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ABSTRACT Candida auris has rapidly emerged as a health care-associated and
multidrug-resistant pathogen of global concern. In this work, we examined the rela-
tive expression of the four C. auris genes with the highest degree of homology to
Candida albicans CDR1 and MDR1 among three triazole-resistant clinical isolates as
compared to the triazole-susceptible genome reference clinical isolate. We subse-
quently utilized a novel Cas9-mediated system for genetic manipulations to delete C.
auris CDR1 and MDR1 in both a triazole-resistant clinical isolate and a susceptible
reference strain and observed that MICs for all clinically available triazoles decreased
as much as 128-fold in the CDR1 deletion strains. The findings of this work reveal for
the first time that C. auris CDR1 and MDR1 are more highly expressed among
triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1 is a
significant contributor to clinical triazole resistance.
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Candida auris, originally identified in 2009, has rapidly emerged as a health care-
associated and multidrug-resistant pathogen of global concern (1–4). Although

clinical experience and epidemiological data remain insufficient to support clinical
breakpoints or epidemiological cutoff values for C. auris, the Centers for Disease Control
and Prevention (CDC) has put forth tentative breakpoints to assist the assessment of
MICs for clinical isolates of C. auris. Applying these tentative breakpoints, clinical
isolates of C. auris are often found to be resistant to multiple classes of antifungal
agents, and isolates resistant to all clinically available antifungal agents have been
identified. In the United States, where the triazole antifungal fluconazole constitutes
�70% of all inpatient antifungal use, �90% of clinical isolates of C. auris are considered
fluconazole resistant when applying the tentative breakpoint suggested by the CDC
(�32 mg/liter) (5–7). Most of these fluconazole-resistant clinical isolates of C. auris have
been found to harbor mutations in the gene encoding the sterol demethylase enzyme
inhibited by the triazoles, ERG11, and the most commonly identified mutations (en-
coding F126L, Y132F, and K143R) have been demonstrated to contribute to triazole
resistance in other species of Candida. Furthermore, when C. auris ERG11 alleles
harboring mutations encoding the Y132F or K143R amino acid substitution were
episomally expressed in Saccharomyces cerevisiae, fluconazole MICs were observed to
increase (8). However, fluconazole-susceptible isolates of C. auris (fluconazole MIC, 1 to
8 mg/liter) harboring the Y132F or K143R mutation have been reported, suggesting the
presence of additional mechanisms of triazole resistance yet to be identified (1, 9).
Additionally, recent studies examining the efflux pump activity of C. auris compared
with Candida glabrata found that clinical isolates of C. auris exhibited significantly
higher (up to 7-fold higher) efflux pump activity than C. glabrata (10). This is particularly
intriguing because in C. glabrata, clinical triazole resistance is essentially entirely
attributable to the activity of three ATP-binding cassette (ABC)-type efflux pumps (Cdr1,
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Pdh1, and Snq2) (11). The recently updated annotated C. auris genome contains
homologs of ABC-type and major facilitator superfamily-type efflux pump genes from
Candida albicans (CDR1 and MDR1, respectively); however, these C. auris efflux pump-
encoding genes remain uncharacterized.

In this work, we examined the relative expression of the four C. auris genes with the
highest degree of homology to C. albicans CDR1 and MDR1 among three triazole-
resistant clinical isolates (AR0388, AR0389, and AR0390) as compared to the triazole-
susceptible genome reference clinical isolate AR0387 (B8441). We subsequently utilized
a novel Cas9-ribonucleoprotein (RNP)-mediated transformation system incorporating
50- to 70-base regions of microhomology introduced by PCR to individually delete
CDR1 and MDR1 from triazole-susceptible isolate AR0387 and triazole-resistant clinical
isolate AR0390 (which harbors an ERG11 mutation encoding the K143R amino acid
substitution), observed to overexpress both of these genes. We then demonstrated that
the MICs for all clinically available triazole agents were significantly decreased in the
CDR1 deletion strains in the AR0390 fluconazole-resistant background (up to 128-fold
reduction), whereas only itraconazole MICs were observed to decrease by 2-fold in the
MDR1 deletion strains in the same background. Taken together, the findings of this
work reveal for the first time that C. auris CDR1 and MDR1 are more highly expressed
among triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1
is a significant contributor to clinical triazole resistance.

RESULTS
C. auris CDR1 and MDR1 are more highly expressed among triazole-resistant

clinical isolates. In an effort to identify efflux pump-encoding genes that may partic-
ipate in clinical triazole resistance among isolates of C. auris, the two C. auris genes in
the recently updated B8441 C. auris genome (https://www.ncbi.nlm.nih.gov/assembly/
GCA_002759435.2) with the highest degree of homology to C. albicans genes CDR1 and
MDR1 were identified by BLAST. The C. auris genes with the highest degree of
homology to C. albicans CDR1 were B9J08_000164 and B9J08_002451, here referred to
as CDR1 and CDR2, respectively; and the C. auris genes with the highest degree of
homology for C. albicans MDR1 were B9J08_003981 and B9J08_000368, here referred to
as MDR1 and MDR2, respectively. To determine whether the constitutive expression of
these four C. auris efflux pump-encoding genes may be greater among fluconazole-
resistant isolates (when applying the tentative breakpoints set forth by the CDC) of C.
auris, we utilized the CDC and FDA Antibiotic Resistance Isolate Bank (AR Bank)
collection of C. auris isolates and reverse transcription-quantitative PCR (RT-qPCR). The
three clinical isolates of C. auris from the South Asian clade with fluconazole MIC greatly
exceeding the tentative breakpoint of �32 mg/liter (AR0388, AR0389, and AR0390;
fluconazole MIC, �256 mg/liter) were then selected for evaluation of CDR1, CDR2,
MDR1, and MDR2 expression relative to the fluconazole-susceptible C. auris isolate of
the South Asian clade AR0387 (B8441). Isolate AR0382, which is also of the South Asian
clade, was not included because it exhibits an intermediary fluconazole MIC of 16 mg/
liter and a strong aggregative phenotype not observed among the other South Asian
isolates in this collection (12). Additionally, because both fluconazole-susceptible and
fluconazole-resistant isolates (applying the tentative FDA breakpoints) from the South
American, African, and East Asian clades were not available from the AR Bank panel,
isolates from these clades were not included.

RNA was isolated from each clinical isolate following growth in yeast extract-
peptone-dextrose (YPD) medium at 30°C prepared as previously described, and the
expression of CDR1, CDR2, MDR1, and MDR2 was evaluated compared with that
observed in isolate AR0387, using the ΔΔCT (threshold cycle) method and the C. auris
ACT1 housekeeping gene (B9J08_000486). All measurements were taken in biological
and technical triplicates. The relative expression of CDR1 was notably higher in all
fluconazole-resistant isolates (3.4- to 7.3-fold that of AR0387), whereas the relative
expression of MDR1 was higher only in fluconazole-resistant isolates AR0388 and
AR0390 (Fig. 1). However, expression of MDR1 in these two resistant isolates reached
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only 2.3- and 3.9-fold that of susceptible control isolate AR0387. Additionally, the
relative expressions of both CDR2 and MDR2 were not elevated in any of the
fluconazole-resistant isolates.

Deletion of C. auris CDR1 restores fluconazole susceptibility in a highly resis-
tant clinical isolate. Because the constitutive expression of C. auris CDR1 and MDR1
was observed to be higher among multiple fluconazole-resistant clinical isolates of C.
auris, we sought to delineate the direct impact of these two efflux pump-encoding
genes on the MICs of all clinically available triazole antifungals. To accomplish this, we
created CDR1 and MDR1 deletion strains in fluconazole-susceptible (AR0387) and
fluconazole-resistant (AR0390) backgrounds using a novel Cas9-RNP-mediated trans-
formation system we developed that utilizes dual Cas9 RNP to facilitate efficient target
recombination with only 50 bases of PCR-introduced microhomology (Fig. 2). Notably,
the fluconazole-resistant isolate AR0390 was selected because it was observed to more
highly express CDR1 and MDR1 relative to AR0387. Two independent positive trans-
formants for each gene of interest in each background were constructed using the
SAT-FLP system as previously described (13). Susceptibility testing was then performed
for fluconazole, voriconazole, isavuconazole, itraconazole, and posaconazole following
modified Clinical and Laboratory Standards Institute methods for AR0387, AR0390, and
the all-efflux pump deletion strains in each background. MIC determinations were
performed in biological triplicate and were the lowest concentrations of drug that
inhibit growth by 50% as determined by absorbance at optical density at 600 nm
(OD600).

Fluconazole-susceptible clinical isolate AR0387 was observed to have a fluconazole
MIC of 1 mg/liter, which is 32-fold below the tentative CDC breakpoint of �32 mg/liter
(Fig. 3). The itraconazole MIC of this isolate was 0.25 mg/liter, and the MICs of all other
triazoles were less than or equal to the lowest concentration tested (0.03 mg/liter for
voriconazole and isavuconazole and 0.001875 mg/liter for posaconazole). In the CDR1
deletion strains in the AR0387 background, both fluconazole and itraconazole MICs
decreased by 4-fold. In the MDR1 deletion strains constructed in this background, all
triazole MICs were unchanged.

The triazole MICs for the fluconazole-resistant clinical isolate AR0390 were 256, 0.5,
0.06, 8, and 0.03mg/liter for fluconazole, voriconazole, isavuconazole, itraconazole, and
posaconazole, respectively. In the CDR1 deletion strains in the AR0390 background,
fluconazole and itraconazole MICs were dramatically decreased (64- to 128-fold) (Fig. 4).
MICs for voriconazole, isavuconazole, and posaconazole were also decreased in the
CDR1 deletion strains (�2- to �16-fold); however, the full extent of these MIC reduc-
tions could not definitively be enumerated because the MICs in the CDR1 deletion
strains were measured to be at or below the lowest concentration of these agents
tested. In the MDR1 deletion strains in the AR0390 background, slight reductions in
growth relative to the parental isolate were observed when testing fluconazole, itra-

FIG 1 Relative expression of C. auris CDR1, CDR2, MDR1, and MDR2 in triazole-resistant isolates relative
to AR0387. Experiments were performed in technical and biological triplicate; data shown as mean �
standard error of the mean.
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conazole, and posaconazole susceptibilities. However, only in the case of itraconazole
did this difference in relative growth result in a reduction in MIC (2-fold).

DISCUSSION

C. auris is an emerging multidrug-resistant pathogen of great clinical concern. While
a large proportion of clinical C. auris isolates are observed to have greatly elevated
antifungal MICs relative to other more common species of Candida, the genetic and
molecular basis of this clinical antifungal resistance remains unknown. In this work, we
sought to characterize the contribution of efflux pump-encoding genes to triazole
antifungal resistance in clinical isolates of C. auris. To accomplish this, we examined the
relative expression of the four C. auris genes with the highest degree of homology to
C. albicans CDR1 and MDR1 among three triazole-resistant clinical isolates (AR0388,
AR0389, and AR0390) compared with the triazole-susceptible genome reference clinical
isolate AR0387 (B8441). All of these clinical isolates are of the South Asian clade of C.
auris, and all of these isolates are available as part of the CDC and FDA AR Isolate Bank
collection.

Analysis of C. auris efflux pump gene expression, performed using RT-qPCR, revealed
the C. auris gene with the highest degree of homology to C. albicans CDR1 to be more
highly expressed among all three triazole-resistant isolates, at 3.4- to 7.3-fold higher
than the expression measured in AR0387. This level of increased CDR1 expression is
similar to that previously reported among fluconazole-resistant clinical isolates of C.
albicans with elevated levels of CDR1 expression. Subsequently, deletion of CDR1 in
fluconazole-susceptible AR0387 and fluconazole-resistant AR0390 clinical isolate back-
grounds resulted in decreases in all triazole MICs not already equal to or below the

FIG 2 Schematic of Cas9-RNP editing technique incorporating microhomology introduced by PCR for creation of efflux pump gene
deletion strains.
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lowest concentration of drug tested. Importantly, the magnitude of reduction in
triazole MIC was significantly larger in the fluconazole-resistant AR0390 background
than in the fluconazole-susceptible AR0387 background (64-fold versus 4-fold MIC
reduction for both fluconazole and itraconazole). Additionally, deletion of CDR1 in the
AR0390 background resulted in a fluconazole MIC that was 8-fold below the tentative
breakpoint of �32 mg/liter (MIC, 4 mg/liter), and the MIC for all other triazole agents
tested fell to concentrations less than or equal to the MIC obtained for the fluconazole-
susceptible clinical isolate AR0387. Importantly, the restoration of triazole susceptibility

FIG 3 Percentage growth of C. auris CDR1 and MDR1 deletion strains in the AR0387 background with escalating concentrations of triazoles measured at 24 h.
All MIC determinations were performed in biological triplicate, and growth relative to the respective untreated controls was assessed by absorbance at OD600.

FIG 4 Percentage growth of C. auris CDR1 and MDR1 deletion strains in the AR0390 background with escalating concentrations of triazole measured at 24 h.
All MIC determinations were performed in biological triplicate, and growth relative to the respective untreated controls was assessed by absorbance at OD600.
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occurred without correction of the K143R-encoding ERG11 mutation present in isolate
AR0390. Thus, deletion of CDR1 alone in this fluconazole-resistant clinical isolate of C.
auris was sufficient to abrogate triazole resistance.

Analysis of efflux pump gene expression also revealed the C. auris gene with the
highest degree of homology to C. albicans MDR1 to be more highly expressed in
triazole-resistant clinical isolates AR0388 and AR0390. However, only a 2.3- to 3.9-fold
increase in expression was observed in these clinical C. auris isolates, which was
considerably lower than the �100-fold increase in expression of C. albicans MDR1 that
has been reported among isolates with gain-of-function mutations in the transcrip-
tional regulator MRR1, where C. albicans MDR1 is known to be an effector of triazole
resistance (14). Upon deletion of MDR1 in the AR0387 and AR0390 backgrounds, small
differences in the percentage of growth in the presence of fluconazole were observed;
however, this difference in growth was not large enough in either background to result
in a change in MIC. Conversely, upon deletion of MDR1 in the fluconazole-resistant
AR0390 background, itraconazole MICs were observed to decrease by 2-fold (4 versus
8 mg/liter in the parental AR0390 clinical isolate). Lastly, no differences in the expres-
sion of C. auris CDR2 or MDR2 were observed between the fluconazole-susceptible and
fluconazole-resistant clinical isolates of C. auris.

Taken together, the findings of this study demonstrate for the first time that
fluconazole-resistant clinical isolates of C. auris exhibit elevated levels of CDR1 and
MDR1 expression and that CDR1 significantly contributes clinical resistance to the entire
class of triazole antifungals. Further research is needed to identify the genetic deter-
minants of increased CDR1 expression in clinical isolates of C. auris and to determine
whether differences in CDR1 expression exist between fluconazole-susceptible and
fluconazole-resistant isolates of C. auris from additional clades.

MATERIALS AND METHODS
Isolates, strains, and growth media used in this study. The clinical C. auris isolates AR0387,

AR0388, AR0389, and AR0390 were obtained from the CDC and FDA AR Isolate Bank collection of C. auris
isolates. All clinical isolates and constructed strains were stored as frozen stocks in 50% glycerol at �80°C.
All clinical isolates and strains were routinely grown in YPD (1% yeast extract, 2% peptone, and 2%
dextrose) broth in a shaking incubator at 30°C unless otherwise indicated for specific experimental
conditions.

MIC determination. Antifungal susceptibilities for fluconazole, voriconazole, isavuconazole, itra-
conazole, and posaconazole were determined for all clinical isolates and strains by modified Clinical and
Laboratory Standards Institute document M27 methodology utilizing broth microdilution RPMI (15). Each
antifungal was obtained from the appropriate manufacturer, and stocks were prepared in dimethyl
sulfoxide. After 24 h of incubation at 35°C, a BioTek Synergy 2 microplate reader (BioTek, Winooski, VT)
was used to read absorbance at 600 nm. MIC was determined to be the lowest concentration at which
50% inhibition of growth was obtained. All susceptibility testing was performed in biological triplicate.

Reverse RT-qPCR. C. auris overnight cultures were initiated by inoculating 2 ml YPD with cells
transferred directly from frozen glycerol stock via sterile dowel. Cultures were incubated overnight at
30°C in an environmental shaking incubator. Fifty-milliliter conical tubes containing 5 ml YPD were each
inoculated with 50 �l of each saturated overnight culture. These cultures were then incubated at 30°C
for 3 h in an environmental shaking incubator, after which cells were collected by centrifugation,
supernatants were poured off, and the cell pellets were stored at �80°C until RNA isolation was
performed. As directed in the manufacturer’s instructions, the RevertAid RT kit (Thermo Scientific) was
utilized to synthesize cDNA. PCR master mix and SYBR green were utilized to amplify C. auris ACT1 and
CDR1, CDR2, MDR1, and MDR2 from cDNA by PCR per the manufacturer’s instructions. Table S1 in the
supplemental material lists the gene-specific primers used for PCR. Conditions used for PCR were as
follows: AmpliTaq Gold activation at 95°C for 10 min, 40 cycles of denaturation at 95°C for 15 s, and
annealing/extension at 60°C. The dissociation curve and CT were determined using the 7500 detection
real-time PCR system (Applied Biosystems). Changes in gene expression among isolates were then
calculated using the 2-ΔΔCT method. All experiments were performed in triplicate from biological
triplicates. As previously described, ΔCT values were used to calculate the standard error (16).

Cas9-RNP-mediated transformations. Transformation of C. auris isolates was performed by elec-
troporation as previously described, with modifications (17). For deletion of the genes of interest, repair
templates containing the previously described SAT1-FLP cassette were prepared by PCR. Briefly, the
entire SAT1-FLP cassette, including flanking FLP recognition target (FRT), sites was amplified from the
plasmid pBSS2 using 5= and 3= primers, which introduced 50 to 70 bases of homology to the sequences
immediately upstream and downstream of the genes of interest. Primers used are listed in Table S1. PCR
products were purified using the Gene Clean II kit (MP Biomedicals). Approximately 1 �g of the purified
repair template was then mixed with 4 �M of Cas9-RNP complexes targeting the sequences immediately
upstream and immediately downstream of the open reading frame of the gene of interest and
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subsequently added to 40 �l of electrocompetent C. auris cells prepared as previously described (17).
Electroporation was performed using the C. albicans protocol on a GenePulsar Xcell (Bio-Rad). Cells were
then allowed to recover in YPD, incubating at 30°C in environmental shaking incubator for 4 to 6 h before
being plated on YPD plates containing 200 �g/ml of nourseothricin for selection of transformants
containing the SAT1-FLP cassette. After confirmation of transformants by PCR screening for integration
of the cassette at the loci of the gene of interest and absence of the native open reading frame, positive
transformants were grown overnight in YPM (1% yeast extract, 2% peptone, and 2% maltose) to induce
the FLP recombinase and loss of the SAT1-FLP cassette. Strains identified as having lost nourseothricin
resistance by replica plating on YPD with and without 200 �g/ml of nourseothricin were then confirmed
by PCR screening for absence of the SAT1-FLP cassette, once again confirming the absence of the gene
of interest.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC

.00057-19.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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