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Abstract

To achieve personalized medicine, an individualized treatment strategy assigning treatment based 

on an individual’s characteristics that leads to the largest benefit can be considered. Recently, a 

machine learning approach, O-learning, has been proposed to estimate an optimal individualized 

treatment rule (ITR), but it is developed to make binary decisions and thus limited to compare two 

treatments. When many treatment options are available, existing methods need to be adapted by 

transforming a multiple treatment selection problem into multiple binary treatment selections, for 

example, via one-vs-one or one-vs-all comparisons. However, combining multiple binary 

treatment selection rules into a single decision rule requires careful consideration, because it is 

known in the multicategory learning literature that some approaches may lead to ambiguous 

decision rules. In this work, we propose a novel and efficient method to generalize outcome-

weighted learning for binary treatment to multi-treatment settings. We solve a multiple treatment 

selection problem via sequential weighted support vector machines. We prove that the resulting 

ITR is Fisher consistent and obtain the convergence rate of the estimated value function to the true 

optimal value, i.e., the estimated treatment rule leads to the maximal benefit when the data size 

goes to infinity. We conduct simulations to demonstrate that the proposed method has superior 

performance in terms of lower mis-allocation rates and improved expected values. An application 

to a three-arm randomized trial of major depressive disorder shows that an ITR tailored to 

individual patient’s expectancy of treatment efficacy, their baseline depression severity and other 

characteristics reduces depressive symptoms more than non-personalized treatment strategies (e.g., 

treating all patients with combined pharmacotherapy and psychotherapy).

Appendix: Implementation and Proofs of Theorem 1 and Theorem 2
Matlab codes to implement SOM are available at the authors’ personal website and publicly accessible. Proofs of Theorems 1 and 2 
are also available at the authors’ personal website and publicly accessible at http://www.columbia.edu/~yw2016/SOM1_Suppl.pdf.
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I. Introduction

For many chronic diseases including major depressive disorder, substantial treatment 

heterogeneity has been documented where a treatment with a larger average effect in the 

overall sample may be ineffective in a subgroup of patients with specific characteristics [1]. 

On the other hand, a newly developed intervention may not be more efficacious compared to 

an existing active treatment in the overall population, but may reveal a large benefit in a 

subgroup of patients [2]. Henceforth, there has been a growing interest in understanding 

treatment heterogeneity and discovering individualized treatment strategies tailored to 

patient-specific characteristics to maximize efficacy and achieve personalized medicine [3]. 

The tailored treatment strategy recommends optimal treatment decision for an individual 

patient using information collected on patient-specific characteristics which may include 

genomic features, medical history and health status.

Recently, there has been a surge of machine learning methods on estimating optimal 

treatment regimes involving a single decision point or multiple decision points using data 

collected from clinical trials or observational studies [4], [5], [6], [7], [8], [9]. A class of 

popular methods is regression based Q-learning [10], [11], [6], which relies on some 

postulated models to predict mean outcome given treatment-by-covariate interactions and 

then compares these means to select the best treatment. Alternatively, machine learning 

algorithms, referred to as outcome-weighted learning (O-learning) [8], was proposed to 

estimate the optimal treatment rule by directly optimizing the expected clinical outcome 

when assigning treatments using the rule (i.e., value function). O-learning converts the 

optimal treatment selection to a classification problem. These existing methods are designed 

to estimate decision rules with two treatment options. However, in many real world 

applications it is common that more than two treatments are being compared. For example, 

in our motivating study, Research Evaluating the Value of Augmenting Medication with 

Psychotherapy (REVAMP) trial [12], non-responders or partial responders to a first-line 

antidepressant were randomized to three second-line treatment strategies.

When it comes to multiple-armed trials where treatment options are more than two, Q-

learning is more prone to model misspecification than for two-armed trials because it relies 

heavily on the correctness of the postulated models. To extend the O-learning methods in 

[8], [9], an ad hoc approach is to estimate treatment decision rules via combining one-vs-one 

(OVO) or one-vs-all (OVA) comparisons. However, it is well known in multicategory 

learning literature that the resulting classification rules may lead to ambiguous classification 

for some input space [13], [14], [15], [16], [17]. Therefore, we focus on extending O-

learning for binary treatment to learn an optimal individualized treatment rules (ITRs) for 

multiple treatment options.
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In this paper, we propose a new multi-category learning approach to estimate the optimal 

ITR from multiple treatment options. Specifically, we transform the value maximization 

problem into a sequence of binary weighted classifications, and refer our method as 

sequential outcome-weighed multicategory (SOM) learning. At each step, we use a weighted 

binary support vector machine (SVM) to determine patients for whom a target treatment is 

optimal compared to the remaining options. The weights in SOM are proportional to the 

clinical outcome values and reflect the fact that a single treatment category is being 

compared to one or more categories. We first estimate the optimal rule for a designated 

treatment option by excluding the possibility of declaring any other treatment as optimal via 

sequential SVMs; next, we exclude the treatments that have been already screened for 

optimality and repeat the same learning approach for the remaining options. Theoretically, 

we show that the derived treatment rule is Fisher consistent, i.e., the derived rule gives the 

maximal benefit among all treatment rules when the data size is infinite. We demonstrate 

through extensive simulations that SOM learning has superior performance in comparison to 

Q-learning, OVA and OVO. Finally, an application of SOM to REVAMP shows that an ITR 

tailored to individual characteristics such as patients’ expectancy of treatment efficacy and 

baseline depression severity reduces depressive symptoms more than a non-personalized 

treatment strategy.

II. Methodology

A. Optimal ITR with multiple treatments

Assume data are collected from a randomized trial of patients affected by a chronic disorder 

(e.g., depression) with n patients and k different treatment options. For each patient i, we 

observe a d-dimensional vector of feature variables, denoted by Xi ∈ 𝒳, the treatment 

assignment Ai ∈ 𝒜 = 1, 2, …, k , i = 1, …, n, and the clinical outcome after treatment 

denoted by Ri, also referred as the “reward” (thus the patient’s health outcome is quantified 

by a scalar). Assume a large value of Ri is desirable (e.g., improvement of patient 

functioning). A multicategory ITR, denoted by 𝒟, is a mapping from the space of feature 

variables, 𝒳, to the domain of treatments, 𝒜. An optimal ITR is a treatment assignment rule 

that maximizes the mean clinical outcome E[R(𝒟(X)) | X], where R(a) is the potential outcome 

had treatment a been given. For randomized trials and assuming consistency of the potential 

outcomes, the optimal ITR maximizes the following value function [6]:

E I A = 𝒟(X)
πA(X) R , (1)

where πa(x) = pr(A = a|X = x) is the randomization probability for treatment a as designed 

in the trial a = 1, …, k, assumed to be bounded by a positive constant from below, and 

∑a = 1
k πa(x) = 1. The goal is to learn the optimal ITR using empirical observations (Ri, Ai, 

Xi), i = 1, …, n.

Theoretically, it can be shown that the optimal ITR is
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𝒟*(x) = argmaxaE[R A = a, X = x] . (2)

Therefore, one approach to estimate the optimal ITR is using a regression model to estimate 

the conditional means on the right-hand side. However, this approach heavily relies on the 

correctness of the postulated model, and model misspecification can lead to substantially 

non-optimal ITR even for a binary treatment situation [8]. Alternatively, O-learning [8] was 

proposed to maximize the empirical version of the value function in (1) but replaced 

I(A = 𝒟(x)) by 1 − max(0, 1 − Af(x)) where f(x) is the decision function such that 

𝒟(x) = sign( f (x)). The latter corresponds to a weighted support vector machine where the 

weight for each observation is proportional to Ri. Because of this connection, the method is 

referred as outcome-weighted learning (abbreviated as O-learning). They demonstrated that 

O-learning outperformed the regression model based method in small samples, but this 

approach can only be applied to estimate binary treatment decisions, and thus not directly 

applicable when more than two treatment options are of interest. Here, we develop a robust 

method that builds on binary O-learning to learn multicategory treatment decision rules.

B. Main idea

The main idea of the proposed method, sequential outcome-weighted multicategory (SOM) 

learning, is to perform a sequence of binary treatment decision learning. The key result is 

that by applying appropriate subject-specific weights in a binary classification algorithm, 

each step compares E[R|A = a, X] for a given treatment a with E[R|A = a′,X] for the 

remaining treatment categories a′ ≠ a. Hence, through a novel arrangement of such 

comparisons, we can eventually determine the optimal treatment for a patient to be category 

a* for which E[R|A = a*,X] achieves the maximum among all categories. This coincides 

with the theoretical optimal treatment rule for this patient as in (2).

To illustrate SOM learning, we order the candidate treatment categories based on the 

descending order of its prevalence in the observed data. Without loss of generality, we 

assume that the order of the labels of treatment options are k, k − 1, …, 1. We first learn an 

optimal treatment rule that will determine whether a patient affected by a chronic disorder 

(e.g., major depression) should be treated with the kth option. We partition the domain of X 

into 𝒳k and 𝒳k
c such that for subjects with features X ∈ 𝒳k, the optimal treatment is the kth 

option; and for subjects with X ∈ 𝒳k
c, the optimal treatment is not the kth option. For the 

remaining k – 1 options, we consider any ordered sequence of {1, …, k − 1}, denoted by {j1, 

…, jk−1}, and let jk = k. A sequential ITR learning is then constructed as follows.

In the first step, starting with j1 versus {j2, …, jk}, we determine whether a subject should be 

treated optimally with the j1th option or some other option. Since this is a binary decision 

problem, we can use existing methods for learning a binary treatment decision rule, for 

example, O-learning, with additional modifications as explained in a later section. Applying 

this binary rule to a future patient with feature variables X, if he or she is assigned to 
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treatment j1 ≠ k, then clearly, X ∈ 𝒳k
c. Otherwise, we cannot determine whether X should be 

in 𝒳k or 𝒳k
c, since his/her optimal treatment can be one of j2, …, jk.

In the second step of this sequential learning, we only consider patients whose optimal 

treatments are not determined as j1 in the previous step. We then learn a binary treatment 

rule to decide whether this subject should be optimally treated with j2 or the remaining 

treatment choices, {j3, …, jk}. Again, this is a binary treatment decision problem so we can 

perform estimation similar to the first step. With the second decision rule, we can check 

whether the patient should be treated with j2 or some treatment among the remaining 

options. If j2 ≠ k is selected, we conclude X ∈ 𝒳k
c; otherwise, we are still uncertain whether 

X ∈ 𝒳k.

Continue this process sequentially in the third step till the kth step when there is only 

treatment category k in consideration. Consequently, for this given sequence, {j1, …, jk−1} 

the optimal treatment for this patient is k, i.e., X ∈ 𝒳k, if and only if at each step, the binary 

decision learning concludes that the patient should not be treated by j1, j2, …, jk−1, in turn. 

The choice of the ordered sequence {j1, …, jk−1} is arbitrary, so we propose to consider all 

possible permutations of {1, …, k−1}. Then a patient with X should be treated with 

treatment k once he/she is determined to have the kth option as the optimal treatment in at 

least one permuted sequence.

The above procedure only provides a treatment rule that decides whether a subject has the 

optimal treatment as k X ∈ 𝒳k  or some other option X ∈ 𝒳k
c . Thus, for a subject with 

features X ∈ 𝒳k
c, we need to determine which of the remaining {1, …, k − 1} options is 

optimal. This can be carried out as follows. We only consider patients whose optimal 

treatment is not k based the previous procedure and whose actual treatments received are not 

k. For these patients, the optimal treatment options can only be one of {1, …, k−1}, so the 

goal reduces to finding the optimal treatment decision within (k−1) categories. Therefore, 

we can repeat the previous procedure but consider treatment (k − 1) as the target in treatment 

optimization. At the end, we obtain a treatment rule that determines whether a subject 

should be optimally treated with (k−1). Finally, the same procedure can be carried out 

sequentially to decide which patients have the optimal treatment as (k − 2), …, 1, in turn.

An advantage of SOM learning is that at every step of the sequential learning, one only 

needs to learn a binary decision rule, and thus many learning algorithms for binary decision 

are applicable. In particular, in our subsequent algorithm and implementation, we adopt the 

method from O-learning [8] to use a binary weighted SVM. However, one significant 

difference is that due to the multicategory nature, weights in SOM learning should not only 

be proportional to the outcome R as in O-learning, but should also reflect the imbalanced 

comparison between one treatment category and the combination of multiple treatment 

categories. The latter ensures that the derived optimal treatment rule is Fisher consistent, i.e., 

it is the same as the best rule that maximizes the outcome/reward when the data size is 

infinite, as will be shown in Section 3.
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C. Method and algorithm

Start from estimating the optimal rule for a target treatment category k. Consider the jth 

permutation {j1, …, jk−1}, and let jk = k. The main SOM algorithm is:

Step 1. Learn a binary rule to decide whether a future patient should be treated by option j1. 

Intuitively, we shall estimate the optimal decision function f j1
* (X) such that the 

corresponding value for this decision, i.e.,

E RI Z j1
f j1

(X) > 0 /πA(X) ,

is maximized with Zj1 = 2I(A = j1)−1. According to [18], even if R may be negative, this 

maximization is equivalent to minimize

E R I Z j1
sign(R) f j1

(X) ≤ 0 /πA(X) .

Thus, using the empirical data, we may consider minimizing the empirical loss of the above 

expectation. However, there are two important issues to be considered. First, since solving 

the above problem is NP-hard, we can use a weighted SVM which essentially replaces the 

0–1 loss with a continuous and convex hinge-loss function. Second, since this learning is 

comparing one treatment category versus (k−1) categories, it is necessary to weight 

observations with treatment j1 by (k−1)/k and the others by 1/k in order to balance the 

comparison.

Therefore, our algorithm is as follows. Define πjl (x) = pr(A = jl|X = x), where l = 1, …, k, 

and let Zijl = 2I(Ai = jl) – 1. Estimate the optimal decision rule as sign f j1
(x) , where f j1

(x)

minimizes the following empirical risk of a weighted hinge loss:

Vn j1
( f ) = n−1 ∑

i = 1

n Ri
π j1

Xi
I Zi j1

sign Ri = 1 1 − f Xi +

× k − 1
k I Ri > 0 + 1

k I Ri ≤ 0

+
Ri

π j1
* Xi

I Zi j1
sign Ri = − 1 1 + f Xi +

× 1
k I Ri > 0 + k − 1

k I Ri ≤ 0

+ λn j1
‖ f ‖2,
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where π j1
* Xi = ∑l = 2

k I Ai = jl π jl
Xi  is the hinge loss, ∥ · ∥ denotes a semi-norm for f and 

λn j1
 is a tuning parameter. Particularly, consider a linear decision rule, i.e., f(x) = βT x + β0, 

∥f∥ is chosen as the Euclidean norm of β; if a nonlinear decision rule is desired, f will be 

chosen from a reproducing kernel Hilbert space (RKHS) and ∥f∥ is the corresponding norm 

in that space.

Step 2. Determine the optimal decision to be either treatment j2 or one of {j3, …, jk} among 

those patients whose optimal treatments are not determined as j1 from step 1. Thus, restrict 

the data to those subjects who do not receive the j1th treatment and whose optimal 

treatments are not j1 as from the previous step. We then estimate a decision rule as 

sign f j2
(x)  using a weighted SVM by minimizing

Vn j2
( f ) = n−1 ∑

i = 1

n
I Ai ≠ j1, f j1

Xi < 0

×
Ri

π j2
Xi

I Zi j2
sign Ri = 1 1 − f Xi +

× k − 2
k − 1 I Ri > 0 + 1

k − 1 I Ri ≤ 0

+
Ri

π j2
* Xi

I Zi j2
sign Ri = − 1 1 + f Xi +

× 1
k − 1 I Ri > 0 + k − 2

k − 1 I Ri ≤ 0

+ λn j2
‖ f ‖2,

where π j2
* Xi = ∑l = 3

k I Ai = jl π jl
Xi , Zi jl

, π jl
Xi  are defined as same as in step 1, and λnj2 

is a tuning parameter. Note that in addition to weights based on the outcome values, we also 

weigh the observations from treatment j2 by (k − 2)/(k − 1) and the others by 1/(k − 1) in 

order to account for the fact that the decision rule is based on comparing one category versus 

(k − 2) categories.

Step 3. In turn, at step h = 3, …, k − 1, we obtain the rule as sign f jh(x)  by minimizing
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Vn jh
( f ) =

1
n ∑

i = 1

n
I Ai ≠ j1, …, ≠ jh − 1, f j1

Xi < 0, …, f jh − 1
Xi < 0

×
Ri

π jh
Xi

I Zi jh
sign Ri = 1 1 − f Xi +

× k − h
k − h + 1 I Ri > 0 + 1

k − h + 1 I Ri ≤ 0

+
Ri

π jh
* Xi

I Zi jh
sign Ri = − 1 1 + f Xi +

× 1
k − h + 1 I Ri > 0 + k − h

k − h + 1 I Ri ≤ 0

+ λn jh
f

2
,

where π jh
* Xi = ∑l = h + 1

k I Ai = jl π jl
Xi , Zi jl

, π jl
Xi  are defined as same as above steps. 

Again, we use weight (k − h)/(k − h+1) for treatment jh versus 1/(k − h+1) for the others to 

balance comparison. At the end of this sequence, we conclude that if

f j1
(x) < 0, f j2

(x) < 0, … f jk − 1
(x) < 0,

then the optimal treatment for a patient with features x will be the kth option. To simplify 

notation, we denote 𝒟
j1, …, jk − 1

k (x) = 1 if the above conditions hold, and let 

𝒟
j1, …, jk − 1

k (x) = − 1 otherwise.

The choice of this sequential decision rule is based on the permutation (j1, …, jk−1), and thus 

may not exhaust the correct optimal treatment assignment for the kth option due to a specific 

choice. We thus repeat the above sequential learning for any possible permutations to obtain 

𝒟
j1, …, jk − 1

k (x). Consequently, our final decision rule is to assign a patient with treatment k 

if and only if 𝒟
j1, …, jk − 1

k (x) = 1 for at least one permutation (j1, …, jk−1). Let Πs denote all 

permutations of (1, …, s). If we define
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𝒟k(x) = max
j1, …, jk − 1 ∈ Πk − 1

𝒟
j1, …, jk − 1

k (x),

then the optimal treatment for patient with x is treatment k if and only if 𝒟k(x) = 1.

Step 4. To determine whether a patient’s optimal treatment is the (k − 1)th option, we adopt 

a backward elimination procedure. We exclude the patients who receive treatment option k 
or whose optimal treatments are determined as k in the previous step. In other words, we 

restrict the data to subjects with Ai ≠ k and 𝒟k xi = − 1.. Because the data consist of only (k 

− 1) treatment options, we use the same SOM learning procedure as before but now set 

option (k − 1) as the target treatment, i.e., the last category in consideration. By this 

procedure, we obtain a decision rule at each step for each permutation of {1,.., k – 2}, 

denoted by 𝒟
j1, …, jk − 2

(k − 1) (x) for permutation (j1, …, jk−2). Let

𝒟(k − 1)(x) = max
j1, …, jk − 2 ∈ Πk − 2

𝒟
j1, …, jk − 2

(k − 1) (x) .

Consequently, the optimal treatment for a patient with x is (k − 1) if and only if 

𝒟(k − 1)(x) = 1 and 𝒟(k)(x) = − 1.

Step 5. Continue this backward elimination and sequential learning in turn for treatment (k 

− 2), …, 1 so as to obtain 𝒟(k − 2)(x), …, 𝒟1(x). Our final estimated optimal ITR is

𝒟(x) =

k 𝒟(k)(x) = 1

k − 1 𝒟(k)(x) = − 1, 𝒟(k − 1)(x) = 1
⋮ ⋮

2 𝒟(k)(x) = − 1, …, 𝒟(3)(x) = − 1, 𝒟(2)(x) = 1

1 𝒟(k)(x) = − 1, …, 𝒟(3)(x) = − 1, 𝒟(2)(x) = − 1.

We summarize the algorithm for k-category SOM learning in Algorithm 1. We note that 

because of the sequential exclusion of subjects, the size of the input data decreases in a 

proportional fashion in each step of SOM. Therefore, SOM can be computationally efficient 

due to the fast implementation of SVM and reduced data sizes in each step. In our numeric 

examples, SVM at each step is implemented using quadratic programming tools in 

MATLAB. MATLAB codes to implement SOM are available at http://www.columbia.edu/

~yw2016/code_SOM.zip.

We note that SOM learning requires a total of ∑l = 1
k (l − 1) ×(l − 1)! = k! − 1 weighted binary 

SVM classifications. Thus, the computational cost increases exponentially with the number 

of treatment categories. However, because of the sequential exclusion of subjects, the size of 

the input data decreases in a proportional fashion so that computation is faster at each step.
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III. Theoretical Justification

In this section, we first establish the Fisher consistency of the optimal ITR estimated using 

SOM learning. Next, we obtain a risk bound for the estimated ITR and show how the bound 

can be improved in certain situations.

Algorithm 1: Sketch of SOM Learning Algorithm

 Backward loop: for a target treatment category s ∈ {k, …, 1}, do

  Inner loop: for each permutation of the remaining treatment assignments except the previously classified ones and 
target treatment label s, perform a sequence

 of weighted O-learning to learn 𝒟 j1, …, js − 1 (x)for each permutation (j1, …, js) of {1, …, s}.

 Collect all rules to obtain

𝒟s(x) = max
j1, …, js − 1 ∈ Πs − 1

𝒟
j1, …, js − 1

s (x) .

 After eliminating all samples with observed treatment labels as previously considered treatment or whose optimal 
treatments are within any of the previous categories, go to

 the backward loop step.

A. Fisher consistency

We provide the Fisher consistency for the proposed SOM learning. That is, when the sample 

size is infinity, we show that the derived ITR is the same as the true optimal ITR

argmaxl = 1
k E(R X = x, A = l) .

Let f jl
*(x) be the counterpart of f jl

(x) in the SOM learning procedure when n = ∞ and the 

tuning parameters vanish. Let 𝒟
j1, …, js

* l (x) and 𝒟 * l(x) be the corresponding limits of 

𝒟
j1, …, js

l (x) and 𝒟l(x), respectively, when n = ∞. Then the limit of the ITR from SOM 

learning is

𝒟*(x) =

k 𝒟 * (k)(x) = 1

k − 1 𝒟 * (k)(x) = − 1, 𝒟 * (k − 1)(x) = 1
⋮ ⋮

2 𝒟 * (k)(x) = − 1, …, 𝒟 * (3)(x) = − 1

𝒟 * (2)(x) = 1

1 𝒟 * (k)(x) = − 1, …, 𝒟 * (3)(x) = − 1

𝒟 * (2)(x) = − 1 .
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The following result holds.

Theorem 1: SOM learning rule 𝒟*(X) is Fisher consistent. That is, 𝒟*(x) = l if and only if 

E R X = x, A = l = maxh = 1
k E(R | X = x, A = h) for l = 1, …, k.

Theorem 1 provides a theoretical justification that SOM yields the true optimal ITR 

asymptotically. The proof of Theorem 1 is given in the appendix. The key result is to show 

that at each step of SOM learning, we compare the conditional mean E[R|X, A = j1] with the 

average value of E[R|X, A = j2], where j1 is the target treatment category in consideration at 

this step and j2 is any treatment category among the remaining options.

B. Risk bounds

For any ITR 𝒟(x) associated with decision function 𝒟(x), define

ℛ(𝒟) = E R
πA(X) I A ≠ 𝒟(X)

where j = 1, …, k, πA(x) = ∑ j = 1
k I(A = j)pr(A = j | x); and let ℛ* = ℛ 𝒟* . Clearly, ℛ(𝒟) and 

ℛ* correspond to E[R] subtracting the value function for 𝒟 and 𝒟*, respectively. In the 

section, we will derive the convergence rate of the estimated value function from the optimal 

value, which is equivalent to ℛ(𝒟) − ℛ*, under some regularity conditions and assuming 

that the functional spaces for fjl in SOM learning are from a RKHS with Gaussian kernel 

and bandwidth 1/σn.

For any l and subset S in {1, …, k} where l ∉ 𝒮, we define

ηl, 𝒮(x) = E(R X = x, A = l)
𝒮 −1 ∑h ∈ 𝒮E(R X = x, A = h)

,

where |𝒮| denotes the cardinality of S. That is, ηl,S(x) is the ratio between the mean outcome 

of the treatment arm l and the average mean outcome of the treatment options from S. We 

assume that the following conditions hold:

Condition 1: (Geometric noise conditions) There exist q, β > 0, and a constant c such that for 

any l and set 𝒮 with l ∉ 𝒮, it holds that

r ηl, 𝒮(X) − 1 < t ≤ (ct)q,

and moreover,

E exp − Δ(X)2
t ηl, S(X) − 1 ≤ ctβ,

where Δ(X) denotes the distance from X to the boundary defined as {x : ηl,S(x) = 1}.
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Condition 2: The distribution of X satisfies tail component condition pr(|X| ≥ r) ≤ cr−τ for 

some τ ∈ (0, ∞] and E(|R||A = a, X = x) is uniformly bounded away from zero and infinity.

Condition 3: There exists λn such that λ n → 0 and nλn → ∞. Moreover, all tuning 

parameters λnj ’s in SOM satisfy M−1λn ≤ λnj ≤ Mλn for a positive constant M. We further 

assume σn → ∞.

Remark 1: In condition 1, the constants q and β are called noise exponent and marginal 

noise exponent, respectively. They are used to characterize the data distribution near the 

decision boundary at each step of SOM where we compare treatment jl versus any subset of 

{jl+1, …, jk}. In particular, when the boundary is fully separable, that is, |ηl,S − 1| > δ0 for a 

constant δ0, these conditions hold for q = β = ∞. In condition 2, τ describes the decay of the 

distribution of X. When X is bounded, τ = ∞. Condition 3 characterizes the choice of tuning 

parameter and bandwidth in RKHS. We choose this simplification for convenience, although 

we can allow the tuning parameter and bandwidth to be different for each treatment decision 

in the proposed method. Note that these conditions are similar to the ones used to establish 

the convergence rate for the two treatment decision probem in [8]. When R = 1, these 

conditions reduce to the conditions for deriving the convergence rate in support vector 

machine given in [19]. Under conditions 1–3, the following theorem holds.

Theorem 2: Under conditions 1–3, for any ϵ0 > 0, d/(d + τ) < p ≤ 2, there exists a constant C 

such that for any ϵ > 1 and σn = λn
−q/(2β(1 + q)), with probability at least 1 − e−ϵ,

ℛ(𝒟) ≤ ℛ* + C λn
− 2

2 + p +
(2 − p) 1 + ϵ0
(2 + p)(1 + q) n

− 2
2 + p + ϵ

nλn
+ λn

q
1 + q

q
1 + q

Remark 2: Suppose that X is bounded such that τ = ∞ in condition 2. By choosing the 

optimal λn for the last two terms on the right-hand side, i.e., λn = n−(1+q)/(1+2q), we find that 

the convergence rate is n−q/(1+2q). Furthermore, if the separating boundaries are all 

completely separable such that q = ∞, then the convergence rate is close to the square-root-n 
rate.

IV. Related Work

When setting R = 1 and letting (A|X) be a constant, maximizing (1) is equivalent to solving 

a multi-classification problem where A is the class label and X is the vector of feature 

variables. Therefore, SOM also provides a sequential procedure to extend binary SVM to 

multicategory classification. This is different from existing multicatory classification 

methods that convert the multicategory classification into sequential binary problems such as 

OVA and OVO [13], [14], [15]. The latter methods are relatively simple to implement by 

using existing off-the-shelf techniques for binary classifications, although OVO requires 

significantly more computational time than OVA [20], [21]. However, for both OVA and 

OVO, an input sample may be assigned to multiple classes, so ad hoc procedures are 

required to resolve the inconsistency. It is not guaranteed that OVO and OVA will achieve 
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the optimal Bayesian error rate. Another line of work carries out multicategory learning by 

optimizing a single loss function so as to obtain a simultaneous multicategory objective 

function [22], [23], [16]. The computational challenge of such approaches is to learn 

multiple decision boundaries at the same time and all existing algorithms no longer enjoy the 

flexibility and simplicity of many binary classifiers. Finally, we note that for SOM, the 

weights related to classification, 1/(k − h+1), can be replaced by any weights wj that satisfies 

∑ j = 1
k − h + 1w j = 1. In particular, by taking wj = 1 for the hth target category and 0 for other 

categories, the computation of SOM reduces to OVO. However, the construction of the final 

decision rule for SOM and OVO is completely different.

V. Experiments

A. Simulated Data

We conduct extensive simulation studies from two settings to examine the small-sample 

performance of SOM. In the first simulation setting, 20 feature variables are simulated from 

a multivariate normal distribution, where the first 10 variables X1, X2, …, X10 have a 

pairwise correlation of 0.8, the remaining 10 variables are uncorrelated, and the marginal 

distribution for each variable is N(0, 1). We generate 3-category random treatment 

assignments with equal probability, i.e. pr(A = 1|X) = pr(A = 2|X) = pr(A = 3|X) = 1/3. The 

clinical outcomes are generated as: R = X4 + X2
2 − X1

2 I(A = 2) + X3
3I(A = 3) + 0.5 × N(0, 1).

In the second simulation setting, we simulate data to imitate patient heterogeneity as 

observed in real world studies under a latent class model similar to [18] and [9]. The patient 

population consists of a finite number of latent subgroups for which the optimal treatment 

rule is the same within each subgroup. Specifically, we consider 10 latent groups and the 

true optimal treatment category of each group is, in turn, A* = 3, 3, 1, 2, 2, 1, 2, 3, 3, 1. To 

generate data mimicking a three-arm randomized trial, for each subject, the observed 

treatment assignment A is randomly generated with an equal probability. The clinical 

outcome is generated as R = 4×I(A = A*)−1+ 0.5 × N(0, 1). Furthermore, we imitate a 

common real world scenario where the treatment mechanism may not be known and thus the 

latent subgroup labels are not observed: instead of directly using group labels as observed 

feature variables, we generate feature variables that are informative of the latent group 

membership as observed data. We simulate 30 feature variables from a multivariate normal 

distribution, where the first 10 variables X1, X2, …, X10 have a pairwise correlation of 0.8, 

the remaining 20 variables are uncorrelated, and the variance for each variable is 1. 

Moreover, X1, X2, …, X10 have mean values of μl for the latent group l, which are generated 

from N(0, 5), while the means of X11, …, X30 are all zeros. Therefore, only X1, X2, …, X10 

are informative of the optimal treatment labels due to different μl. The observed data for 

each subject consist of the treatment assignment A, the feature variables X1, …, X30, and the 

clinical outcome R.

For each simulated data, we apply SOM learning to estimate the optimal ITR. At each step, 

we fit a weighted SVM with a linear kernel. The tuning parameter is chosen using cross-

validation. Furthermore, we compare SOM regression-based Q-learning, OVA and OVO 

based on the value function (reward) of the estimated optimal treatment rules. Q-learning is 
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obtained by fitting a linear model, regressing R on X, A and their interactions, in which A is 

replaced by dummy variables created for each category of A. For OVA and OVO, to ensure 

the rewards are positive, we use the absolute value of rewards as weights, and at each binary 

step, new labels are created by multiplying the original labels with the sign of reward. This 

approach is extracted from our SOM learning. Because both OVO and OVA algorithms 

break multi-treatment problem down to binary ones, the main drawback is that if a subject is 

assigned to different treatments in the binary classifications, the final assignment will be the 

one with the smallest label value. For each setting, we compare the four methods with 

different sample sizes: n =300, 600, and 900.

Figures 1 and 2 present the results of the optimal treatment mis-allocation rates and the 

estimated value functions from 100 replicates and difference sample sizes, which are 

computed in an independently generated test data of size 3 million. In both settings, the 

regression model in Q-learning is misspecified, so it performs worse under all sample sizes. 

Instead, SOM learning outperforms the competitors including OVA and OVO in all the 

simulation settings. For SOM learning, we also used Gaussian kernel when training binary 

weighted SVMs and found negligible differences from using linear kernel. However, since 

computational burden using the former is much more intensive, we recommend to use linear 

kernel in practice.

To compare the running time of different methods, we performed a simulation study under 

the same setting as [16] with 3 categories (Figure 1 in [16]). The reward weights were set as 

a constant of one. On a Linux-based computing system with 2-core, 2.40 GHz Intel 

processor, the average CPU running time for SOM (without subject-specific weights), OVA, 

[23] and [16] are: 0.4, 1, 14, 26 seconds, respectively. The average test errors are 29.4%, 

41.7%, 32.0%, 34.0% on independent testing data (Bayes error 28.5%). SOM not only 

achieves the lowest testing error but also runs the fastest.

B. Real World Data: REVAMP Study

We obtained data from a real world study of major depression, REVAMP trial [12], to 

evaluate the performance of various methods (data access information available at https://

ndar.nih.gov/edit_collection.html?id=2153). The study aimed to evaluate the efficacy of 

adjunctive psychotherapy to treat patients with chronic depression who have failed to fully 

respond to the initial treatment with an antidepressant medication. Among 808 participants 

in phase I of REVAMP, 491 were nonresponders or partial responders and entered phase II 

of the study. At phase II, these 491 participants were then randomized to receive continued 

pharmacotherapy and augmentation with brief supportive psychotherapy (MEDS+BSP), 

continued pharmacotherapy and augmentation with cognitive behavioral analysis system of 

psychotherapy (MEDS+CBASP), or continued pharmacotherapy (MEDS) alone. Patients 

were followed for 12 weeks. The primary outcome was the Hamilton Scale for Depression 

(HAM-D) scores at the end of 12-week follow-up. There were 17 baseline feature variables 

including participants’ demographics, patient’s expectation of treatment efficacy, social 

adjustment scale, mood and anxiety symptoms, and depression experience, as well as phase 

I depressive symptom measures such as rate of change in HAM-D score over phase I, HAM-
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D score at the end of phase I, rate of change of Quick Inventory of Depression Symptoms 

(QIDS) scores during phase I, and QIDS at the end of phase I.

After excluding participants with missing data (assuming missing completely at random), 

the final analysis consists of 318 participants, among whom 134, 123, and 61 were assigned 

to MEDS+BSP, MEDS+CBASP, and MEDS, respectively. The mean HAM-D at the end of 

phase II for the non-personalized treatment rule assigning all patients to each of the three 

treatments is summarized in Table I. Treating all patients by MEDS+CBASP has the lowest 

post-treatment HAM-D score, but there is no statistically significant differences in the 

changes of HAM-D scores during phase II between the 3 treatment rules [12].

Our analysis goal is to estimate the optimal ITR among three different options depending on 

17 baseline feature variables, so that the value function (average HAM-D scores) under the 

ITR can be as low as possible. All feature variables are standardized before the analyses. We 

apply SOM learning and compare with Q-learning that uses (1, X, A, X A) in the regression 

model, where X represents feature variables and A is the randomized treatment assignments, 

as well as OVA and OVO. The expected HAM-D for an ITR is calculated from 2-fold cross-

validation with 500 replicates: at each replicate, we randomly split the data into a training 

sample and a testing sample; we then apply SOM to learn the optimal ITR using the training 

data and compute the expected value in the testing sample under this estimated rule. The 

averages of the cross-validated value functions from four methods are presented in Table I, 

and their distributions over cross-validations are plotted in Figure 3. With a value function of 

8.91, the SOM learning achieves the lowest HAM-D compared to Q-learning, OVA, OVO, 

and any of the non-personalized rules. For example, treating patients using the SOM 

estimated ITR according to their individual characteristics will reduce HAM-D by 17% 

compared to treating all patients by MEDS+CBASP (8.91 points versus 10.75 points), and 

the reduction is also substantial compared to OVA and OVO (27% and 18%).

There are 99, 103, and 116 patients predicted to have MEDS+BSP, MEDS+CBASP, and 

MEDS alone as the optimal treatment, respectively. Table II presents the coefficients of the 5 

submodels derived from SOM learning rule in the REVAMP study. Model 1 and model 2 

correspond to the 2 permutations of the inner loop, determining whether a subject should be 

optimally assigned to MEDS only or not. After eliminating the possibility of being assigned 

to MEDS only, model 3 assigns a subject into MEDS+BSP or MEDS+CBASP treatment. 

Let β11, β12, β21, β22, β3 be the estimated coefficients of model 1(1), 1(2), 2(1), 2(2) and 3, 

respectively. A patient will be assigned with: MEDS if XTβ11 < 0, XTβ12 < 0 , or 

XTβ21 < 0, XTβ22 < 0 ; MEDS+CBASP if not assigned to MEDS and XTβ3 < 0; MEDS

+BSP if not assigned to MEDS and XTβ3 > 0.

The column “Norm” in Table II reports the overall effect of feature variables on the optimal 

treatment decision rule as the L2-norm of all coefficients for predicting each model. The 

overall most predictive variable in estimating the optimal ITR as determined by the norm is 

phase I QISD rate of change, followed by phase I HAM-D rate of change. Both variables are 

most predictive of patients with MEDS alone as the optimal choice compared to two other 
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combined pharmacotherapy and psychotherapy. Gender, response at phase I, patients 

expectancy of treatment efficacy, and CBASP expectation are also informative with an 

overall effect size greater than 0.7. Gender is also most predictive of MEDS alone versus 

two combined therapies with females favoring the latter. Other predictive variables include 

history of drug abuse and current alcohol use. No feature variable has a substantially large 

effect in model 3, implies that potentially many variables are in play to distinguish MEDS 

only versus the other two combined therapies. In a recent analysis of another randomized 

trial on major depressive disorder comparing Nefazodone, CBASP, and the combination of 

the two treatments, obsessive compulsive and past history of alcohol dependence [24], race, 

and education level [25] are identified as predictive by Q-learning, which partially 

corroborates our findings. Our analyses identify several additional feature variables as 

informative.

To further visualize the relationship between feature variables and the optimal treatment for 

each individual, in Figure 4 we present the heatmap of 17 standardized feature variables by 

predicted optimal treatment on all subjects. The history of drug abuse has a different pattern 

between patients with MEDS+BSP as the optimal choice and patients in the other two 

groups (more prevalent in the former versus the latter groups), and thus may be informative 

of distinguishing MEDS+BSP versus others; dysfunctional attitudes, and patient’s treatment 

efficacy expectation, frequency of sides effects, HAM-D rate of change during phase I, 

QIDS and HAM-D end of phase I score are informative for distinguishing all three 

treatments. It is clear that no single variable has a dominating effect on estimating the 

optimal ITR, and combining all feature variables is more effective.

VI. Conclusions

We propose a sequential outcome-weighted learning, SOM learning, to estimate the optimal 

ITRs with multicategory treatment studies, where each step solves a weighted binary 

classification problem via SVMs. By carefully choosing weights in each SVM step and 

combining the treatment decision functions from all steps, we showed that the derived 

treatment rule is Fisher consistent. This consistency is not guaranteed by other simpler 

mutli-category learning algorithms (e.g., OVA). In comparison to consistent learning 

algorithm [17], SOM does not require non-convex optimization and thus is more reliable. In 

both numeric simulations and data application, SOM learning yields a better value function 

as compared to the method based on standard regression model or other straightforward 

methods such as OVO and OVA. Computationally, the running time of SOM is comparable 

to existing multicateogry learning methods. An application to REVAMP study demonstrates 

that treating patients with major depression by an individualized rule estimated by SOM 

reduces their depressive symptoms more than the best non-personalized treatment rule (e.g., 

treating all patients by the combined therapy of medication and CBASP), and more than 

ITRs estimated by all alternative methods (Q-learning, OVA and OVO).

A major computational cost for SOM learning is to screen all possible permutations of the 

treatment categories. Since the sequential learning for each permutation can be carried out 

independent of one another, an improvement in implementation is to incorporate distributed 
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computing to leverage this natural parallel computing structure especially when there is a 

large number of treatment categories.

SOM learning can be extended in several directions. First, for some chronic diseases with 

multi-stage therapy, dynamic treatment regimens (DTRs) can be more powerful in obtaining 

favorable outcomes than a simple combination of single-stage treatment rules. Various 

approaches have been developed to estimate optimal DTR, such as [4], [26], [5], [7], [27], 

[18]. While our method has focused on single-stage studies only, the proposed procedure can 

be easily generalized to handle multicategory DTR for multiple stage trials. Second, 

although the proposed method was only applied to a finite number of categories, it can be 

naturally extended to find optimal personalized dose, where treatment is on a continuous 

scale, after discretizing the dosage into categories. However, one challenge is to determine 

the number of the categories and the threshold of discretization. A possibility is to include 

these uncertainties as parameters to be estimated in SOM learning.

Finally, although we suggest to treat the most prevalent treatment as the first target optimal 

treatment in SOM, this may result in few cases for later treatments in consideration and 

cause a high mis-allocation rate for patients whose optimal treatments are less prevalent. In 

practice, when different treatments have different importance, for instance, due to the need 

to balance efficacy and risk, the order of the targeted treatments should take into account the 

practical importance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Simulation setting 1 (clinical outcome simulated from a regression model). Box plots of the 

optimal treatment mis-allocation rates and value functions (higher better) on independent 

testing data of ITR constructed by SOM, Q-learning, OVA and OVO (with sample size of 

300, 600, and 900).
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Fig. 2: 
Simulation setting 2 (clinical outcome simulated from a latent class model). Box plots of the 

optimal treatment mis-allocation rates and value functions (higher better) on independent 

testing data of ITR constructed by SOM, Q-learning, OVA and OVO (with sample size of 

300, 600, and 900).
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Fig. 3: 
Box plot of the value function for the optimal ITR estimated by various methods from 2-fold 

cross-validation with 500 repetitions using REVAMP data: HAM-D score after phase II 

treatment (a smaller score indicates a better outcome).
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Fig. 4: 
Heatmap of 17 standardized feature variables on all patients grouped by predicted optimal 

treatment. Row corresponds to feature variables and column corresponds to patients 

stratified by predicted optimal treatment.
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Table I:

Mean (standard deviation) of the HAM-D under non-personalized treatment assignment and value function of 

ITR (2-fold cross-validation with 500 repetitions)

Treatment† MEDS+ BSP MEDS+ CBSP MEDS ONLY

Value* 13.51(0.05) 10.75(0.05) 12.66(0.13)

Method SOM Q-learning OVA OVO

Value* 8.91(2.91) 16.16(2.64) 12.18(1.67) 10.85(2.24)

†
Treatment arm under the designed non-personalized, random assignment rule.

*
Value function is the average HAM-D score at the end of phase II for patients following an estimated optimal treatment (smaller HAM-D 

indicates a better outcome) in the testing samples.
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Table II:

Coefficients of decision rules from SOM in REVAMP (ranked by the overall effect of a feature variable).

Feature Variable Model 1(1) Model 1(2) Model 2(1) Model 2(2) Model 3 Norm*

QISD phase I change − 0.1281 0.0765 0.1200 2.2308 − 0.1338 2.2430

HAM-D phase I change − 0.0063 0.0050 0.0285 1.7769 − 0.0252 1.7773

Gender (Male) − 0.2726 − 0.0565 − 0.0880 − 1.0370 0.0753 1.0800

Phase I response − 0.2269 − 0.0147 0.0166 − 0.7567 − 0.0382 0.7913

Tx efficacy expectation 0.4010 0.1026 0.1232 0.5791 0.0268 0.7229

CBASP expectation − 0.2767 − 0.0153 0.0093 − 0.6371 − 0.1444 0.7097

History of drug abuse 0.3187 0.0199 0.0017 0.5644 0.0648 0.6517

Current alcohol use 0.3159 0.0100 − 0.0801 0.0877 0.2214 0.4038

Social adjustment 0.0813 0.0481 0.1075 − 0.3202 − 0.0207 0.3513

BSP expectation 0.1498 − 0.0349 − 0.0542 0.2703 0.1087 0.3338

Freq of side effects − 0.0189 0.1816 0.1394 0.0909 − 0.1199 0.2746

QISD end of phase I 0.1999 − 0.0216 − 0.0796 0.1259 0.1005 0.2697

Anxious Arousal 0.0957 0.1316 0.1227 0.0850 − 0.0069 0.2209

General Distress − 0.0975 − 0.0900 − 0.0954 − 0.0844 − 0.0085 0.1842

HAMD end of phase I − 0.0449 − 0.0101 0.0108 − 0.0798 − 0.0520 0.1063

Dysfunctional Attitudes − 0.0099 0.0041 0.0058 − 0.0108 − 0.0049 0.0170

Age 0.0017 − 0.0001 − 0.0009 0.0011 0.0018 0.0029

*
“Norm” measures the overall effect of a variable on the optimal treatment assignment rule as the L2 norm of all coefficients for predicting each 

model.
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