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ABSTRACT AIDS Clinical Trial Group study A5202 (ClinicalTrials.gov identifier
NCT00118898) was a phase 3b, randomized, partially blinded equivalence study of
open-label atazanavir/ritonavir or efavirenz, plus either placebo-controlled tenofovir
disoproxil fumarate/emtricitabine or abacavir/lamivudine, in treatment-naive adults
living with HIV-1, evaluating efficacy, safety, and tolerability. We report an analysis of
the contribution of participant characteristics to the disposition of tenofovir plasma
concentrations. Tenofovir concentration data from a total of 817 individuals (88% of
the total number of eligible patients randomly assigned to receive treatment in the
TDF-containing arms of A5202) were available for analysis. Pharmacokinetic analysis
was performed using nonlinear mixed-effects modeling. One- and two-compartment
models with first-order absorption and first-order elimination were evaluated. An ex-
ponential error model was used for examination of interindividual variability (IIV),
and a proportional and mixed-error model was assessed for residual variability. The
final structural model contained two compartments with first-order absorption and
elimination. IIV was estimated for apparent clearance (CL/F) and the first-order ab-
sorption rate constant (ka), and a proportional residual variability model was se-
lected. The final mean parameter estimates were as follows: ka � 2.87 h�1, CL/
F � 37.2 liters/h, apparent volumes of the central and peripheral compartments �

127 and 646 liters, respectively, and apparent intercompartmental clearance � 107 li-
ters/h. In addition to race/ethnicity, creatinine clearance and assignment to atazana-
vir/ritonavir or efavirenz were significantly associated with CL/F (P � 0.001). In con-
clusion, race/ethnicity is associated with tenofovir oral CL in HIV-1 positive,
treatment-naive adults. This covariate relationship raises questions about the possi-
bility of differences in efficacy and risk of adverse events in different patient popula-
tions and suggests that examining preexposure prophylaxis regimens and tenofovir
exposure in different race/ethnicity groups be considered.
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Tenofovir disoproxil fumarate (TDF) is an adenosine-analog nucleotide reverse trans-
criptase inhibitor (NRTI) prodrug that exhibits activity against HIV-1 and hepatitis B

virus infections. TDF is converted to its active intracellular form, tenofovir diphosphate,
in a stepwise manner: (i) TDF is converted to tenofovir (TFV) in the intestinal lumen and
plasma by diester hydrolysis, and (ii) TFV is internalized intracellularly and subsequently
phosphorylated into tenofovir monophosphate and then to its active metabolite,
tenofovir diphosphate (1, 2). Tenofovir has been examined in those living with HIV and
healthy volunteers and has demonstrated that renal function and concomitant use with
ritonavir-boosted HIV-1 protease inhibitors affect plasma TFV concentrations (3–6).

The AIDS Clinical Trials Group study A5202 (ClinicalTrials.gov identifier NCT00118898)
randomly assigned 1,857 treatment-naive HIV-1-infected adults to one of the following
once-daily regimens: open-label atazanavir and ritonavir (ATV/r; 300/100 mg) or efa-
virenz (EFV; 600 mg), plus either placebo-controlled tenofovir disoproxil fumarate/
emtricitabine (TDF/FTC; 300/200 mg) or abacavir/lamivudine (ABC/3TC; 600/300 mg).
Plasma concentration data for each of the antiretrovirals were collected from the
majority of study participants for further investigation of differences in the pharmaco-
kinetics of subpopulations. Included in the prespecified pharmacology-related second-
ary objectives was the exploration of the association of ethnicity and other host factors
with the disposition of antiretroviral (ARV) agents. It is critical to determine whether
clinically relevant differences in ARV drug exposure exist in potential patient subpopu-
lations, since variability in drug exposure may be associated with differences in ARV
drug toxicity and virologic response. In this report, we investigated TFV pharmacoki-
netics using sparse sampling and population pharmacokinetic modeling to conduct a
covariate analysis in exploration of significant host factors that may play a role in the
time course of TFV exposure.

RESULTS

Pharmacokinetic data from a total of 817 individuals (88%) were available for
analysis. The majority of participants had 3 samples drawn (range, 1 to 5), with a total
of 2,166 evaluable plasma concentrations within approximately 6 months of beginning
antiretroviral treatment. Information on the previous 3 days of TDF dosing prior to
pharmacokinetic sampling was available for 98% of the 2,166 evaluable plasma con-
centrations, in which 42 and 18 sample collections reported a 2-day difference between
the dose prior to sampling and the second dose prior to sampling and between the
second and third dose prior to sampling, respectively. One participant reported a 3-day
window between the dose prior to sampling and the second dose prior to sampling.

Population pharmacokinetic model. A two-compartment model with first-order
absorption and elimination was ultimately the most appropriate choice to describe the
data. A mixture model identified a subpopulation with large residual variability (n � 30),
and a total of 78 observations were removed from the data set for model building. The
demographics of the remaining participants (n � 787) used in the pharmacokinetic
analysis are given in Table 1. The final model included interindividual variability (IIV)
terms on apparent clearance (CL/F) and the first-order absorption rate constant (ka),
and a proportional model was selected for residual variability. The base model was able
to accommodate IIV on ka in addition to CL/F, but the only covariate that was
biologically plausible to affect the absorption rate constant (i.e., age) was not signifi-
cant. Whereas IIV on ka and CL/F during forward selection would not allow estimation
of race/ethnicity as a covariate on CL/F with 1 or 2 degrees of freedom, forward
selection was continued with IIV on CL/F only, and IIV on ka was added during the
multivariable evaluation. This allowed for greater precision of parameter estimates,
clinically valuable covariate information to be included in the model, and retention of
IIV on ka. In the final model, the IIV variability on CL/F and ka were 18% and 85% (%
coefficient of variation [% CV]), with information on covariate model development
summarized in Table 2. The eta distribution associated with the absorption rate
constant had moderate asymmetrical shrinkage (57%) due to missing data in the
absorption phase.
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The final significant covariates that were identified were creatinine clearance (power
model), treatment arm (additive shift; ATV/r as the reference), and race/ethnicity
(additive shift; 2 degrees of freedom; white non-Hispanic race as the reference) on
apparent clearance (Table 3). The final covariate relationship with apparent clearance
was described as follows:

CL � �TVCL · �CLCR ⁄ 113.5��CLCR � �3rd drug · 3rd drug � �RACB · RACB � �RACO·RACO

with CL as the apparent total drug clearance, �TVCL as the estimated typical value of
clearance, CLCR/113.5 as the creatinine clearance centered to a value of 113.5 ml/min,
�CLCR as an estimated factor for CLCR, �3rd drug as the estimated shift in clearance
for those in the efavirenz arm compared to those in the atazanavir/r arm, RACB as
an indicator variable for black non-Hispanic race/ethnicity compared to white
non-Hispanic race/ethnicity, and RACO as the indicator variable for the combination
of Hispanic, Asian, American Indian, Alaskan, and multiracial compared to white
non-Hispanic.

The final estimated covariate effects showed that there was an average 0.442
change in the natural log of tenofovir plasma CL/F (liters/h) per ml/min in the ln CLCR

compared to the centered value (113.5 ml/min) [e.g., for an individual, ln(CL/F) �

TABLE 1 Demographics of study participants

Demographic Value (n � 787)a

Treatment arm (3rd drug), no. (%) of participants
ATV/r 387 (49)
EFV 400d (51)

Sex, no. (%) of participants
Female 127 (16)
Male 660d (84)

Race/ethnicity, no. (%) of participants
White (non-Hispanic) 339d (43)
Black (non-Hispanic) 236 (30)
Hispanic 190 (24)
Asian 14 (2)
American Indian/Alaskan 3 (0.4)
Multiracial 5 (1)

Age (yr), median (Q1, Q3)b 39 (31, 45)
Wt (kg), median (Q1, Q3)c 77.3 (68.2, 88.8)
CLCR (ml/min), median (Q1, Q3)c 113.7 (97.4, 133.6)
aPercentages are rounded to the nearest whole number; Q1 and Q3 represent the 1st and 3rd quartiles,
respectively.

bThree subjects had no age reported, so the mean was used (38.9 years).
cOne subject had no CLCR or weight data, so the means were used (117.9 ml/min and 79.5 kg, respectively).
dFour subjects had no race/ethnicity reported and three subjects had no sex or third drug reported, so the
mode was used for all three categorical covariates.

TABLE 2 Pharmacokinetic model developmenta

Phase of development MVOF IIV CL (% CV) IIV ka (% CV) CCV RV

Base 17,173 23.9 0.0697
R1 FS—CLCR 17,021 20.8 0.0703
R2 FS—CLCR/3rd drug 16,887 18.5 0.0701
R3 FS—CLCR/3rd drug/race

or ethnicity
16,860 18.1 0.07

Multivariable—IIV ka 16,839 17.7 84.5 0.0645
R1 BE All covariates significant

on CL, with addition
of IIV on ka

aMVOF, minimum value of the objective function; IIV, interindividual variability; CL, apparent tenofovir
plasma clearance; ka, absorption rate constant; % CV, % coefficient of variation; CCV RV, constant coefficient
of variation, residual variability; R1, R2, and R3, round of covariate analysis; FS, forward selection; CLCR,
creatinine clearance; 3rd drug, treatment arm (ATV/r versus EFV); BE, backwards elimination.
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ln(37.2 liters/h) � 0.442 · ln(CrCl/113.5 ml/min)]. For the median (113.7 ml/min), first
quartile (Q1) (97.4 ml/min), third quartile (Q3) (133.6 ml/min), and lowest CLCR (44.4 ml/
min) values in the data set, the resultant oral CL values for these individuals would be
37.2, 34.8, 40.0, and 24.6 liters/h, respectively. Those in the efavirenz treatment arm
were found to have an average apparent tenofovir clearance that was 8 liters/h greater
than that of participants in the atazanavir/ritonavir arm. In comparison to white
non-Hispanic individuals, black non-Hispanic participants and those combined into the
“other” group (Hispanic, Asian, American Indian/Alaskan, and multiracial) had average
apparent tenofovir clearances that were 3.17 liters/h and 4.09 liters/h greater, respec-
tively. A simulation of population predicted values in male participants with median
values for weight, CLCR, and age (with no variability) shows the difference in plasma
tenofovir exposure between different race/ethnicity groups assigned to either the
ATV/r or EFV arms of study A5202 (Fig. 1). Among both treatment arms, those of the
“other” and black non-Hispanic race/ethnicity groups were associated with a faster TFV
plasma clearance (and therefore reduced plasma exposure) than that of white non-

TABLE 3 Final model parameter estimates for tenofovir pharmacokinetics

Parametere

Model estimate
(95% CI)

% RSEf

(% shrinkage)
Bootstrap estimateg

(95% CI)

ka (h�1) 2.87 (1.83, 3.91) 18.5 2.87 (2.27, 4.16)
CL/F (liters/h) 37.2 (34.10, 40.29) 4.2 37.40 (33.57, 40.26)
Vc/F (liters) 127 (83.10, 170.90) 17.6 128.73 (86.26, 188.48)
Vp/F (liters) 646 (555.45, 736.55) 7.2 649.55 (547.62, 737.81
Q/F (liters/h) 107 (70.94, 143.06) 17.2 108.60 (73.26, 144.98)
IIV in ka 0.714 (0.389, 1.039) 23 (57)d 0.817 (0.350, 1.497)
IIV in CL 0.0312 (0.025, 0.037) 10 (17) 0.0309 (0.025, 0.038)
CLCR

a,b 0.442 (0.375, 0.509) 8 0.445 (0.372, 0.511)
Treatment arma,c 8 (6.47, 9.53) 10 7.93 (6.51, 9.55)
Black non-Hispanica,c 3.17 (1.54, 4.80) 26 3.29 (1.65, 4.90)
“Other” race/ethnicitya,c 4.09 (2.40, 5.78) 21 4.11 (2.53, 5.84)
CCV RV 0.0645 (0.0576, 0.0714) 5 (16) 0.0641 (0.0575, 0.0712)
aOn CL/F.
bPower model.
cAdditive shift.
dSignificant ETABAR.
eka, absorption rate constant; CL/F, apparent plasma clearance; Vc/F, apparent volume of distribution in the
central compartment. Vp/F, apparent volume of distribution in the peripheral compartment; Q/F, apparent
intercompartmental clearance; IIV, interindividual variability; CLCR, creatinine clearance; CCV RV, constant
coefficient of variation, residual variability.

fRSE, relative standard error.
g960/1,000 � 96% runs contributed; 36 runs with minimization terminated were skipped when calculating
the bootstrap results, and 4 runs with estimates near a boundary were skipped when calculating the
bootstrap results.

FIG 1 Comparison of predicted TFV concentrations based on race/ethnicity and treatment arm. Simu-
lations are population predictions for males with median values for creatinine clearance, weight, and age.
The AUCs (ng · h/ml) were as follows: 2,752 (“other,” EFV), 2,804 (black/non-Hispanic, EFV), 3,001
(white/non-Hispanic, EFV), 3,647 (white/non-Hispanic, ATV/r), 3,361 (black/non-Hispanic, ATV/r), and
3,286 (“other,” ATV/r).
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Hispanic participants. A comparison of plasma exposures between racial/ethnic groups
per third drug treatment arm is provided in Fig. 2.

The estimated mean population pharmacokinetic parameters for the final model,
with 95% confidence intervals compared to the bootstrap analysis (96% of runs
successfully contributed to the bootstrap analysis and met the predefined convergence
criteria), are given in Table 3. The prediction-corrected visual predictive check (pcVPC)
was generated with model predictions from 2,000 simulations and shows that the
observed median (red line) and 5th and 95th percentiles of the data (blue lines) were
included within the model-predicted 95% confidence intervals (shaded areas) (Fig. 3).
These internal validation techniques show appropriate model specification.

DISCUSSION

This study has identified CLCR, treatment arm, and race/ethnicity as significant
covariates associated with apparent clearance following the recommended TDF dose in
treatment-naive adults living with HIV. Tenofovir disoproxil fumarate is recommended
as a first-line nucleotide reverse transcriptase inhibitor in national HIV treatment
guidelines (7), and its use has increased among non-HIV-infected individuals for pre-
exposure prophylaxis, when used with emtricitabine (8, 9). These findings may provide
additional considerations for individualizing TDF-based regimens.

Multiple structural population pharmacokinetic models for plasma tenofovir have
been reported as two-compartment models with first-order absorption and elimination
(4, 5, 10, 11). Previous population analyses (3–5, 10, 11) have identified plasma tenofovir
pharmacokinetic parameters in the following ranges: CL/F, 42 to 66.6 liters/h, apparent
volume of distribution in the central compartment (Vc/F), 268 to 1,040 liters; apparent
intercompartmental clearance (Q/F), 13.2 to 197 liters/h; apparent volume of distribu-
tion in the peripheral compartment (Vp/F), 398 to 1,630 liters; and ka, 0.82 to 1.35 h�1.
These values were similar to those estimated in the current analysis: CL/F, 37.2 liters/h;
Vc/F, 127 liters; Q/F, 107 liters/h; Vp/F, 646 liters; and ka, 2.87 h�1. The difference noted
in the absorption rate constant may be due to differences in population administration
of tenofovir in relation to food, as food delays the time to tenofovir maximum
concentration in serum (Cmax) (1). Previous pharmacokinetic studies of TFV have also
identified renal function and ritonavir-enhanced protease inhibitors as significant
covariates in the plasma exposure of TFV (3–5, 10, 11). Our analysis confirms that ATV/r
in combination with TDF results in increased TFV plasma concentrations compared to
coadministration with EFV. In a study of 12 participants listed in the prescribing
information for atazanavir, there was a 37% (90% confidence interval [CI], 1.30 to 1.45)

FIG 2 Comparison of TFV plasma exposures in racial/ethnic groups per third drug. AUC, area under the
plasma concentration-time curve; EFV, efavirenz; ATV/r, ritonavir-boosted atazanavir; NG, nanogram; ML,
milliliter.

Population Pharmacokinetic Analysis ACTG Study A5202 Antimicrobial Agents and Chemotherapy

April 2019 Volume 63 Issue 4 e01638-18 aac.asm.org 5

https://aac.asm.org


increase in the TFV area under the concentration-time curve (AUC) when coadminis-
tered with ATV/r (12).

Study 5202 was a multicenter clinical trial across the United States, including Puerto
Rico, which enrolled a large number of participants, including well-represented minor-
ity populations. Approximately 23% (n � 429) of the study population were Hispanic,
and 33% (n � 615) were black non-Hispanic, allowing for the evaluation of the phar-
macokinetics of TFV in these patient populations. Among the three race/ethnicity
groups evaluated (white non-Hispanic versus black non-Hispanic and versus “other”),
there was a significant difference in TFV oral CL when the white non-Hispanic group
was compared to the other two groups. To our knowledge, this is the first report to
identify race/ethnicity as a significant covariate for TFV oral CL. The “other” race/
ethnicity group in this study consisted predominantly of participants who were His-
panic (190 Hispanic participants out of 212 in this group). Individuals in this race/
ethnicity group were associated with a faster TFV oral clearance, compared to white
non-Hispanic participants, and therefore reduced plasma exposure (Fig. 1). The ques-
tion arises if a difference in clearance could affect adverse effects over time. ACTG study
A5224s was a substudy of A5202 (n � 269) focused on assessing longer-term changes
in metabolic outcomes in participants treated with FTC/TDF or ABC/3TC with either EFV
or ATV/r. A5224s compared changes in areas such as limb fat, renal function, glucose,
insulin and insulin sensitivity, urine albumin, and urine protein/creatinine ratios be-
tween different race/ethnicity groups. However, information comparing these groups
within the TDF/FTC arms to the ABC/3TC arms (13–16) was not reported. In the
univariate analysis, there was no significant association between race/ethnicity (com-
pared to white non-Hispanic participants) with changes in body mass and bone mineral
density adjusted for treatment arm (17).

In the iPrEx trial evaluating oral daily doses of TDF/FTC or placebo as preexposure
prophylaxis in HIV-seronegative men or transgender women who have sex with men,

FIG 3 Prediction-corrected visual predictive check comparing observed and model predicted drug concentrations.
Observed concentrations and their 5th, 50th, and 95th percentiles are overlaid on the simulated 95% confidence intervals
of the corresponding percentiles.
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a relative risk reduction from contracting HIV of 92% was found in those with detect-
able drug concentrations (quantification range, 10 to 1,500 ng/ml) in the treatment arm
(8). The majority of the iPrEx study population was Hispanic (approximately 72%), with
the largest number of participants from Peru; however, a separate analysis of ARV
exposures by race/ethnicity has not been reported.

Limitations of the current analysis include unknown reasons for variability of drug
concentrations, such as other potential drug-drug interactions, effects of comorbid
conditions, or other unmeasured confounding factors. In addition, the observations
identified by the residual variability mixture model represent apparent nonadherence,
since only 2 of the 78 observations identified by the mixture model reported slight
deviations from daily dosing (2 days between the second and third dose prior to
pharmacokinetic sampling). Unreported noncompliance may be one possible source of
the large residual variability seen within the data.

In conclusion, a population pharmacokinetic model with covariate analysis was
developed for ACTG study A5202 to analyze the TFV plasma concentration data
available from the diverse participant population. The significant covariates associated
with apparent TFV clearance included creatinine clearance, treatment arm, and race/
ethnicity. As the number of low- and middle-income countries are moving toward
antiretroviral regimens containing dolutegravir (DTG) as the preferred first-line treat-
ment, including the fixed-dose combination of TDF/3TC/DTG (18), the findings of this
analysis are timely and relevant. These data suggest that additional research examining
preexposure prophylaxis regimens and use for treatment may consider possible TFV
exposure differences between race/ethnicity groups.

MATERIALS AND METHODS
Participants and study design. Study A5202 was a phase 3b, randomized, partially blinded

equivalence study of four once-daily ARV regimens in treatment-naive adults (�16 years of age).
Participants were randomized 1:1:1:1 and balanced by study site. At screening, study participants were
stratified by HIV-1 RNA level (�100,000 or �100,000 copies/ml). Participants in the high-screening viral
load stratum (based on data safety monitoring board recommendations) and those with toxicity
associated with the NRTI backbone who had virologic failure or hepatitis B were unblinded. The primary
efficacy, safety, and tolerability results have been reported (19–21).

A sparse sampling strategy for the measurement of plasma drug concentrations was designed to
collect three steady-state samples per participant during the first 24 weeks of therapy, including dosing
information on the previous 4 doses prior to sampling. Pharmacokinetic drug concentration sampling
occurred at week 4, 8, 16, or 24. Three samples were to be collected over two visits, visits A and B. Visit
A could occur before or after visit B, or the visits could be combined if medications were regularly
scheduled for the morning. At visit A, two plasma samples were obtained, one before a dose and one
3 to 4 h after an observed dose; at visit B, one sample was to be obtained 5 to 15 h (5 to 12 h if all
medications were taken in the morning) after a dose (22–24).

Assurances. The human subject committees of all sites approved the A5202 protocol, and written
informed consent was obtained from all participants in compliance with human experimentation
guidelines of the U.S. Department of Health and Human Services.

Tenofovir sample processing. Plasma concentrations of tenofovir were measured at the ACTG
Pharmacology Laboratory at the University of Alabama at Birmingham using a high-performance liquid
chromatography with tandem mass spectrometry (HPLC-MS) assay (25). After the addition of stably
labeled isotope internal standards (IS), samples were processed using a solid-phase extraction method
on 30-mg (1-cm3) Oasis MCX cartridges. The eluate was then evaporated under a nitrogen stream and
reconstituted in 175 �l of 0.01% trifluoroacetic acid (TFA) for injection. Using a Shimadzu XR HPLC
system, reversed phase chromatographic separation of the drug and the internal standard was per-
formed on an Atlantis dC18 analytical column (2.1 by 100 mm, 3.0 �m) under isocratic conditions. A
Supelco C18 in-line guard cartridge was used to protect the column from contaminants. A column
temperature of 30°C, a rate of 0.2 ml/min, and an injection volume of 10 �l were used. The binary mobile
phase consisted of 0.1% formic acid (A)and 0.1% formic acid (B) in acetonitrile with a composition of 90%
A to 10% B. Under these conditions, the retention time for tenofovir and its respective internal standard
was approximately 2.12 min. A total run time of 5 min was used to ensure complete elution of all peaks
of interest. Detection and quantification were accomplished on an API 5500 mass spectrometer by
multireaction monitoring. Tenofovir and the IS were detected using the following transitions for
protonated products [M � H]�: m/z 288.2 � 176.1 for tenofovir; m/z 293.2 � 181.0 for tenofovir-IS. Mass
spectrometer settings were as follows: an API 5500 instrument was used in positive TubolonSpray mode
with a source temperature of 500°C. Nitrogen was used as the nebulizer, auxiliary, collision, and curtain
gas. The calibration curve was linear over the range of 5 to 1,000 ng/ml for tenofovir using a 50-�l aliquot
of human plasma. Validation of the plasma assay showed precision with less than 8% coefficient of
variation between calibration standards on different assay runs and accuracy with less than 6% deviation
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from known concentrations. Plasma quality controls showed overall precision [(SD/mean) � 100%)] with
less than 7% and accuracy [(mean � target)/target � 100%] within 10% CV.

Population pharmacokinetic modeling. An exploratory pharmacokinetic analysis identified signif-
icant differences in TFV oral CL when participant characteristics for A5202 were compared (22). With this
previously identified structure as a starting base model, the goal of the current analysis was to identify
and quantify sources of variability in TFV exposure, while confirming and refining the exploratory base
structural model. Pharmacokinetic analysis of TFV (136-mg dose) was performed using nonlinear
mixed-effects modeling with NONMEM (version 7.1.0; ICON Development Solutions, Ellicott City, MD,
USA) interfaced with Perl-speaks-NONMEM (PsN; https://uupharmacometrics.github.io/PsN/) through
Pirana (version 2.9.4; http://www.pirana-software.com/) as the modeling environment (26, 27). The
first-order conditional estimation method with interaction was used with a steady-state assumption.
One- and two-compartment models with first-order absorption and first-order elimination were evalu-
ated. An exponential error model with log-normal distribution was used for examination of intersubject
variability of all pharmacokinetic parameters, adding to the intersubject variability on CL/F which was
already contained in the exploratory model. A proportional and mixed (additive and proportional) error
model was assessed for residual variability on one- and two-compartment models. In addition, a mixture
model of residual variability was used to detect apparent nonadherence during the model building
process (28). Goodness-of-fit plots were used to evaluate the base structural model: observations versus
individual and population predictions (IPRED and PRED), conditional weighted residuals versus PRED and
time, and absolute individual weighted residuals versus IPRED.

Covariate selection. A covariate analysis was performed to explore the association of several factors
with plasma TFV pharmacokinetic parameters. Race/ethnicity, sex, and third drug treatment arm (ATV/r
or EFV) were evaluated as categorical covariates using an additive functional form. Race/ethnicity groups
available for model building included white non-Hispanic, black non-Hispanic, Hispanic, Asian, American
Indian/Alaskan, and multiracial (although the sample size was small for the last three groups). Each group
was evaluated individually and combined in stepwise increments starting with those groups with the
smallest number of participants. Continuous covariates, which included age at study entry, creatinine
clearance (CLCR; calculated by the Cockcroft-Gault equation) (29), and weight in kilograms, were centered
and evaluated using power and linear functional forms. Weight and CLCR measurements were obtained
at the same time or in close proximity to the time points for tenofovir sampling. Significant covariates were
selected using the classical stepwise approach (30). Forward selection was conducted in a univariate manner,
with covariate inclusion into the model being determined by a reduction in minimum value of the objective
function (MVOF) by �3.84 (P � 0.05; 1 degree of freedom, in a �2 distribution) and by a reduction in the
interindividual variability (IIV) of the pharmacokinetic parameter of interest. For the backward elimination
step, covariates were removed separately and considered significant if their removal resulted in an
increase in the MVOF of at least 10.83 (� � 0.001; 1 degree of freedom, in a �2 distribution). Time-varying
covariates (CLCR and weight) were included in the data set if CLCR changed to a different stage of renal
function (table can be found in the Food and Drug Administration’s “Guidance for Industry on Pharma-
cokinetics in Patients with Impaired Renal Function” [31]) and weight if it changed by �20 lb. Between
forward selection and backward elimination, multivariable model evaluation occurred by exploring the
addition of interindividual variability on additional parameters and examination of the residual variability
model by precision.

Model evaluation. The final model was evaluated using 2,000 simulations in a prediction-corrected
visual predictive check (pcVPC). Observed concentrations and their 5th, 50th, and 95th percentiles were
overlaid on the 95% confidence interval of the corresponding percentiles of the simulations for visual
assessment. Prediction correction was used to take into account the differences within a bin coming from
the included covariates (32). All the observations and predictions were then normalized using the typical
population prediction in relation to the median of typical population predictions per bin across the
covariates (32). Nonparametric bootstrap resampling was also performed to evaluate the model (33). One
thousand bootstrap data sets were generated to obtain a median and 95% confidence interval for each
model parameter for comparison with the original final parameter estimates, with an a priori conver-
gence criterion set at 90% when modeling the bootstrap data sets for evaluation of the convergence rate.
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