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There is a critical need for new tools to investigate the spatio-temporal heterogeneity and phenotypic
alterations that arise in the tumor microenvironment. However, computational investigations of
emergent inter- and intra-tumor angiogenic heterogeneity necessitate 3D microvascular data from
‘whole-tumors’ as well as “ensembles” of tumors. Until recently, technical limitations such as 3D
imaging capabilities, computational power and cost precluded the incorporation of whole-tumor
microvascular data in computational models. Here, we describe a novel computational approach
based on multimodality, 3D whole-tumor imaging data acquired from eight orthotopic breast tumor
xenografts (i.e. a tumor ‘ensemble’). We assessed the heterogeneous angiogenic landscape from the
microvascular to tumor ensemble scale in terms of vascular morphology, emergent hemodynamics and
intravascular oxygenation. We demonstrate how the abnormal organization and hemodynamics of the
tumor microvasculature give rise to unique microvascular niches within the tumor and contribute to
inter- and intra-tumor heterogeneity. These tumor ensemble-based simulations together with unique
data visualization approaches establish the foundation of a novel ‘cancer atlas’ for investigators to
develop their own in silico systems biology applications. We expect this hybrid image-based modeling
framework to be adaptable for the study of other tissues (e.g. brain, heart) and other vasculature-
dependent diseases (e.g. stroke, myocardial infarction).

Clinical genotyping has recently demonstrated that subpopulations of cancer cells with unique genomes can
exist in different regions or ‘microenvironments’ of a patient’s tumor and that these subpopulations can evolve
over time". A major driver of inter- and intra-tumor heterogeneity is the underlying heterogeneity of the micro-
vasculature, i.e. the irregular microvascular network and resultant abnormal hemodynamics that also pose a
formidable hurdle for developing and delivering effective cancer therapies®. Therefore, there is a critical need
for new computational tools that enable investigations of tumor vascular heterogeneity and the ‘emergent’ phe-
notypic alterations that result from changes in the tumor microenvironment>*. However, in silico investigations
of emergent inter- and intra-tumor angiogenic heterogeneity require that we have access to ‘whole-tumor’ 3D
microvascular data as well as such data from ‘ensembles’ of tumors®®. Until recently, technical limitations such
as the lack of high-resolution 3D imaging techniques capable of whole-tumor coverage, insufficient computa-
tional power and cost presented major hurdles to such systems biology approaches. Here, we present a hybrid
image-based modeling framework to demonstrate the feasibility of recapitulating inter- and intra-tumor heter-
ogeneity of the breast cancer microenvironment in terms of vascular morphology, tumor hemodynamics and
intravascular oxygenation.

The origins of microvascular heterogeneity in different organs have been investigated in numerous studies
using experimental and computational approaches®!!. Improvements in imaging resolution now permit acquisi-
tion of the 3D microvascular structure and quantification of the morphology of individual microvessel segments
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within solid tumors!?>-1* and other tissues'>!¢. Moreover, combinations of imaging and mathematical modeling

now permit detailed vessel-by-vessel simulations of microvascular blood flow and oxygen transport!>!”!8, These
advances have been accompanied by the development of new computational approaches for modeling hemod-
ynamics, the transport of oxygen and other molecules such as growth factors and nanoparticle-mediated drug
transport in realistic tumor vasculatures'. However, traditional image-based computational frameworks are not
well suited to modeling the emergent phenotypic heterogeneity that arises from the whole-tumor microvascu-
lature because they are limited by the sparse spatial coverage of the underlying tumor microvascular network
(usually of the order of <1 mm?)!>1718,

To overcome these limitations, we developed an image-based modeling framework and specialized data vis-
ualization approaches that allowed us to incorporate 3D, high-resolution (~um) whole-tumor microvascular
images in models of inter- and intra-tumor phenotypic heterogeneity of the breast cancer microenvironment.
We leveraged a multimodality imaging pipeline that exploits the strengths of complementary imaging modal-
ities such as in vivo MRI, ex vivo micro-CT (uCT) and magnetic resonance microscopy (MRM)? to generate
an ensemble of high fidelity, high-resolution (~um) whole-tumor microvascular networks (~GB size dataset)
from eight orthotopic breast tumor xenografts. We developed computationally convenient approaches to model
hemodynamics and intravascular oxygenation in these whole-tumor microvascular networks. This image-based
computational framework made it possible to recapitulate whole-tumor angiogenic heterogeneity in terms of: (i)
morphology of the tumor microvascular network; (ii) tumor hemodynamics; and (iii) intravascular oxygenation.
We also present novel approaches for visualizing these parameters in 3D space to elucidate the spatial heter-
ogeneity of the angiogenic phenotype within and between whole-tumor microvascular networks. Our tumor
ensemble-based analyses of heterogeneity revealed larger dispersion in tumor hemodynamic indices than indices
of microvascular morphology. We also discovered that heterogeneity of the angiogenic phenotype led to the
emergence of distinct vascular niches within the tumor that uniquely shape its hemodynamic landscape. Finally,
we characterized the emergent phenotype arising from these different tumor microenvironments based on their
vascular morphology and hemodynamics for the entire tumor ensemble and discovered that hemodynamic
parameters alone were insufficient for classifying these different tumor microenvironments. Nevertheless, one
could exploit ‘ensemble-based” metrics of tumor heterogeneity to classify these microenvironments and identify
potential new biomarkers.

Results

Whole-tumor ensemble derived from 3D multimodality imaging data. Figure 1 illustrates a 3D
whole-tumor ensemble assembled from multimodality images of orthotopic breast tumor xenografts. The soft
tissue contrast acquired from magnetic resonance microscopy (MRM) imaging (~40 um resolution) is shown
in grey and the 3D microvascular network acquired from micro-CT (pCT) imaging (8 um resolution) is shown
in a red color map scaled by the mean vessel diameter. Each 3D whole-tumor microvascular network (~GB size
dataset) comprised of tens of thousands of vessel segments and a few hundred thousand nodes. The whole-tumor
samples are displayed according to the post-inoculation age they were imaged at (i.e. Day 21 or Day 35) wherein
the tumor volumes ranged from 76-450 mm?. These unique 3D visualizations provide direct insight into the 3D
heterogeneity of the angioarchitectural landscape within and between whole-tumors.

Morphological heterogeneity of whole-tumor microvascular networks. Figure 2 shows 2D,
high-resolution maps of vascular morphological heterogeneity in Day 21 and Day 35 tumors in terms of: distance
to nearest vessel (D, ), vascular length density (L,) and vascular surface area density (S,), respectively. These quan-
titative maps illustrate the spatial heterogeneity of tumor vascular morphology and help identify unique regions
within the tumor. For example, large avascular areas (i.e. areas exhibiting high D,, and low L,, S,) were visible in
the center of a Day 35 tumor (Fig. 2b,e,h), and areas exhibiting low D, (Fig. 2a,b) and high L, and S, (Fig. 2d,e,g,h)
were visible in the rims of Day 35 and Day 21 tumors. The volume density (i.e. the ratio of vascular volume to
tumor volume) decreased with increase in tumor volume - from 0.86 in the smallest Day 21 tumor (76 mm?) to
0.36 in the largest Day 35 tumor (475 mm?). Figure 2¢,f,i are the probability distributions of these morphological
parameters pooled by post-inoculation age and based on whole-tumor spatial coverage. Day 21 tumors had a
greater percentage of small D, values (10-60 um) than advanced Day 35 tumors. The Day 21 group also exhibited
a larger percentage of high L, values (100-240 mm/mm°) and a higher median L, of 40.7 mm/mm?® in contrast to
30 mm/mm? for the Day 35 group. Pooled median S, varied from 23.2 mm?*/mm? in Day 21 tumors to 22 mm?/
mm? in Day 35 tumors. Correspondingly, there were a greater number of dilated vessels in Day 35 tumors as
indicated by the pooled median diameter of 13 um versus 11 um for Day 21 tumors.

Predictions from image-based hemodynamic modeling match those from conventional mod-
eling approaches. We implemented our blood transport model for a rat mesentery microvascular network
with boundary conditions based on experimental in vivo data as described in Pries et al.*!. We observed excellent
agreement between our simulated data and that from Pries et al.?}, as indicated by R*=0.99 and 0.93 for blood
flow rates and discharge hematocrit, respectively (Supplementary Fig. S1a,b). Next, we compared the results of
hemodynamic simulations based on our tumor ensemble data with experimental and simulated data from the
extant literature. Supplementary Tables S1 and S2 summarize the mean morphological and functional parameters
computed for the tumor ensemble along with the corresponding ranges (i.e. mean =+ standard deviation) derived
from the literature??=33. The literature data exhibited large variations in morphological and functional parameters
due to the varying sizes and tumor types used in these xenograft studies. Wherever possible, we compared our
values against data for similar tumor type and size. As shown in Supplementary Tables S1 and S2, the mean values
for our morphological and simulated hemodynamic parameters were in good agreement with the ranges reported
in the literature.

SCIENTIFICREPORTS| (2019) 9:5276 | https://doi.org/10.1038/s41598-019-40888-w 2


https://doi.org/10.1038/s41598-019-40888-w

www.nature.com/scientificreports/

#

Tumor 1 Tumor 2 Tumor 3 Tumor 4
Stage: 21 days Stage: 21 days Stage: 21 days Stage: 35 days
Volume: 76 mm3 Volume: 99 mm3 Volume: 144 mm? Volume: 150 mm?
Segments: 51,392 Segments: 35,318 Segments: 47,642 Segments: 43,447
Nodes: 497,167 Nodes: 358,424 Nodes: 409,636 Nodes: 449,132

—i 1 mm
Tumor 5 Tumor 6 Tumor 7 Tumor 8
° 260Um
Stage: 35 days Stage: 35 days Stage: 35 days Stage: 35 days 'ﬁ S
Volume: 250 mm? Volume: 253 mm? Volume: 400 mm? Volume: 475 mm? : % I
Segments: 45,525 Segments: 33,056 Segments: 72,423 Segments: 34,260 S E
Nodes: 510,613 Nodes: 432,875 Nodes: 762,537 Nodes: 402,764 oo 8

Figure 1. Whole-tumor ensemble derived from 3D multimodality imaging data. (a—c) Three tumors were
excised at 3 weeks post inoculation (i.e. Day 21 samples), and (d-h) five tumors were excised five weeks post
inoculation (i.e. Day 35 samples). The soft tissue contrast from ex-vivo 3D magnetic resonance microscopy
(~40um) is rendered in grayscale while the 3D vascular architecture acquired from ex-vivo (~8 um) micro-CT
imaging is illustrated with a red color map in which each vessel was scaled and color coded according to its
average diameter.

Visualizing the spatial heterogeneity of whole-tumor hemodynamics and intravascular oxy-
genation. Figure 3 illustrates the spatial heterogeneity of the blood flow rate, Q (ml/s) and intravascular oxy-
genation PO, (mmHg) computed for each whole-tumor microvascular network. We observed well-perfused and
well-oxygenated vessels within the tumor rim of Day 21 samples (Fig. 3a—c) whereas such vessels were unevenly
distributed within the tumor volume of Day 35 samples (Fig. 3d-h). Pooled hemodynamic data from 133,036
vessels from Day 21 tumors, and 226,552 vessels from Day 35 tumors are plotted in Fig. 3i. The upper panel shows
the distribution of blood flow rate and the bottom panel that of intravascular oxygenation. The distributions of
blood flow rate and intravascular oxygenation were positively skewed, indicating that a large sub-population
of tumor vessels (~90%), in both Day 21 and Day 35 tumors, were minimally or poorly perfused (0 < Q <
2.5 x 107%pl/s) as well as under-oxygenated (0 < PO, < 5mmHg). This was also evident from the visualizations
shown in Fig. 3a-h. A small fraction of Day 35 tumor vessels (0.5% in tumors 7 and 8, respectively) exhibited high
oxygenation values (60-87 mmHg), which resulted in the Day 35 PO, distribution having a longer tail than the
Day 21 distribution.

Analysis of blood flow rate and intravascular oxygenation heterogeneity in perfused regions of whole-tumors,
i.e. regions not devoid of blood flow (Q>10"'ul/s) demonstrated profound inter- and intra-tumor hemody-
namic heterogeneity (Fig. 4a,b). Collectively, these data clearly demonstrate the inter- and intra-tumor hetero-
geneity of perfusion and oxygenation that arises from the heterogeneous microvascular morphologies of these
tumors.

Emergent whole-tumor hemodynamics were more heterogeneous than their underlying
microvascular morphology. Figure 5a,b show the coefficient of variation (CV) for each tumor across dif-
ferent vascular parameters. These plots indicate that the distribution of blood flow rate (Fig. 5b) was more heter-
ogeneous than those for the underlying vascular morphological parameters (Fig. 5a). Moreover, the dispersion
in blood flow was larger than the dispersion in intravascular oxygen tension by more than two orders of magni-
tude. Vascular parameters, e.g. diameter D, length L, length density L,, distance to nearest vessel D, and surface
area density S, exhibited CV values < 2.5, whereas functional parameters e.g. blood flow rate (Q), shear stress (7),
and velocity (Vel) exhibited CV values ranging from 2-8, i.e. were more heterogeneous. Moreover, we observed
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Figure 2. Morphological heterogeneity of whole-tumor microvascular networks. Quantitative visualizations of
spatial heterogeneity in: (a-c) D,; (d-f) L,, and (g-i) S, in whole-tumor microvascular networks. The maximum
intensity projection image from a 400 um thick section from the tumor center was utilized for visualizing the
spatial distribution of these parameters in Tumor 1 (smallest Day 21 sample) in (a,d,g) and for Tumor 8 (largest
Day 35 sample) in (b,e,h), respectively. D, maps (a,b) were computed on an 8um x 8um x 8 um grid and L, and
S, maps (d,e,g,h) were computed on a 160 pm x 160 um x 160 um grid. Probability distribution functions based
on pooled D,, L, and S, data are shown for Day 21 tumors (light grey) and Day 35 tumors (dark grey) in (c,£,i).

that the heterogeneity of some morphological variable pairs such as D and L, D and S,, D and D,, L and S, was
‘coupled” with each other for this tumor ensemble, as indicated by the significant (p < 0.05) positive correlation
coeflicients of 0.75, 0.89, 0.73 and 0.82, respectively (Fig. 5¢). However, we did not observe significant correlations
between any morphological and hemodynamic variable pair indicating that morphological heterogeneity and
hemodynamic heterogeneity were likely ‘decoupled’ in these tumors.

Intra-tumor heterogeneity results in the establishment of unique microvascular ‘niches’. Our
simulations demonstrated that the heterogeneity of the tumor microvasculature and resulting hemodynamics
combined to establish unique microvascular niches within the tumor. Figure 6 illustrates the four tumor vessel
classes identified based on tumor hemodynamic definitions in the extant literature®>**. Class I vessels (Fig. 6a)
were hypoperfused and hypoxic (i.e. blood flow velocity, Vel < 50 um/s and PO, < 10 mmHg); Class 2 vessels
(Fig. 6¢) were hyperperfused and normoxic (i.e. Vel > 50 um/s and PO, > 10 mmHg); Class 3 vessels (Fig. 6d)
were either hypoperfused and normoxic (i.e. low velocity and normal oxygenation) or hyperperfused and hypoxic
(i.e. normal velocity but low oxygenation). Collectively, Class 3 vessels lack the full functionality of Class 2 ves-
sels, yet are capable of maintaining transport better than Class 1 vessels. Finally Class 4 vessels (Fig. 6g) served as
functional ‘shunts’ (i.e. velocity at least 2 x larger than the median blood flow velocity, vessel diameter at least 2 x
greater than the median diameter, and vascular length smaller than the median length by a factor of 0.5) within
the tumor. Figure 6b illustrates how one can visualize this heterogeneous hemodynamic landscape in Tumor 1 by
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Figure 3. Visualizing the spatial heterogeneity of whole-tumor hemodynamics and intravascular oxygenation. 3D
visualizations of hemodynamic heterogeneity in microvascular networks derived from (a—c) Day 21 tumors and
(d-h) Day 35 tumors wherein the vessels are color coded by their simulated blood flow rates, Q x 1077 (ml/s) (in
top row) and intravascular oxygenation, PO, values (mm Hg) (in bottom row). (i) Pooled frequency distributions
of simulated Q (top row) and PO, (bottom row) for all vessels of Day 21 tumors (light grey) and Day 35 tumors
(dark grey).

mapping each vessel class onto the underlying microvascular network. Almost 90% of the vascular volume in this
tumor was accounted for by Class I vessels that were poorly or minimally perfused, hypoxic and also exhibited
the smallest median diameter among all vascular classes (Fig. 6¢). Functionally active vessels of Class 2 exhibited
the greatest variation in hematocrit distribution (Fig. 6f), and were localized to the tumor rim along with Class 3
vessels. Class 4 vessels created short pathways of low resistance that diverted blood flow between vessel Classes 1
and 2, and Classes 2 and 3 (Fig. 6b,g).

Ensemble-based multiparametric data classify the emergent angiogenic landscape better than
either morphological or hemodynamic parameters alone. Finally, we utilized our rich multipara-
metric, morphological and hemodynamic data to classify the emergent angiogenic phenotype as belonging to
D21 (i.e. Day 21 group) or D35 (i.e. Day 35 group). Figure 7a demonstrates that employing a traditional metric
such as tumor volume alone was insufficient for classifying the tumor phenotype when hierarchical clustering was
used. Figure 7c illustrates how heterogeneity of the hemodynamic parameters precluded such classification. In
contrast, Fig. 7b,d illustrate how either the morphological parameters alone, or the morphological and functional
variables taken together could classify the emergent angiogenic phenotype more efficiently. It should be noted
that one Day 21 tumor (Fig. 1d) exhibited morphological features that overlapped with that of one Day 35 tumor
(Fig. 1c), and was thus classified in the cluster corresponding to the Day 35 tumors.

Discussion

Tumor microenvironmental heterogeneity is emerging as one of the most important determinants of drug resist-
ance and therapeutic response in cancer patients®. Therefore, to identify more effective drug regimens, a com-
prehensive characterization of tumor heterogeneity is being sought in the clinic via the collection of multiple
biopsy samples from the same patient before and after therapy'. While this is a promising start, the search for
a non-invasive approach that can be used safely in a large number of patients has resulted in the development
of image-based methods for quantifying tumor heterogeneity®. Such ‘radiomic’ approaches include techniques
that mine heterogeneity “features’ from large repositories of clinical imaging data for stratifying patients for
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Figure 4. Inter- and intra-tumor hemodynamic heterogeneity of perfused regions. Distributions of (a) Q (ml/s)
and (b) PO, (mm Hg) using data from all the perfused vessels (i.e. Q > 10~'°ul/s) in three D21 (Day 21)

tumors and five D35 (Day 35) tumors. The box and whisker plots of these distributions show the median,
interquartile range (IQR) and the data within the Q1 — 1.5IQR and Q3 + 1.5IQR range. Tumors are arranged
along the x-axis in the order of increasing tumor volume. The number of perfused vessel segments (1) for each
tumor is indicated on the secondary x-axis.
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Figure 5. Emergent whole-tumor hemodynamics were more heterogeneous than their underlying
microvascular morphology. CV of (a) morphological parameters - D, L, L,, S,, and D, - based on data from all
vessels within each tumor; and (b) hemodynamic parameters - Q, Vel, 7, and PO, - based on data from all the
perfused vessels within each tumor. Tumors are arranged along the x-axis in the order of increasing tumor
volume. Blue dots represent Day 21 tumors and orange dots represent Day 35 tumors. (c) Pairwise Pearson
correlation matrix between morphological CVs and hemodynamic CVs. The upper triangular matrix illustrates
the correlation coefficients, while the lower triangular matrix exhibits the underlying data from (a,b) and the
linear fit to these values. Statistically significant entries (p < 0.05) are highlighted by orange boxes.
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Figure 6. Intra-tumor heterogeneity results in the establishment of unique microvascular ‘niches. Microvasculature
in Day 21 tumor (Tumor 1) is color coded into four classes based on their physiological characteristics and vascular
structure. Class 1 vessels (purple) (a) were hypoperfused and hypoxic (i.e. Vel < 50 um/s and PO, < 10 mmHg); Class
2 vessels (light blue) (c¢) were hyperperfused and normoxic (i.e. Vel > 50 um/s and PO, > 10 mmHg); Class 3 vessels
(light green) (d) were either hypoperfused and normoxic or hyperperfused and hypoxic, and finally Class 4 vessels
(red) (g) served as functional ‘shunts’ (i.e. velocity at least 2 x larger than the median blood flow velocity, vessel
diameter at least 2 x greater than the median diameter, and vascular length smaller than the median length by a factor
0f 0.5). Since occurrence of Class 4 vessels is infrequent, the inset shows zoomed images illustrating their role as
functional shunts within the tumor. (b) Spatial arrangement of these vessel classes in 3D. (e) Box and whisker plots of
diameter (um) for each vessel class, (f) plot of hematocrit vs. diameter (jum) for plasma-bearing vessels in each class.

therapy®”. Other image-based approaches to investigate the tumor microenvironment include i silico simula-
tions that incorporate imaging data as inputs to mathematical models®. The advantage of such computational
approaches is that they permit the simultaneous investigation of multiple microenvironmental variables®*. Since
access to patient biopsy samples is often limited, high-fidelity imaging data from preclinical xenograft models can
play a crucial role in elucidating tumor heterogeneity, especially when used as inputs to image-based computa-
tional models of cancer biology. For example, we recently demonstrated the feasibility of using high-resolution,
whole-tumor micro-CT data for modeling the blood flow distribution in a whole-tumor microvascular network*.
However, assessing emergent inter- and intra-tumor microenvironmental heterogeneity requires that we employ
3D data from multiple whole-tumors and interrogate multiple microenvironmental parameters. To achieve this,
we developed an image ensemble-based computational and visualization framework that employed data from
a collection of tumor xenografts to model the heterogeneity of microenvironmental variables such as vascular
morphology, hemodynamics and intravascular oxygenation.

Our tumor-ensemble approach provides a novel method for mapping and quantifying inter- and intra-tumor
heterogeneity in whole-tumor microvascular networks. This approach enabled the quantitative visualization
of spatial heterogeneity of key vascular morphological parameters at high spatial resolution. We successfully
demonstrated how spatial patterns of intra-tumoral heterogeneity could be exploited to identify differences in the
vascular phenotype of tumors. For example, we discovered that advanced Day 35 tumors were characterized by
large inter-vessel distances, small vascular lengths and surface area densities. These trends were consistent with
our current knowledge about tumor progression and the morphological changes that accompany breast cancer
angiogenesis*'. During the highly dysregulated process of tumor angiogenesis, rampant cell proliferation leads to
a disproportionate increase in tumor volume relative to functional vessel sprouting, which in turn results in large
avascular areas within the tumor such as those observed in our spatial heterogeneity analysis. Moreover, quanti-
fying the distance to nearest vessel provided information on the length scales associated with extravascular diffu-
sion in these irregular microvascular networks. Our 3D distance maps revealed areas of the tumor where effective
delivery of drugs and nutrients could prove challenging due to the large extravascular diffusion distances?.
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Figure 7. Whole-tumor ensemble derived multiparametric data classify the emergent angiogenic landscape
better than either morphological or hemodynamic parameters alone. Hierarchical clustering of tumors as D21
(Day 21 tumors) or Day35 (Day 35 tumors) based on the unweighted pair-group method (hatched vertical line
indicates the distance threshold). Automatic stratification of tumors into D21 and D35 categories based on:

(a) tumor volume, (b) select vascular morphology parameters (L, L,, S,, D,), (c) select hemodynamic parameters
(Q, Vel, PO,, vstt, MPL), and (d) a combination of select vascular morphology and hemodynamic parameters
(L, L,, S,, D,, vstt and PO,). Cophenetic correlation coefficients for these clusters were 0.88 0.82, 0.85 and 0.84,
respectively. The misclassified D35 sample is Tumor 4 (Fig. 1d) and the misclassified D21 sample is Tumor 3
(Fig. 1¢). It should be noted that one Day 35 tumor (Fig. 1d) exhibited morphological features that strongly
overlapped with that of one Day 21 tumor (Fig. 1c) and was thus repeatedly found in the cluster corresponding
to the Day 21 tumors.

A significant consequence of our image-based computational framework was that it provided a solution to the
long-standing technical hurdle of simulating blood flow and intravascular oxygenation in solid tumors using the
whole-tumor 3D microvasculature. The profound inter- and intra-tumor heterogeneity of tumor vascular func-
tion we observed from our tumor ensemble simulations was consistent with the heterogeneity in blood flow and
oxygenation measured in multiple solid tumor samples by other groups*-1*242, The distributions of blood flow
rates and intravascular oxygenation were positively skewed*>*, indicating that a large sub-population of tumor
vessels was inadequately perfused and under-oxygenated. Perfused vessels within each tumor exhibited high and
intermediate oxygen tensions, but the median simulated oxygenation matched microelectrode-based measure-
ments of intravascular oxygen tension in mammary tumors®*>*? as well as other tumors*?** (see Supplementary
Tables S1 and S2). While the majority of the simulated blood flow values were within the ranges reported in
the literature, we observed that a small fraction (<0.5% of the total vessels) of perfused vessel segments in each
tumor exhibited high blood flow velocities (>10mm/s). This may have resulted from the heterogeneous recon-
structed vascular network of tumors or small anomalies in the 3D reconstruction of the microvascular topology
from our pCT imaging data. Mapping intravascular oxygenation heterogeneity in whole-tumor networks ena-
bled the visualization of the spatial distribution of perfusion-limited hypoxic vessels, which in combination with
diffusion-limited hypoxic regions are known to be major drivers of breast tumor progression and metastasis**.
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Moreover, our indices of intra-tumoral hemodynamic heterogeneity could potentially be used to explore how
these variables correlate with the probability of metastatic dissemination as well as with treatment outcome**’.
A powerful aspect of this image-based computational approach was that our hemodynamic simulations recapit-
ulated emergent properties of the whole-tumor. For example, we were able to demonstrate how heterogeneity
of the tumor microvasculature gave rise to unique microvascular niches that comprised of tumor vessels with
distinct morphological and hemodynamic phenotypes. Therefore, one can foresee how image-based simulations
of these intra-tumoral habitats could be combined with complementary genomic and metabolomics data to better
understand the impact of tumor heterogeneity in breast cancer patients**.

Assessing inter- and intra-tumor heterogeneity using a tumor-ensemble revealed how vascular morphological
heterogeneity resulted a heterogeneous functional phenotype. This analysis allowed us to gain critical insights
into the emergent angiogenic phenotype. We illustrated how morphological and hemodynamic variables could
collectively classify the emergent angiogenic phenotype better than hemodynamic variables alone. Therefore, it
might be worth developing a systematic ensemble-based multiparametric heterogeneity index for tumor pheno-
typing rather than utilizing traditional metrics such as tumor volume®. Realistic simulations of angiogenic heter-
ogeneity using the de facto tumor vasculature also have the potential to aide in the identification and development
of non-invasive clinical biomarkers of tumor angiogenesis®. Collectively, our findings demonstrate the potential
of combining structural and functional imaging biomarkers to help characterize the angiogenic status of a tumor
or when quantifying its response to antiangiogenic therapies®*2

Despite the advantages of this high-fidelity image-based computational framework, our approach did have
some inherent limitations. For example, although we reconstructed more than 90% of vascular network nodes
for all tumors to account for incomplete vascular filling of microvessels, we were unable to assess the effect of
the remaining 10% of the nodes. Studies using percolation-based network models have shown that a significant
fraction (>40%) of vessels needs to be excluded from the microvascular network before any observable impact on
network connectivity or simulated blood flow distribution®. Since our aim was to model intravascular oxygena-
tion for an entire tumor ensemble, we used a simplified model of oxygen transport®. The computational cost of
this approach per simulation session was ~10 days on a local workstation (2.8 GHz, quad-core with 8 GB RAM)
running parallelized MATLAB code. This simulation run-time could be dramatically reduced by switching to
GPU-accelerated computing, an area we are currently exploring.

Since it is challenging to perform 3D reaction-diffusion-convection simulations for the whole-tumor vol-
ume, the current formulation for oxygen transport did not include the 3D extravascular diffusion of oxygen in
the tissue. Although intratumoral blood flow can be influenced by other factors such as physical stress and the
interaction between tumor cells and stromal components®, the current computational algorithm did not incor-
porate this diversity in cellular composition. We have utilized tumor data from two imaging time points (Day 21
and Day 35), however, our computational framework can also be used to study earlier stage tumors or tumors
following therapy, as long as each tumor exhibits a patent microvascular network that that can be perfused with a
contrast agent that is visible using 3D imaging approaches (e.g. MRM, uCT or multiphoton microscopy). Finally,
the current blood flow simulations were conducted for steady-state conditions and therefore do not recapitulate
the temporal aspects of hemodynamic heterogeneity known to exist within tumors'*¢, which is an ongoing area
of future development.

It is worth mentioning that our computational approach was based on tumor microvasculature derived from
an orthotopic xenograft model of human breast cancer. Since most tumor xenografts only proliferate in immune
compromised animals, their microenvironments lack the immune components exhibited by human tumors.
Additionally, tumor xenografts do not recapitulate all the genetic diversity observed in primary human tum-
ors”. Due to these limitations, our analysis of tumor vascular heterogeneity may not recapitulate every aspect
of phenotypic heterogeneity observed in breast cancer patients. However, that was not the primary goal of the
current study and our approach did recapitulate salient features of the breast tumor microenvironment such as
hypoxia, physiologically anomalous blood flow and the emergence of distinct microvascular niches’. We expect
future computational applications to be based on images derived from syngeneic tumor models or patient derived
xenografts (PDX) in immunocompetent animals. A potential avenue for computationally modeling cancer het-
erogeneity in patients would be to employ vascular data directly derived from in vivo breast cancer angiography
or resected breast cancer tissue in which the vasculature has been labeled by some means. This approach seems
feasible owing to recent advances in optical clearing methods in conjunction with novel optical imaging tech-
niques such as light-sheet microscopy. For example, recently a fixed human brain tissue sample (3 X 3 X 1 cm?®)
was optically cleared to acquire high-resolution images of the brain microvasculature®. We are hopeful that these
techniques would soon be available for optical clearing of patient derived tumor tissue.

The image-based platform we developed here would be ideal for preclinical investigations of drug develop-
ment applications, such as studying vascular phenomena at the whole-tumor scale including vessel adaptation
and remodeling®® in response to antiangiogenic therapies, and other treatments that target the vasculature®.
Multiparametric datasets generated using this platform could also be useful for future clinical investigations. For
example, when high-resolution measurements of tumor vasculature in patients become clinically available using
in vivo CT angiography®, personalized simulations could predict the tumor’s angiogenic status and drug distri-
bution levels. Physician-researcher partnerships*® could facilitate such efforts, since not all clinical settings may
have the state-of-the-art computational resources necessary for simulating tumor hemodynamics. As a potential
clinical application of this approach, in silico phenotypic data of metastatic breast cancer patients could be com-
bined with their genetic and metabolic profiles to develop patient-specific data-libraries*” that could be shared
widely and be used for predicting metastatic risk or stratifying patient treatment.

In conclusion, we believe that the development of an integrated imaging and computational platform based
on high-fidelity tumor ensemble data will help establish: (i) a freely downloadable, multimodality atlas for can-
cer systems biology investigators and novel in silico applications; (ii) a computational model of antiangiogenic
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resistance that facilitates discovery of translational biomarkers for identifying patients who would benefit most
from antiangiogenic agents; (iii) an in silico platform for testing novel therapeutics that can circumvent antiangi-
ogenic resistance in breast cancer. We expect this image-based computational framework to be adaptable to other
vasculature-dependent diseases such as stroke® and myocardial infarction®’.

Methods

Imaging of the 3D tumor ensemble. According to the experimental protocol?’, 3 x 10° triple-nega-
tive human breast cancer (MDA-MB-231) cells were inoculated orthotopically into the mammary fat pad of
eight female Ncr-nu/nu mice. The animals were perfused with Microfil (FlowTech Inc., Carver, MA) a radio-
opaque vascular filling agent, on Day 21 or 35 post inoculation. Ex vivo pCT imaging was performed at Numira
Biosciences (Salt Lake City, UT) on a high-resolution (8 pm) scanner (nCT40, ScanCo Medical, Briittisellen,
CH). The following parameters were used: 55 kVp, 300 ms exposure time, 2000 views and 5 frames per view.
Since tumors were perfusion-fixed prior to perfusing with Microfill and imaging was conducted ex vivo®, cel-
lular damage from X-ray exposure was not a concern. Ex vivo MRM images were acquired on a vertical bore
Bruker 9.4 T spectrometer using a 10 mm volume RF coil (Bruker BioSpin Corp, Billerica, MA) and a T2*w MGE
sequence with the following parameters: TE =4.9/9.7/14.5/19.3/24.0/28.8 ms, TR = 150 ms, 6 = 30°, NA = 14, res-
olution =40 x 40 x 40 wm?>. 3D visualization of whole tumors (Fig. 1) was achieved by co-registering ex vivo pCT
images with MRM images® using Amira® (Visage Imaging, San Diego, CA, USA). All animal experiments were
conducted in accordance with an approved Johns Hopkins University Animal Care and Use Committee (JHU
ACUC) protocol. The Johns Hopkins University animal facility is accredited by the American Association for
the Accreditation of Laboratory Animal Care and meets National Institute of Health standards as set forth in the
“Guide for the Care and Use of Laboratory Animals”

Model for Tumor Perfusion. To perform hemodynamic simulations, we reconstructed the topology of
whole-tumor microvascular networks from 3D uCT images using a bioinformatics-based algorithm we recently
reported*’. The one-dimensional blood flow model''** encompassed the generalized 1D Poiseuille law, mass con-
servation at vessel junctions and the nonlinear rheological effects of blood flow (i.e. Fahraeus, Fahraeus-Lindqvist
and plasma skimming effects) that are known to be significant in the microcirculation*"%2. An optimization algo-
rithm, that was based in part on a prior study®®, monitored the vessel segments that feed and drain blood from the
network, and optimized the boundary pressures to ensure mass conservation. Using these optimized pressures
as boundary conditions, a system of linear equations was solved to obtain pressure distribution at the vessel
junctions. For a microvascular network for which complete boundary data is available (e.g. the rat mesentery
network used for model validation in this study), our blood flow model can be run without implementing the
optimization algorithm.

Model for Intravascular Oxygen Transport. We employed the oxygen model introduced by Goldman
and Popel with appropriate boundary conditions to estimate intravascular oxygen distribution within
each whole tumor®. The current implementation is a highly simplified model and does not consider the
three-dimensional extravascular diffusion of oxygen in the tissue because it is very challenging to perform 3D
reaction-diffusion-convection simulations for the whole-tumor volume. As an approximation, the tumor vol-
ume was divided into multiple tissue domains whose volumes are proportional to corresponding vessel segment
lengths, L;;. The total flux from the vessel segment is then proportional to tumor oxygen consumption rate; we uti-
lized the rates determined experimentally for breast cancer xenografts by Vaupel et al.*. Therefore, this approach
is equivalent to a generalized Krogh Cylinder Model, but without the geometric representation; thus, the tissue
oxygen distribution cannot be calculated from Krogh-type approximation.
The governing equations for the individual segments can be described as follows:

wa_ . (ahi,j . APi,j + HDi,j - Chind - ASyp) = ]Wulli,j (1)
where,
Ly
]wulliyj =M, - My, -
211 1~ij 2)
abi,j = HT‘J . aRBC + (1 — HI;j) . O(PI (3)
R;’hill
SHbi,j(Pi»j) = P;h"” + Pl ()

Here, values of blood flow Qh , discharge hematocrit H D, and tube hematocrit HT in the individual vessel seg-
ments ij of length L;; (where i and j j represent branching or boundary nodes) are estimated from the blood flow
model. P is the oxygen tension in the blood; Cj,q and Sy, are red blood cells’ binding capacity and oxygen satu-
ration respectively; | all is the total oxygen flux across the vessel wall for vessel segment of length L;; M, is the

oxygen consumption rate for breast cancer xenografts derived from Vaupel et al.*, m,,, is the tissue mass; n; is
the Hill coefficient for hemoglobin binding cooperativity (2.7)%, Py, is the constant for 50% hemoglobin oxygen
saturation (37 mmHg)** and «, is the oxygen solubility in plasma (2.82 x 107° ml O,/ml tissue/mmHg)®*.
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Equation 1, with application of appropriate boundary conditions, can be transformed to the following system
of equations:

(Dint + Sint) ! Pint = (Dbound + Sbound) ' Pbaund + ]wall (5)

where, D;,, and S, are the sparse matrices containing the transport coefficients for dissolved and bound oxygen
derived from Equation 1 for branching nodes; P,,, is the oxygen tension vector for branching nodes; D, and
Spouna are the vectors of intravascular transport coefficients for boundary segments; Py, is the oxygen partial
pressure vector for boundary segments. This system is solved for oxygen tension (P;,,) at all branching nodes and
then Sy, values are updated based on Equation 4. The process is iterated until convergence.

Since the oxygen flux per unit length Uan /L) is assumed to be constant across each vessel wall segment

(Equation 2), this term was incorporated only in the calculations for the vessels that transport significant amounts
of oxygen subject to following limitations: discharge hematocrit, H, > 0.01 and vascular segment transit time,
vstt < 25s. In a more stringent approach, the local flux per unit length is determined by matching the intravascu-
lar and extravascular transport®; nevertheless, the approximation of a constant flux used here provides useful
indices of intravascular oxygenation.

Validation of the blood transport model. To validate the predictions from our image-based computa-
tional framework, we employed a widely used and publicly available dataset derived from a 546 segment rat mes-
entery microvascular network?'. We implemented our blood transport model for this public dataset as described
in Pries et al.%. The boundary conditions for these simulations consisted of measured blood flow and discharge
hematocrit values at all inlets (n=31), and measured blood flow values at all outlets (n=5), except the main
venular outlet node that was maintained at constant pressure?!. In addition, we compared the results of hemo-
dynamic simulations based on our tumor ensemble data with experimental and simulated data from the extant
literature?!-27-2931.33,

3D visualization of heterogeneous tumor vascular morphology, function and vessel classes.
To quantify heterogeneity of the tumor vascular morphology, we generated 3D high-resolution (8 x 8 x 8 um?
voxel) maps of distance to nearest blood vessel from the reconstructed whole-tumor microvasculature images in
Amira (Visage Imaging, San Diego, CA, USA) using the Distance Map Module. The value assigned to each voxel
was its 3D Euclidian distance to nearest blood vessel. We generated 3D maps of vascular length density and sur-
face area density from the reconstructed skeletonized vasculature using custom Matlab code (MathWorks, Inc.).
First, every vascular pixel was assigned an effective vascular length (and surface area) based on its position along
the vessel. Next, the resulting data was convolved with a 20 x 20 x 20 kernel to estimate average vascular length
density, L, (mm/mm?) or surface area density, S, (mm?*/mm?®) in a tumor sub-volume V=160 x 160 x 160 pm°.
To render 3D visualizations of spatial distributions of blood flow and intravascular oxygenation, we used the spa-
tial graph visualization module in Amira® wherein each vessel was scaled by its mean diameter and color-coded
by the functional parameter being displayed.

We set thresholds for blood flow velocity (50 um/s) and oxygenation (10 mmHg) based on tumor hemody-
namics definitions in the extant literature®* to identify the first three tumor vessel classes. While vessels exhib-
iting velocity smaller than 50 um/s and oxygenation less than 10 mmHg were grouped into Class 1, Class 3 vessels
were those that demonstrated greater velocities and higher oxygenation than these thresholds. Class 2 vessels
represented the class of vessels that lacked the full functionality of Class 3 vessels, but were still capable of main-
taining transport better than Class 1 vessels. Finally, Class 4 vessels represented functional shunts® that exhibited
velocity at least 2x greater than the median blood flow velocity, vessel diameter at least 2x greater than the
median diameter, and vascular length smaller than the median length by a factor of 0.5. To map the spatial distri-
bution of each class in 3D space, we used the spatial graph visualization module in Amira wherein each vessel was
scaled by its mean diameter and color-coded by its class.

Calculation of heterogeneity indices. Substantial variations in tumor vascular morphology and hemo-
dynamics make it challenging to compare the heterogeneity of one vascular parameter with another. Therefore,
to quantify inter- and intra-tumor heterogeneity within the tumor ensemble, we estimated the coefficient of var-
iation (CV) (i.e. the ratio of the standard deviation to the mean) for each parameter distribution as a normalized
measure of its heterogeneity. To determine the strength of the association between the heterogeneity of different
parameters, we computed the Pearson correlation coefficient between every parameter pair.

Statistical Analyses. Two-tailed Mann-Whitney U test (o = 0.05) was performed using the NCSS statistical
software (NCSS, Kaysville UT) to determine whether there was a significant difference between the two tumor
groups (i.e. Day 21 and Day 35) in terms of median morphological properties such as distance to nearest vessel,
vascular length and diameter, as well as median hemodynamic properties such as vascular segment transit time
and oxygenation. To ensure valid clustering results, Cophenetic correlation coeflicients were computed using the
NCSS statistics package (NCSS, Kaysville UT) and values greater than 0.8 deemed significant for hierarchical
clustering.

Calculation of vascular parameters for hierarchical clustering.  To classify the emergent angiogenic
phenotype as belonging to D21 (i.e. Day 21 group) or D35 (i.e. Day 35 group), we implemented the unweighted
pair-group method of hierarchical clustering in NCSS on the median values of vascular parameters. These
included tumor volume, Vol (mm?®); vascular morphological parameters such as length, L (mm); vascular length
density, L, (mm/mm?); surface area density, S, (mm?/mm?); distance to nearest vessel D, (um); and the following
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vascular functional parameters: blood flow rate, Q (ml/s), flow velocity, u (mm/s); wall shear stress, 7 (dyne/cm?);
and vascular segment transit time, vstt (s)*°, and intravascular oxygen tension, PO, (mmHg)

1
' 7D} (6)
32y Qy
ST LD
T Ly (7)
2
T . L
vsttij:#
4-Q; (8)

here, Dj; is the segment diameter; 1;; is the segment apparent viscosity; and Qj; is the simulated segment blood flow
rate. The mean path length, MPL (um) for each tumor was computed as:

N
bi=1Q - Ly

MPL = =21
inj=1Q ©)

Data Availability

All data supporting the findings of this study are available within the article and its supplementary information
files. The Matlab code for all modules of the image-based computational pipeline presented in this study and
associated 3D data are available from the corresponding author upon reasonable request.
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