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ABSTRACT This study investigated the molecular mechanisms possibly associated
with non-wild-type MICs for lefamulin among staphylococci and streptococci in-
cluded in the lefamulin surveillance program from 2015 to 2016. A total of 2,919
Staphylococcus aureus, 276 coagulase-negative staphylococci (CoNS), 3,923 Strepto-
coccus pneumoniae, 389 �-hemolytic, and 178 viridans group streptococci isolates
were included in the surveillance studies. Eleven (0.3% of all S. aureus) S. aureus iso-
lates with lefamulin MICs above the staphylococcal epidemiological cutoff (ECOFF)
value (�0.25 �g/ml) were selected for this study. Eight (72.7%) S. aureus (lefamulin
MIC, 0.5 to 4 �g/ml) isolates carried vga(A or E), one isolate (MIC, 32 �g/ml) carried
lsa(E), one isolate (MIC, 16 �g/ml) had an alteration in L4, and one strain (MIC, 0.5
�g/ml) did not carry any of the investigated resistance mechanisms. A total of 14
(5.1% of all CoNS) CoNS isolates had lefamulin MICs (0.5 to �32 �g/ml) above the
ECOFF. Similar to S. aureus, 8 (57.1%) CoNS (lefamulin MIC, 1 to 8 �g/ml) isolates
carried vga(A or B), while 2 isolates (MIC, 4 to 32 �g/ml) carried cfr. High genetic di-
versity was observed among staphylococci, although 3 S. aureus isolates belonged
to sequence type 398 (ST398). Among the 3 Streptococcus agalactiae and 3 viridans
group streptococci (0.1% of all streptococci surveyed) isolates selected for additional
characterization, all but 1 isolate carried lsa(E). This study documents a low occur-
rence of surveillance isolates exhibiting a non-wild-type MIC for lefamulin, and
among these isolates, vga and lsa(E) prevailed in staphylococci and streptococci, re-
spectively.
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Lefamulin belongs to the pleuromutilin class of antibiotics, and its antibacterial
profile covers the most relevant organisms causing community-acquired bacterial

pneumonia (CABP), including Gram-positive, fastidious Gram-negative, and atypical
respiratory pathogens (1–3). Lefamulin also shows in vitro activity against multidrug-
resistant Neisseria gonorrhoeae and Mycoplasma genitalium (4, 5). Thus, in addition to
the clinical utility for treating CABP, the characteristic lefamulin antibacterial profile fits
treatment for acute bacterial skin and skin structure infections (ABSSSIs) and sexually
transmitted diseases (6).

Lefamulin inhibits bacterial protein synthesis by binding the 23S ribosomal subunit
at the A and P sites in the peptidyl transferase center (PTC) via 4 hydrogen bonds and
other interactions. An “induced-fit” mechanism, which is characteristic for pleuromutilin
antibiotics and causes the tight fit of these molecules to the target site, hinders the
correct positioning of the tRNA and thereby prohibits peptide bond formation (7, 8).
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Mechanisms mediating resistance to pleuromutilins include mutations within the
domain V of the 23S rRNA, including methylation of the nucleotide A2503 by the
methyl transferase Cfr (9). Mutations in the 23S rRNA at positions 2032, 2055, 2447,
2499, 2504, and 2572 were previously described to confer resistance to tiamulin in
Brachyspira spp. (10), while alterations at positions 2055, 2447, 2504, and 2572 were
associated with valnemulin resistance in Mycobacterium smegmatis (11). Ribosomal
proteins L3 and L4 are not primarily pleuromutilin targets, but mutations within these
molecules may alter the PTC structure and affect binding. L3 (rplC) at the amino acid
positions 145, 148, 149, 152, 155, 157, 158, and 159 and L4 (rplD) at position 68 were
associated with resistance (7, 10, 12–14). Moreover, ATP-binding cassette F (ABC-F)
proteins, such as vga(A–E) and lsa(E), initially described as putative efflux pumps can
cause pleuromutilin resistance by ribosomal protection (15, 16).

As part of the clinical development, the in vitro activity of lefamulin and comparator
agents have been monitored against a global collection of Gram-positive and fastidious
Gram-negative organisms causing CABP and ABSSSI through the SENTRY Antimicrobial
Surveillance Program. This study evaluated the occurrence of staphylococci and strep-
tococci displaying elevated lefamulin MICs or above the epidemiological cutoff (ECOFF)
during the SENTRY Program from 2015 to 2016 and characterized the possible associ-
ated resistance mechanisms among non-wild-type surveillance isolates.

RESULTS

Lefamulin had MIC50 and MIC90 results of 0.06 and 0.12 �g/ml, respectively, with the
majority (99.6%) of isolates displaying MICs of �0.008 to 0.25 �g/ml (Table 1). Eleven
Staphylococcus aureus isolates showed lefamulin MICs above the ECOFF value (i.e.,
�0.25 �g/ml), and these isolates represented 0.3% of all S. aureus included in the 2015
and 2016 lefamulin surveillance programs (Table 1). When lefamulin was tested against
coagulase-negative staphylococci (CoNS), a total of 14 isolates (4 species) had lefamulin
MICs (0.5 to �32 �g/ml) above the ECOFF value (Tables 1, 2). The lefamulin MIC50

results obtained against streptococci varied depending on species or group of species
(Table 1), and 3 Streptococcus agalactiae, 2 Streptococcus lutetiensis, and 1 Streptococcus
gallolyticus isolates showed lefamulin MICs outside the wild-type distribution for the
respective species and were further investigated.

Most S. aureus (7/11; 63.6%) isolates displaying lefamulin MICs of �0.25 �g/ml
harbored vga(A) (lefamulin MIC, 0.5 to 4 �g/ml), while 2 strains carried either vga(E)
(lefamulin MIC, �32 �g/ml) or the lsa(E) gene (lefamulin MIC, 32 �g/ml) (Table 3). Very
little variability was observed in the S. aureus 23S rRNA nucleotide and ribosomal
sequences. Overall, each isolate contained the same polymorphisms in the 23S rRNA
(A21G, A1557T, and/or A2234G), while ribosomal proteins had wild-type sequences.
The only exception was observed for isolate 916083, which had a V118A and an E147K
in L4 (lefamulin MIC, 16 �g/ml). One S. aureus (975498) isolate with a lefamulin MIC of
0.5 �g/ml did not show any known resistance mechanisms associated with pleuro-
mutilins. High genetic diversity was observed among staphylococci, although 3 S.
aureus strains belonged to sequence type 398 (ST398).

Both CoNS with a lefamulin MIC of 0.5 �g/ml, 1 Staphylococcus cohnii and 1
Staphylococcus epidermidis isolate, did not contain any known pleuromutilin resistance
genes; however, both isolates had multiple alterations in the 23S rRNA or ribosomal
proteins. Eight (57.1%) CoNS isolates contained acquired vga variants (lefamulin MIC, 1
to 8 �g/ml) (Table 3). The cfr gene was detected in 1 Staphylococcus haemolyticus
(lefamulin MIC, 4 �g/ml) isolate and 1 S. epidermidis (lefamulin MIC, 32 �g/ml) isolate.
The latter also showed multiple mutations in 23S rRNA, L3, and L4 (Table 3). Two
Staphylococcus sciuri (lefamulin MIC, 16 to 32 �g/ml) isolates carried the intrinsic
putative sal(A) gene (Table 3). In general, S. epidermidis isolates showed alterations in
the 23S rRNA, such as G241T, T669C, and T1236C, that could be considered polymor-
phisms.

Among all streptococci surveyed, including 3,923 S. pneumoniae, 3 S. agalactiae, 2 S.
lutetiensis, and 1 S. gallolyticus isolates, those with elevated lefamulin MICs (0.5 to 32

Mendes et al. Antimicrobial Agents and Chemotherapy

April 2019 Volume 63 Issue 4 e02158-18 aac.asm.org 2

https://aac.asm.org


TA
B

LE
1

Le
fa

m
ul

in
M

IC
s

ob
ta

in
ed

du
rin

g
su

rv
ei

lla
nc

e
p

ro
gr

am
s

fo
r

20
15

an
d

20
16

a

O
rg

an
is

m

N
o.

(c
um

ul
at

iv
e

%
)

of
is

ol
at

es
w

it
h

a
le

fa
m

ul
in

M
IC

( �
g

/m
l)

of
:

To
ta

l
n

o.
of

is
ol

at
es

M
IC

5
0

(�
g

/m
l)

M
IC

9
0

(�
g

/m
l)

<
0.

00
8

0.
01

5
0.

03
0.

06
0.

12
0.

25
0.

5
1

2
4

8
16

32
>

32

St
ap

hy
lo

co
cc

us
sp

p
.

S.
au

re
us

5
(0

.2
)

10
(0

.5
)

74
5

(2
6.

0)
1,

83
6

(8
8.

9)
30

0
(9

9.
2)

12
(9

9.
6)

2
(9

9.
7)

3
(9

9.
8)

1
(9

9.
8)

0
(9

9.
8)

0
(9

9.
8)

1
(9

9.
9)

0
(9

9.
9)

4
(1

00
.0

)
2,

91
9

0.
06

0.
12

C
oa

gu
la

se
-n

eg
at

iv
e

st
ap

hy
lo

co
cc

i
2

(0
.7

)
42

(1
5.

9)
13

9
(6

6.
3)

68
(9

0.
9)

8
(9

3.
8)

3
(9

4.
9)

3
(9

6.
0)

2
(9

6.
7)

3
(9

7.
8)

3
(9

8.
9)

2
(9

9.
6)

0
(9

9.
6)

0
(9

9.
6)

1
(1

00
.0

)
27

6
0.

03
0.

06

St
re

pt
oc

oc
cu

s
sp

p
.

S.
pn

eu
m

on
ia

e
5

(0
.1

)
64

(1
.8

)
37

7
(1

1.
4)

1,
71

5
(5

5.
1)

1,
51

3
(9

3.
7)

23
4

(9
9.

6)
10

(9
9.

9)
5

(1
00

.0
)

3,
92

3
0.

06
0.

12

�
-h

em
ol

yt
ic

st
re

p
to

co
cc

i
S.

ag
al

ac
tia

e
1

(0
.6

)
21

(1
3.

1)
13

6
(9

4.
0)

4
(9

6.
4)

3
(9

8.
2)

0
(9

8.
2)

0
(9

8.
2)

0
(9

8.
2)

0
(9

8.
2)

0
(9

8.
2)

2
(9

9.
4)

1
(1

00
.0

)
16

8
0.

03
0.

03
S.

py
og

en
es

5
(3

.0
)

80
(5

1.
5)

80
(1

00
.0

)
16

5
0.

01
5

0.
03

S.
dy

sg
al

ac
tia

e
3

(5
.4

)
45

(8
5.

7)
8

(1
00

.0
)

56
0.

03
0.

06

Vi
rid

an
s

gr
ou

p
st

re
p

to
co

cc
i

S.
m

iti
s

gr
ou

p
5

(1
0.

4)
3

(1
6.

7)
10

(3
7.

5)
12

(6
2.

5)
11

(8
5.

4)
7

(1
00

.0
)

48
0.

12
0.

5
S.

an
gi

no
su

s
gr

ou
p

2
(4

.5
)

7
(2

0.
5)

8
(3

8.
6)

11
(6

3.
6)

10
(8

6.
4)

2
(9

0.
9)

4
(1

00
.0

)
44

0.
06

0.
25

S.
sa

liv
ar

iu
s/

S.
ve

st
ib

ul
ar

is
gr

ou
p

5
(1

2.
5)

4
(2

2.
5)

6
(3

7.
5)

19
(8

5.
0)

5
(9

7.
5)

1
(1

00
.0

)
40

0.
06

0.
12

S.
ga

llo
ly

tic
us

2
(5

.9
)

2
(1

1.
8)

3
(2

0.
6)

3
(2

9.
4)

9
(5

5.
9)

13
(9

4.
1)

1
(9

7.
1)

0
(9

7.
1)

0
(9

7.
1)

0
(9

7.
1)

1
(1

00
.0

)
34

1
2

S.
lu

te
tie

ns
is

1
(1

4.
3)

4
(7

1.
4)

0
(7

1.
4)

0
(7

1.
4)

0
(7

1.
4)

0
(7

1.
4)

1
(8

5.
7)

1
(1

00
.0

)
7

0.
01

5
N

C
b

S.
bo

vi
s

2
(6

6.
7)

1
(1

00
.0

)
3

N
C

S.
eq

ui
nu

s
2

(1
00

.0
)

2
N

C
a
C

lin
ic

al
is

ol
at

es
se

le
ct

ed
fo

r
fu

rt
he

r
an

al
ys

is
w

ith
re

sp
ec

tiv
e

le
fa

m
ul

in
M

IC
s

ar
e

hi
gh

lig
ht

ed
.

b
N

C
,n

ot
ca

lc
ul

at
ed

.

Lefamulin and Molecular Characterization Antimicrobial Agents and Chemotherapy

April 2019 Volume 63 Issue 4 e02158-18 aac.asm.org 3

https://aac.asm.org


�g/ml) were selected for further evaluation (Tables 1 to 3). All but 1 of the selected
streptococci carried lsa(E) (lefamulin MIC, 2 to 32 �g/ml) (Table 3). The S. lutetiensis
isolate with a lefamulin MIC of 0.5 �g/ml carried lnu(C) and had a T225C and an A2360G
in the 23S rRNA, while alterations within the ribosomal proteins evaluated were not
detected (Table 3).

DISCUSSION

This 2-year (2015 to 2016) global surveillance program documents a small number
of isolates showing a non-wild-type phenotype for lefamulin. Variants of the vga gene
(8/11; 72.7%) were observed among most S. aureus isolates with lefamulin MICs above
the ECOFF value (�0.25 �g/ml), while 2 isolates carried lsa(E) or L4 mutations (V118A
and E147K). Two S. aureus (975498 and 981256) isolates displayed a lefamulin MIC of 0.5
�g/ml, but only the latter carried a vga(A) gene. Isolate 975498 only showed alterations
in the 23S rRNA that was also observed in other S. aureus isolates included in the study,
which are likely polymorphisms and not associated with pleuromutilin-resistance phe-
notypes. Furthermore, these locations are not associated with drug binding (7).

Staphylococci exhibiting elevated MICs to pleuromutilins, lincosamides, and strep-
togramin A (PLSA) usually carry the ATP-binding cassette F (ABC-F) proteins, such as
those belonging to Vga, Lsa, or Sal families (15–17). In fact, similar to S. aureus, vga gene
variants were also observed among most CoNS (8/14; 57.1%) or in 64.0% (16/25) of all
staphylococci selected herein for further investigation. However, studies have demon-
strated that alterations in the 23S rRNA and L3 ribosomal protein can also be respon-
sible for decreased susceptibility to pleuromutilins (10–13, 18, 19), but in general,
except for some polymorphisms observed in 23S rRNA, the S. aureus isolates included
here showed 23S rRNA and ribosomal protein sequences equivalent to the respective
reference strain.

TABLE 2 MICs obtained for lefamulin and comparator agents tested against isolates included in the studya

Collection no. Species

MIC (�g/ml) by agent

Erythromycin Clindamycin Q-D Linezolid Lefamulin Retapamulin Chloramphenicol

975498 S. aureus �8 �64 0.5 1 0.5 (0.5) �0.06 16
981256 S. aureus 0.12 �0.5 0.5 1 0.5 (0.5) 0.5 4
924825 S. aureus �8 �0.5 0.5 1 1 (1) 2 8
953474 S. aureus �8 �0.5 0.5 0.5 1 (1) 1 4
879822 S. aureus 0.12 �0.5 0.5 1 2 (�1) 4 8
913640 S. aureus �8 �64 0.5 1 2 (�1) 2 8
934242 S. aureus 0.12 �0.5 0.5 0.5 2 (1) 2 8
950457 S. aureus 0.12 8 1 1 4 (2) �8 4
916083 S. aureus �8 �64 1 0.25 16 (�1) 8 8
976441 S. aureus �8 �64 4 0.5 32 (16) �8 64
972481 S. aureus 4 4 1 1 �32 (�16) �8 4
939671 S. cohnii �8 �0.5 1 1 0.5 (2) 1 4
939504 S. epidermidis �8 �0.5 �0.25 16 0.5 (1) 0.25 16
947675 S. epidermidis �8 16 �0.25 0.5 1 (0.5) �8 4
951555 S. epidermidis �8 �64 4 0.5 1 (0.5) 1 4
955639 S. epidermidis 0.12 �0.5 0.5 0.5 1 (1) 1 4
956923 S. epidermidis �8 16 �0.25 0.25 2 (0.5) �8 2
949426 S. epidermidis �0.06 1 �0.25 0.5 2 (2) �8 4
938399 S. epidermidis �8 �0.5 �0.25 0.5 8 (4) 8 2
952506 S. epidermidis �8 1 �0.25 0.5 8 (4) 8 4
958510 S. epidermidis �0.06 2 �0.25 1 8 (2) �8 4
934123 S. epidermidis 0.5 �64 1 128 32 (8) �8 64
939969 S. haemolyticus �8 �64 4 2 4 (4) 4 32
944662 S. sciuri �8 �64 0.5 1 16 (8) 8 32
941213 S. sciuri 0.25 �0.5 1 1 32 (�16) �8 4
960742 S. lutetiensis 0.03 �0.5 1 1 0.5 (0.5) 0.5 2
982012 S. lutetiensis �0.015 1 0.5 1 2 (1) 2 2
971459 S. agalactiae �32 �64 1 1 8 (8) 8 2
935557 S. agalactiae 0.03 4 0.5 1 8 (8) 4 2
935554 S. agalactiae 0.03 4 0.5 0.5 16 (16) 4 2
965031 S. gallolyticus �32 4 1 2 32 (�16) �8 4
aValues within parentheses are the initial lefamulin MICs obtained during the surveillance studies. Q-D, quinupristin-dalfopristin.
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Isolate 916083 displaying a lefamulin MIC of 16 �g/ml was the only S. aureus isolate
with alterations in L4 (V118A and E147K). This isolate also exhibited elevated MICs for
clindamycin, retapamulin, and erythromycin (Table 2). Previous studies linked L4 alter-
ations with decreased susceptibility to tiamulin, chloramphenicol, and oxazolidinones
(14, 20, 21). However, these previously reported alterations surrounded position K68,
which is relatively close to the PTC and is responsible for stabilizing this region. V118
and E147 at L4 are located far from the PTC, but a hypothesis would be that L4
mutations may perturb the 3-dimensional structure of the 23S rRNA and minimize drug
interaction (22). In fact, non-wild-type lefamulin MICs were obtained against 3 S. aureus
surveillance isolates included in the SENTRY Program for 2010, and further investiga-
tions detected only the presence of L4 alterations in these older isolates. These isolates
belonged to ST59 (lefamulin MIC, �16 �g/ml), carried A50G and V118A at L4 or ST398
(lefamulin MIC, 16 �g/ml), and had V118A and V142I at L4 (unpublished data). These
data suggest that V118A, common to these S. aureus isolates from 2010, 2015, and
2016, may be associated with a decreased susceptibility to this agent. However,
additional studies are needed to truly link this L4 alteration with the MICs presented
here.

Two S. sciuri isolates showed lefamulin MICs of 16 to 32 �g/ml and did not carry any
acquired resistance genes associated with the pleuromutilin phenotype. However, the
sal(A) gene was detected in both isolates, and this gene was previously determined to
be ubiquitous in this species and to cause decreased susceptibility to pleuromutilins
and other agents (15, 23, 24). In addition, this gene has been detected in several
staphylococcal species other than S. sciuri from animal and human origins, indicating
that it has been mobilized to other bacterial species (15).

Both CoNS (939504 and 939671) isolates with a lefamulin MIC of 0.5 �g/ml had
multiple alterations in the 23S rRNA. A G2576T was noted in isolate 939504, which is a
well-known oxazolidinone resistance mechanism (14, 25) and known to affect tiamulin
and valnemulin binding (11, 26). The binding effect for lefamulin appears to be less
pronounced, likely because lefamulin appears to have more hydrogen bonds formed at
the binding site than tiamulin and valnemulin. It also does not interact directly with
G2576, although an alteration at this position causes a shift at the backbone of
nucleotides from positions 2504 to 2507 (11), and these nucleotides interact with
lefamulin (7). Importantly, isolate 939504 displayed a linezolid MIC of 16 �g/ml (Table
2), indicating the presence of G2576T in several 23S rRNA alleles (14); therefore, the
lower lefamulin MIC was likely caused by a minimal effect of G2576T on drug binding
rather than a low number of mutated ribosomes. As additional evidence, several
staphylococci isolates included in past years of the SENTRY Program were characterized
because of elevated linezolid MICs (�8 �g/ml). Those isolates showing only G2576T
had lefamulin MICs of 0.12 to 0.5 �g/ml (unpublished data), which are at the right side
of the modal MIC (0.06 �g/ml) for S. aureus (Table 1). All 23S rRNA alterations observed
in isolate 939671 are located outside the lefamulin binding site (13), and the L3 and L4
alterations detected have not been previously associated with resistance (19).

One S. epidermidis (lefamulin MIC, 32 �g/ml) and 1 S. haemolyticus (lefamulin MIC,
4 �g/ml) isolate carried cfr. This transferable gene confers a resistance phenotype to
several classes of drugs (9), and its dissemination could jeopardize the clinical utility of
several agents used in humans and animals. These study results corroborate those from
large surveillance investigations that documented a low prevalence of cfr among
Gram-positive isolates (25, 27, 28). Several studies reported sporadic outbreaks of
cfr-carrying staphylococci; however, it was documented that the dissemination of such
isolates are usually controlled by a combination of antibiotic stewardship and infection
control measures (29–32).

All but 1 of the 6 streptococcal isolates selected for this study carried lsa(E). This
gene has been reported among several Gram-positive isolates recovered from human
and animal specimens (15, 24, 33). lsa(E) is usually part of a gene island that includes
several resistance genes, including lnu(B) upstream (24, 34), which confers resistance to
lincosamides. Among selected streptococcal isolates, pleuromutilin resistance mecha-
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nisms were not detected in S. lutetiensis 960742, except for 2 alterations in 23S rRNA
(T225C and A2360G) located outside the lefamulin binding site (13). Isolate 960742
displayed a lefamulin MIC of 0.5 �g/ml, which is 32-fold higher than the modal MIC
(0.015 �g/ml) shown for this species (Tables 1, 2).

In summary, this study showed a low prevalence of isolates exhibiting a non-wild-
type MIC for lefamulin among Gram-positive isolates included in a 2-year global
surveillance program. The non-wild-type phenotypes observed here could be generally
explained by the presence of vga in staphylococci and lsa(E) in streptococci, which are
more often detected among isolates collected from animals (15, 33–37). The association
of acquired genes detected here with isolates from animal origins is further evidenced
by the presence of 3 S. aureus isolates belonging to ST398, a lineage commonly
responsible for infections in animals (16, 36–39). This study benchmarks the lefamulin
activity against a global contemporary collection of Gram-positive surveillance isolates,
as well as the rare instance of resistance genes associated with decreased susceptibility
before clinical approval and use of this unique agent of the pleuromutilin class.
Although the prevalence of surveillance isolates exhibiting non-wild-type MICs for
lefamulin are rare, continued surveillance to monitor transferable genes and changes in
MIC over time will provide valuable information for this new class of antibacterial
agents for humans.

MATERIALS AND METHODS
Clinical isolates. A total of 3,195 staphylococci and 4,489 streptococci isolates were included as part

of the lefamulin surveillance program from 2015 to 2016. Based on the MIC distributions shown in Table
1, ECOFF values (�0.25 �g/ml for S. aureus and CoNS) were calculated to define the lefamulin wild-type
population of S. aureus and CoNS that included 99.9% of isolates within each group (40). Thus,
staphylococcal isolates exhibiting lefamulin MICs of �0.25 �g/ml were selected for further molecular
characterization (Table 1). Streptococci were selected based on species, and those isolates displaying
elevated lefamulin MICs within a given species were selected for further molecular characterization
(Table 1). Bacterial isolate identification was confirmed by matrix-assisted laser desorption ionization–
time of flight mass spectrometry (Bruker Daltonics, Bremen, Germany) and genome sequencing.

Antimicrobial susceptibility testing. Isolates were tested for susceptibility by broth microdilution
methods, according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI)
(41). Frozen-form broth microdilution 96-well plates were manufactured by JMI Laboratories and
contained cation-adjusted Mueller-Hinton broth (2.5% to 5% lysed horse blood added for testing
streptococci). Isolates that met the inclusion criteria were retested for susceptibility in frozen-form panels
containing extended ranges for lefamulin among other agents (Table 2). Bacterial inoculum density was
monitored by colony counts to ensure an adequate number of cells for each testing event. MICs were
validated by concurrently testing CLSI-recommended quality-control strains (42).

Characterization of resistance mechanisms by next-generation genome sequencing and anal-
ysis. Selected isolates had total genomic DNA extracted with the fully automated Thermo Scientific
KingFisher Flex magnetic particle processor (Cleveland, OH, USA), which was used as input material for
library construction. DNA libraries were prepared using the Nextera library construction protocol
(Illumina, San Diego, CA, USA) following the manufacturer’s instructions and were sequenced on a MiSeq
sequencer (JMI Laboratories, North Liberty, IA, USA). FASTQ format sequencing files for each sample set
were assembled independently using the de novo assembler SPAdes 3.9.0 (43), and an in-house-designed
software program was applied to the assembled sequences to align against known macrolide-
lincosamide-streptogramin B (MLSB) and pleuromutilin resistance genes, including tva(A) (44–46).

Sequences of 23S rRNA (PTC), rplC (L3), rplD (L4), and rplV (L22) were extracted from the assembled
sequences and evaluated against corresponding sequences of susceptible wild-type reference strains.
The analysis of 23S rRNA was performed based on nucleotide sequences (Escherichia coli numbering),
while those from rRNA proteins were based on amino acid sequences. All intrinsic 23S rRNA target genes
or ribosomal protein amino acid sequences were considered wild type if 100% identity was observed
with the respective reference sequences. Nucleotide and amino acid differences were annotated when
an identity of �100% was observed. Reference sequences were extracted from the following strains: S.
aureus (NCTC 8325), S. epidermidis (ATCC 12228), S. cohnii (ATCC 29974), S. haemolyticus (JCSC1435), S.
sciuri (ATCC 29062), S. lutetiensis (NCTC 13774), S. agalactiae (NEM316), and S. gallolyticus (ATCC 43143).

Multilocus sequence typing. Multilocus sequence typing (MLST) was performed by extracting
previously defined sets of 7 housekeeping gene fragments (approximately 500 bp) from each assembled
sequence. Each fragment was compared with known allelic variants for each locus (housekeeping gene)
on the MLST website (PubMLST, https://pubmlst.org). An allele sharing 100% genetic identity with a
known variant received a numeric designation, and a 7-number sequence (1 for each housekeeping
gene) formed an allelic profile, defined as STs.

Data availability. This is an original work and the data set repository and published article in which
the data set and/or code was originally described and have not been published previously. Upon request,
and subject to certain criteria, conditions and exceptions, JMI Laboratories and Nabriva Therapeutics will
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provide access to the code and databases utilized here. This information may be requested 24 months
after study completion and will be made available to researchers whose proposals meet the research
criteria and other conditions and for which an exception does not apply, via a secure portal. To gain
access, requestors must enter into an information access agreement with JMI Laboratories and/or
Nabriva Therapeutics.
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