 2, 3). This leads to female subfertility but does not impact male 

hormone levels or sperm, indicating male infertility is exclusively linked to abnormal 

olfaction. Olfactory marker protein (OMP) specifically localizes in the primary neurons of 

the olfactory system. Remarkably, a total loss of OMP in MOE and MOB was observed in 

the Six3Het mice. In Six3-null e13.5 embryos [8], recognizable olfactory structures were not 

detectable. Instead, a bundle of neurons and axonal fibers with GnRH and OMP was 

detected in the region where the MOE normally exists. In contrast, OMP staining was 

preserved in the Six3Het VNO, explaining the normal non-volatile olfaction. Thus, we 

conclude that Six3 is haploinsufficient for MOE development, GnRH neuron migration, and 

fertility, and represents a novel candidate gene for Kallmann IHH. Remarkably, conditional 

deletion of Six3 using GnRHcre, instead caused a 30% increase in the number of GnRH 

neurons as detected by immunohistochemistry [8].

Conclusions and Perspectives

Heterozygous deletion of Otx2, Vax1, or Six3 is sufficient to produce subfertility. All 3 

homeodomain transcription factors bind to and regulate the Gnrh1 gene directly through 

ATTA and related elements, but studies of their in vivo phenotypes are hampered by 

perinatal lethality of the null mice. We have studied the reproductive phenotypes of the 

heterozygous mice and found that all 3 have reduced numbers of GnRH neurons and are 

subfertile. However, there is specificity to the subfertility by sex and by mechanisms of 

action. Our findings confirm the importance of considering haploinsufficiency as a 

contributor to human disease and IHH.
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Fig. 1. 
Developmental GnRH neuron migration and homeodomain gene expression. GnRH neuron 

maturation depends on internal and external factors to the GnRH neurons, allowing 

developmental migration and maturation. Correct GnRH neuron migration and increased 

Gnrh1 expression is required for fertility. a Schematic of a sagittal mouse head illustrating 

developmental GnRH neuron migration. GnRH neurons arise in the olfactory placode 

around embryonic day 11 (e11) in the mouse. From there they migrate through the 

cribriform plate into the brain. Once within the brain, GnRH neurons follow a more ventral 

trajectory to finally localize scattered throughout the anterior hypothalamus. On completion 

of their migration, GnRH neurons send projections to the median eminence, where GnRH is 

released in a pulsatile fashion into the hypophyseal portal system. GnRH neurons require ~4 

days to complete this migration. Blue dots illustrate the location of GnRH neurons at e13 

and e17, and the blue arrows indicate the migration path. b During GnRH neuron 

development, a complex gene expression pattern is required for increased Gnrh1 expression 

in parallel with expression of receptors and other factors allowing GnRH neuron 

pathfinding. We used RNA-Seq comparison of homeodomain transcription factor gene 

expression in immortalized mature non-migratory GnRH neurons (GT1–7), immature 

migratory GnRH neurons (GN11), and fibroblasts (NIH-3T3) to identify novel transcription 

factors potentially involved in GnRH neuron maturation. RNA-Seq data are shown as the 

average of 2 biological replicates, and expressed as RPKM (reads per kilobase million). 
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These data support quantitative RTPCR analyses previously published for these genes [23–

26].
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Fig. 2. 
Reduced number of GnRH-expressing neurons in the hypothalamus of 17 day-old mouse 

embryos heterozygous for Otx2, Vax1, or Six3. To determine how haploinsufficiency of 

Otx2, Vax1, and Six3 impacted GnRH neuron development, we performed 

immunohistochemistry (IHC) for GnRH in mouse embryo heads from control, Otx2Het, 

Vax1Het, and Six3Het mice at e13 and e17. The red squares on the schematic illustrate the 

area imaged. GnRH IHC at e13 shows normal location and numbers of GnRH neurons at the 

cribriform plate in Otx2Het, Vax1Het, and Six3Het embryos as compared to wildtype. In 

contrast, at e17, Otx2Het, Vax1Het, and Six3Het embryos have fewer detectable hypothalamic 

GnRH neurons, causing a reduction of GnRH terminals at the median eminence (black 

arrow). Follow-up studies found that reduced release of GnRH caused subfertility in these 

heterozygote mouse lines. Scale bar represents 100 μm. pit, pituitary.
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Fig. 3. 
Summary of role of Otx2, Vax1, Six3, and Six6 in GnRH neuron development and fertility. a 
Sagittal illustration of GnRH neuron location after termination of migration in the adult 

brains of control and heterozygote animals and the correlation with fertility. Box indicates 

normal location of neurons that are most likely to project to the median eminence allowing 

GnRH release into the hypophysial portal system promoting LH and FSH release from the 

pituitary to promote gonadal function and fertility. b Summary of findings in the Otx2, 

Vax1, Six3, and Six6 heterozygote (Het) and knock-out (null) mice. * Studies only 

performed in males due to inability to generate adult Otx2Het females. N/A, not applicable.

Hoffmann et al. Page 13

Neuroendocrinology. Author manuscript; available in PMC 2019 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Subfertility in Otx2 Heterozygous Mice
	Vax1 Heterozygous Mice Have Altered Hypothalamic Kiss1 and GnRH Expression Causing Subfertility
	Defects in Olfaction Cause Male Infertility in Six3 Heterozygous Male Mice
	Conclusions and Perspectives
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.

