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Abstract

Background—Patient-centred care requires evidence of treatment effects across many outcomes. 

Outcomes can be beneficial (e.g. increased survival or cure rates) or detrimental (e.g. adverse 

events, pain associated with treatment, treatment costs, time required for treatment). Treatment 

effects may also be heterogeneous across outcomes and across patients. Randomized controlled 

trials are usually insufficient to supply evidence across outcomes. Observational data analysis is an 

alternative, with the caveat that the treatments observed are choices. Real-world treatment choice 

often involves complex assessment of expected effects across the array of outcomes. Failure to 

account for this complexity when interpreting treatment effect estimates could lead to clinical and 

policy mistakes.

Objective—Our objective was to assess the properties of treatment effect estimates based on 

choice when treatments have heterogeneous effects on both beneficial and detrimental outcomes 

across patients.

Methods—Simulation methods were used to highlight the sensitivity of treatment effect 

estimates to the distributions of treatment effects across patients across outcomes. Scenarios with 

alternative correlations between benefit and detriment treatment effects across patients were used. 

Regression and instrumental variable estimators were applied to the simulated data for both 

outcomes.
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Results—True treatment effect parameters are sensitive to the relationships of treatment 

effectiveness across outcomes in each study population. In each simulation scenario, treatment 

effect estimate interpretations for each outcome are aligned with results shown previously in single 

outcome models, but these estimates vary across simulated populations with the correlations of 

treatment effects across patients across outcomes.

Conclusions—If estimator assumptions are valid, estimates across outcomes can be used to 

assess the optimality of treatment rates in a study population. However, because true treatment 

effect parameters are sensitive to correlations of treatment effects across outcomes, decision 

makers should be cautious about generalizing estimates to other populations.

1 Background

The healthcare literature is beginning to appreciate the importance of variation in treatment 

effectiveness across patients, or ‘treatment effect heterogeneity’, when evaluating the 

potential effects of policies designed to modify healthcare decisions in practice [1–7]. If 

treatment effects are heterogeneous across patients it may not be valid to use the single 

effect estimate from a randomized controlled trial (RCT) as the basis for these evaluations 

[1]. In addition, an existing methods literature focuses on treatment effect estimate 

interpretation using observational databases when the effect of treatment on a single study 

outcome or the ‘outcome of interest’ is heterogeneous across patients [8–12]. This literature 

describes the conditions under which various estimators can produce estimates of treatment 

effect parameters, such as the average treatment effect across a population (ATE), the 

average treatment effect on the patients in a population who were treated (ATT), the average 

treatment effect on the untreated in a population (ATU), and the local average treatment 

effect (LATE), which is the average treatment effect for patients in a population whose 

treatment choices are sensitive to the value of a specific instrumental variable. This literature 

stresses the importance in estimate interpretation of ‘sorting on the gain’ or ‘essential 

heterogeneity’ in which treatment choice reflects the expected treatment effectiveness on the 

single outcome of interest for each patient [9, 13–16]. It has been shown that regression and 

instrumental variable estimators yield estimates of distinct treatment effect parameters [9, 

13–15, 17]. As a result, with essential heterogeneity, treatment effect estimates for the 

outcome of interest can differ across estimators for the same study population and all be 

correct [9, 13–15]. In addition, it has been shown that alternative instruments in an 

instrumental variable analysis with the same population can yield different and correct 

estimates of LATE for the outcome of interest [18–21].

This is not the end of the parameter variation story. With essential heterogeneity, the true 

values of ATT, ATU, and LATE in study populations reflect the distribution of other factors 

affecting treatment choice within each population [22, 23]. In consequence, treatment effect 

estimates for the outcome of interest can differ across study populations and be correct for 

each study population. We demonstrate this result here using scenarios in which a treatment 

has heterogeneous effects across more than one outcome [24, 25]. Theoretical models of 

essential heterogeneity over a single outcome of interest are insufficient to describe observed 

behaviours such as ‘treatment-risk paradox’ [26–33]. Treatment-risk paradox is the label 

applied to clinical situations in which patients thought to have the most to gain from 
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treatment in the outcome of interest are observed to be the least likely treated in real-world 

practice. For example, research showed higher-risk coronary patients were less likely to 

receive guideline-supported care [34].

A possible explanation for treatment-risk paradox is that patients with the most to gain from 

treatment in the outcome of interest may have higher expected losses from treatment in other 

outcomes. Instead of sorting on the gain from a single outcome, observed treatment variation 

may result from ‘sorting on the mix’ of expected benefits and detriments across outcomes. 

The implications of treatment effect heterogeneity across outcomes on treatment choice and 

the inferences that can be made from treatment effect estimates using observational data 

have not been investigated. If treatment choice affects an array of outcomes differentially 

across patients, the true treatment effect parameters on the outcome of interest can vary 

across study populations or within stratified subsets of the same study population. For 

example, research assessing the treatment effects of statins after acute myocardial infarction 

(AMI) in the Medicare population found similar absolute survival benefits from statins for 

both complex and non-complex patients, yet treatment rates for complex statin patients were 

much lower than for the non-complex patients [35]. Stratified analysis by patient complexity 

revealed that complex AMI patients had liver, kidney, and muscular adverse effect risks that 

were not observed in the non-complex patients. It is possible that lower statin prescribing 

rates for complex AMI patients in practice reflected consideration of both the benefits and 

the detriments of statin use in complex patients. Modifying statin prescribing rates for the 

complex AMI patients to match the rates in the non-complex patients could result in 

intolerable increases in side effect rates for complex patients.

Therefore, interpreting treatment effect estimates on a single outcome of interest without 

considering the effects of treatment on other outcomes can lead to improper conclusions and 

misguided clinical and policy recommendations. This study uses simulation modelling to 

demonstrate this point. We assessed the sensitivity of treatment effect estimates from 

regression and instrumental variable (IV) estimators when treatment effects are 

heterogeneous for both benefit and detriment outcomes, and treatment choice reflects this 

heterogeneity. In each simulation scenario, the assumptions required for the consistency of 

regression and IV estimates are met so that the estimates in each scenario are not affected by 

unmeasured confounding. The distributions of the treatment effects across populations for 

the benefit outcome was consistent across simulation scenarios. The distribution of treatment 

effects across the detriment outcome was varied across the simulated populations.

It was our objective to show in these simulations that, even in the best of circumstances for 

both regression estimators (no correlation between treatment and the error term) and IV 

estimators (no correlation between the instrument and the error term and an instrument with 

a strong effect on treatment choice), the resulting unbiased estimates are sensitive to the 

distinct circumstances related to treatment choice within each sample population. In 

empirical work with observational data, researchers still need theory to justify these 

assumptions [13, 36, 37], and IV analysis requires the existence of instruments with strong 

relationships with treatment choice [38, 39].
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2 Methods

2.1 Interpretive Framework

Assume the research goal is to assess the comparative effectiveness of a treatment (T) 

relative to an alternative (A) on the outcome of interest (Y#) across a population of patients 

with a given health condition. However, for each patient, the decision of T versus A affects 

K distinct outcomes (Yk), which include Y# [24, 25]. The Yks can represent benefits such as 

increased cure or survival probabilities or detriments such as direct treatment costs, time 

costs, or adverse event risks [24]. Equations (1)–(3) describe the true effect of T relative to A 

on each outcome Yk for patient ‘i’ with a counterfactual model:

Yk1i = δk0i + δk1i (1)

Yk0i = δk0i  for all k = 1 to K . (2)

Yk1i equals outcome ‘k’ for patient ‘i’ if treated with T, and Yk0i equals the value of 

outcome ‘k’ for patient ‘i’ if treated with A. The treatment effect (TE) of T relative to A on 

outcome ‘k’ is specific to each patient:

TEki = Yk1i − Yk0i = δk1i (3)

The parameters δk1i can be positive or negative across the ‘k’ outcomes depending on how 

each outcome is measured. For example, relative to A, for patient ‘i’, T may increase cure 

probability, lower costs, and increase risk of an adverse event. The treatment effect for the 

outcome of interest for patient ‘i’ is designated δ#1i

Research to obtain evidence about the distribution of δ#1i across patients requires a dataset 

in which Ti varies across patients. In observational healthcare databases, this variation 

results from different patient–provider dyads making different treatment choices. Following 

suggested approaches [11, 40], treatment choice is modelled here on the beliefs or 

expectations each dyad ‘i’ has over how treatments will affect each Yk outcome for patient 

‘i’ and the values ‘i’ places on each of the K expected outcome changes:

Yk1i = αk0i + αk1i for k = 1 to K (4)

Yk0i = αk0i for k = 1 to K (5)
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TEki = Yk1i − Yk0i = αk1i fork = 1toK (6)

NV i = ∑
k = 1

K
Vki ⋅  αk1i (7)

T i = 1 if  NBi > 0 , 0otherwise . (8)

Equations (4) and (5) are patterned after (1) and (2), except the αk0i and αk1i parameters 

reflect the effectiveness beliefs of ‘i’ with respect to each outcome ‘k’. Yk1i and Yk0i are the 

expected results of ‘i’ for outcome ‘k’ if treated with T and A, respectively and TEki is the 

expected treatment effect. NVi is the expected net value of T relative to A for dyad ‘i’ at 

treatment decision time. The parameters Vki (k = 1–K) reflect the value ‘i’ places on each 

unit of expected outcome change. The Vkis are positive for outcome changes that benefit the 

patient and negative for outcome changes detrimental to the patient. A dyad chooses Ti if 

NVi> 0. Variation in Ti across patients with the same condition in an observational 

healthcare database stems from differences in the belief and value parameters in equation (7) 

across the patient–provider dyads.

The specification of the K outcomes important to patients in equation (7) makes their role 

explicit when interpreting and generalizing treatment effect estimates across study 

populations. In prior discussions of essential heterogeneity, only variation in α#1i across 

patients provided the basis for ‘sorting on the gain’. It was acknowledged that treatment 

choice can affect other outcomes (e.g. costs), but it was also assumed implicitly that no 

relationships existed between α#1i and treatment effects on the other outcomes [8, 10]. In 

real-world practice, it is possible that correlations in treatment effects across outcomes exist 

across patients and these correlations differ across study populations. For example, in 

complex elderly populations, patients with the highest expected benefit from treatment in the 

outcome of interest may also have the highest expected risk of detriment from treatment. 

This positive relationship between benefit and detriment may not exist for younger non-

complex patients.

2.2 Simulation Approach

We expanded the simulation model of treatment choice and outcome used in other research 

[22, 41] to include two outcomes representing the benefit (B) and detriment (D) associated 

with treatment choice. For this exercise, B and D are modelled as discrete events. Relative to 

alternative (A), for patient ‘i’ treatment (T) increases the probability of both the benefit P(Bi) 

and detriment P(Di) occurring. These probabilities are heterogeneous across patients based 

on a factor (Xi) that is observed by the decision dyad but is unobserved by the researcher. 

These relationships are represented by the following equations for patient ‘i’:
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P Bi = δB0 + δB10 + δB11 ⋅ Xi ⋅ T i (9)

P Di = δD0 + δD10 + δD11 ⋅ Xi + vi ⋅ T i (10)

Ti = 1 if patient ‘i’ receives treatment and 0 if patient ‘i’ receives A. Xi affects the effect of 

Ti on both P(Bi) and P(Di) but does not have a direct effect on either P(Bi) or P(Di). The true 

treatment effects of T relative to A for patient ‘i’ are represented by equations (11) and (12):

TEBi = δB10 + δB11 ⋅ Xi (11)

TEDi = δD10 + δD11 ⋅ Xi + vi (12)

Because Xi is in both equations, varying the parameters in equations (11) and (12) leads to 

different relationships in treatment effects across outcomes in the simulated populations. We 

label B as the outcome of interest and fixed the parameters in equation (11) across 

simulations. The parameters in equation (12) were varied across simulations to reflect 

distinct treatment effect relationships between TEBi and TEDi in each population. A ‘noise’ 

term vi is specified in equation (12) to portray real-world conditions in which the 

correlations in treatment effects across outcomes are not perfect.

Xi affects net treatment value through its influence on expected treatment effects as seen in 

the following relationship:

NVi = VB ⋅ αB10 + αB11 ⋅ Xi + VD
⋅ αD10 + αD11 ⋅ Xi + vi + VZ ⋅ Zi + μi,

(13)

where NVi is the expected net value of T relative to A for patient ‘i’; VB is the value each 

patient gains if the benefit occurs, and VD is each value a patient loses if the detriment 

occurs. These value parameters can be patient specific, as in equation (7). In our simulations, 

we specified them as constants across patients to focus on the implications of correlations of 

treatment effects across outcomes. The parameters in equations (11) and (12) reflect the true 

treatment effect relationships conditional on Xi, whereas the parameters in equation (13) 

reflect the expected treatment effects conditional on Xi when the treatment decision is made. 

This distinction enabled us to simulate the consequences when expectations do not match 

the true treatment effects for each patient. VB·(αB10 + αB11·Xi) represents the value decision 

dyad ‘i’ places on the expected change in benefit probability associated with treatment. VD-

((αD10 + αD11·Xi) + vi) represents the value decision dyad ‘i’ places on the expected change 

in the probability of the detriment associated with treatment. Zi and μi represent factors 
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affecting net treatment value that have no effect on either P(Bi) or P(Di). Zi is measured by 

the researcher and μi is not. Zi will serve as our instrument and is specified as a binary 

variable. VZ is specified as a negative value if Zi = 1 and a positive value if Zi = 0.

Five simulation scenarios were generated by varying the parameters in equations (11), (12) 

and (13). These scenarios are summarized in Table 1. Simulated patients were randomly 

assigned values of Xi, Zi, vi, and μi using distributions detailed in Table 1. NVi was then 

computed for each patient. Following standard discrete choice theory [42], simulated 

patients chose treatment (Ti) if NVi was >0. Equations (11) and (12) were used to estimate 

the ‘true’ benefit and detriment treatment effects for each patient, respectively, conditional 

on treatment choice. Using the outcome probabilities from equations (9) and (10), 

respectively, benefit/non-benefit (Bi) and detriment/non-detriment (Di) binary outcomes 

were simulated for each patient using the ‘Bernoulli’ option within the RAND function in 

SAS 9.1. The Bernoulli option simulates a binary outcome (1 if the outcome occurs, 0 

otherwise) based on the probability of an outcome occurring.

In all five scenarios, the true distribution of TEBi conditional on Xi was distributed 

uniformly across patients between 0 and 0.25, with an average treatment effect on the benefit 

in each simulated population of 0.125. For the benefit outcome, the expected treatment effect 

used in treatment choice equalled the true treatment effect (δB10 = δB10 and δB11 = δB11) in 

all scenarios. The δD10, δD11, αD10, αD11 parameters were modified across scenarios to 

reflect different correlations between benefit and detriment treatment effects and distinct 

relationships between expected and true treatment effects on the detriment. In scenario I, a 

negative correlation existed between TEBi and TEDi. Patients with low values of Xi had the 

highest probability of benefit from treatment and the lowest probability of detriment. RCTs 

often use exclusion rules to try to isolate patients like those in scenario I. Scenario II was 

also characterized by a negative correlation between TEBi and TEDi, but relative to scenario 

I, patients in scenario II had a higher probability of detriment at every Xi level. Scenario III 

displays treatment–risk paradox with a positive correlation between TEBi and TEDi. Patients 

with low values of Xi had the highest probability of both benefit and detriment from 

treatment. In addition, in scenario III, the probability of detriment was high enough so that 

for most patients with low Xi values NVi<0. In scenario IV, patients have the true detriment 

relationship in scenario II, but the decision dyads have expectations of detriment risk as in 

scenario I. Scenario IV occurs if providers accept claims of external validity of RCT results 

for a new treatment without experiencing how the treatment works in patients unlike those in 

the trial. Scenario V is like scenario IV except that the true detriment relationship matches 

the treatment–risk paradox case of scenario III.

In all five scenarios, 1000 simulations were run, each containing 5000 patients. Within each 

simulated population we calculated the true ATT, ATU, and LATE for both the benefit (Bi) 

and the detriment (Di). We identified the simulated patients whose treatment choices were 

responsive to their instrument values in each simulation run—the marginal patients [43, 44]. 

These patients were used to estimate the true LATE. Marginal patients were those with (a) Zi 

= 1 who did not choose treatment but would have chosen treatment had Zi = 0, or (b) Zi = 0 

who chose treatment but would not have chosen treatment had Zi = 1. Using the Ti, Bi, Di, 

Brooks et al. Page 7

Appl Health Econ Health Policy. Author manuscript; available in PMC 2019 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Zi values in each simulation run, we estimated equations (9) and (10) using regression 

and IV estimators and compared the estimates to the true ATE, ATT, ATU, and LATE values.

3 Results

Figures 1, 2, 3, 4, 5 contain scatter plots of the true TEBi (blue) and true TEDi (red) 

distributions for scenarios I–V, respectively. The horizontal axis displays the Xi value for 

each simulated patient. For clarity, only the 1000 observations from the first simulation in 

each scenario are displayed. In the simulations, each patient chose treatment if the expected 

benefit from treatment was greater than the expected detriment. Each figure contains a frame 

for (a) all simulated patients, (b) all simulated patients who chose treatment, (c) all 

simulated patients who did not choose treatment, and (d) the marginal simulated patients—

those whose treatment choice would have changed if their discrete instrument value 

switched. The left and right vertical axes are in terms of the true benefit treatment effect and 

(TEBi) detriment treatment effect (TEDi) for each simulated patient, respectively. Frame (b) 

in each figure shows several patients with TEBi<TEDi who were treated, and frame (c) shows 

several patients with TEBi>TEDi who were not treated. This occurs because the net value of 

treatment (NVi) also varies with the value associated with the instrument (Zi) and the 

random error term (μi). In addition, in scenarios IV and V, NVi is calculated with expected 

detriment treatment effects that do not match the true effects.

Figures 1, 2, 3 contain scenarios in which treatment effect expectations match the truth. In 

scenario I (Fig. 1b), treated patients are more likely those with lower Xi values and higher 

expected benefit treatment effects but are found nearly across the range of the Xi axis. In 

contrast, in scenario II (Fig. 2b), no treated patients have an X value > 0.65 and, in scenario 

III (Fig. 3b), treated patients are found mostly at higher levels of Xi. With respect to 

marginal patients, in scenario I (Fig. 1d), the majority are distributed at levels of Xi between 

0.25 and 0.75. In scenario II (Fig. 2d), the majority of marginal patients are distributed at 

levels of Xi between 0.05 and 0.55. In scenario III, marginal patients are found across the Xi 

distribution but mostly at higher levels of Xi. In scenarios IV (Fig. 4) and V (Fig. 5), 

treatment choice is based on the treatment effect distribution found in scenario I so that the 

distributions Xi for the treated and marginal patients in these scenarios match scenario I.

3.1 Variation in True Treatment Effect Parameters

Table 2 contains the true average treatment effects for both the benefit and detriment in each 

simulation scenario and the regression and IV parameter estimates for the treatment effect 

on both the benefit and the detriment. All values in Table 2 are averages over the 1000 

simulations for each scenario. The average treatment effect on the benefit in the population 

(ATEB) is the same by design (0.125) across scenarios. The average treatment effect on the 

detriment in the population (ATED) varies across scenarios and was lowest in scenario I. 

Despite a consistent distribution of benefit treatment effects across scenarios, the true 

average treatment effects on the benefit for the treated (ATTB), untreated (ATUB), and 

marginal patients (LATEB) in scenarios 1–3 varied significantly. In scenario II, true ATTB, 

ATUB, and LATEB are all higher than in scenario I. This occurs because ATED is higher in 

scenario II than in scenario I and, like scenario I, benefit treatment effects in scenario II are 
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negatively correlated with detriment treatment effects across patients. Higher expected 

benefits from treatment are required for patients to choose treatment in scenario II than 

scenario I, and fewer patients chose treatment. In scenario III, ATED was also greater than 

the ATED in scenario I, yet ATTB and LATEB were lower in scenario III than in scenario I. 

These differences are attributable to the positive correlation between benefit and detriment 

treatment effects in scenario III. Few patients with high probabilities of obtaining the benefit 

from treatment in scenario III chose treatment because they also had high detriment risk. In 

scenarios IV and V, the expectations of benefit and detriment treatment effects used to 

calculate NVi were identical to scenario I, so each patient in scenarios IV and V made the 

same treatment choices as in scenario I. The true values of ATTB, ATUB, and LATEB match 

scenario I. However, the true values of ATTD, ATUD, and LATED are considerably higher 

than in scenario I because the true detriment treatment effects in scenarios IV and V were 

higher than the detriment effect expectations used to calculate NVi.

Correlations of expected treatment effects across outcomes also affected the relationships 

among the treatment effect parameters in each scenario. In scenarios I and II, true 

ATTB>LATEB. Treated patients had a higher average treatment effect on the benefit than 

the patients whose treatment choices were responsive to the instrument. This result is 

universal under essential heterogeneity with respect to a benefit if the treatment effects on 

benefit are uncorrelated or negatively correlated with the treatment effects on the detriment 

across patients. The set of treated patients contains both marginal and non-marginal patients. 

Under the conditions listed above, all non-marginal treated patients will have benefit 

treatment effects greater than those of the marginal patients. This can be seen by comparing 

Figs. 1b, d, as no treated patients with Xi values between 0 and 0.1 are in the marginal 

group. Under the same conditions, the opposite is true for detriments, ATTD<LATED. 

Alternatively, if the treatment effects on the benefit are positively correlated with the 

treatment effects on the detriment across patients, it is possible for true ATTB<LATEB, as 

shown in scenario III.

Evaluating the true LATEB and LATED parameters in each scenario with the outcome 

valuation parameters VB and VD in Table 1 provides insight into the treatment allocation 

process within a population. In scenarios I–III, the average value of the expected benefit 

from treatment for marginal patients approximately equalled the average expected losses 

from treatment. For example, in scenario I, the average value of the benefit gained by 

treatment for marginal patients equalled (0.098 × 9 2000 = 196.0). The average value of 

detriment lost by treatment for marginal patients equalled (0.111 × 1800 = 199.8). If 

treatment effect expectations match the truth, as in scenarios I–III, this result is expected 

under essential heterogeneity. If treatments are correctly sorted across patients, the marginal 

patients would be those whose expected benefit and detriment values from treatment are 

sufficiently similar that their treatment choices are sensitive to their instrument values. In 

contrast, in scenarios IV and V, treatment effect expectations for the detriment were lower 

than the true detriment treatment effects. In these scenarios, the true average value of the 

loss associated with treatment for the marginal patients was greater than the average value of 

the benefit for these patients. These results are borne out when evaluating the true LATE 

values for the marginal patients. For example, in scenario V for marginal patients, the 

average value of the true benefit gained by treatment equalled (0.099 × 2000 = 198), 
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whereas the average value of the true detriment lost by treatment equalled (0.221 × 1800 = 

397.8). These results show that decision dyads used incorrect information when making 

treatment choices and that treatment was overused in scenario V. Similar results can be 

found for scenario IV.

3.2 Regression and Instrumental Variable Treatment Effect Estimates

Comparisons of the treatment effect estimates in Table 2 to the true underlying parameter 

values demonstrate that the methodological findings that focused on a single outcome of 

interest [8, 10, 22] generalize to clinical scenarios in which a treatment has heterogeneous 

effects on more than one outcome. Regression estimators yield estimates of the ATT for 

each outcome, and IV estimators yield the average treatment effect over the marginal 

patients—the LATE for each outcome. In addition, the estimates in Table 2 show the 

sensitivity of these estimates to the relationships of expected treatment effects across 

outcomes in each population. Despite the identical distribution of benefit treatment effects 

across the simulated populations in scenarios I–III, estimates of ATTB and LATEB varied 

substantially across scenarios. Regression estimates and IV estimates from scenario I 

provide unbiased estimates of ATTB, ATTD, LATEB and LATED, respectively, for scenario 

I. Yet, these estimates provide a poor representation of the true values of these parameters in 

scenarios II and III.

3.3 Assessing Whether the Treatment Rate is ‘Right’ in a Study Population

The usefulness of estimates of ATTB, ATTD, LATEB and LATED for policy making can be 

seen in scenarios IV and V. When coupled with outcome valuations, estimates of these 

parameters from each scenario can assess whether treatment rate changes in a study 

population would be advantageous. In scenario IV, the estimated value of the treatment 

benefit for marginal patients (2000 × 0.101 = 202) is substantially less than the estimated 

treatment costs associated with the detriment (1800 × 0.221 = 397.8). In addition, in 

scenario IV, estimates of ATTB are greater than estimates of LATEB, and estimates of 

ATTD are less than estimates of LATED. This combination of estimates suggests that 

decision dyads were unaware of the higher detriment costs associated with treatment across 

this population. These estimates coupled with outcome valuations could be used to develop 

policies to lower treatment rates. These policies would be centred on informing decision 

dyads about the higher detriment risks associated with treatment for the patients in scenario 

IV to shift expectations toward the true detriment treatment effects. In scenario V, the value 

of the treatment benefit for marginal patients (2000 × 0.100 = 200) is also substantially less 

than the treatment costs associated with the detriment (1800 × 0.1 = 244.8), also indicating 

treatment overuse. However, in contrast to scenario IV, estimates of ATTD are greater than 

estimates of ATTB, which suggests a more complicated misalignment between expected and 

true treatment effect distributions in this population. Policies would have to realign the 

expected relationships between Xi and detriment risk across the decision dyads in this 

population.
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4 Discussion

Estimates from treatment effect studies using observational data have often been interpreted 

in a ubiquitous manner without discussions of context and addressing to whom the estimates 

apply [45–48]. For example, a study reviewed 56 treatment effect studies using observational 

data that used a functional relationship between treatment and outcome that ensured 

treatment effect heterogeneity [49]. Each of these studies used an IV estimator that yields 

average treatment effect estimates for marginal patients. Under these circumstances, extra 

assumptions are required to properly generalize IV estimates beyond the marginal patients. 

Yet, few of these studies discussed any limits in their ability to generalize estimates to either 

non-marginal patients within their study population or to other populations. This problem 

also occurs when interpreting results from RCTs [50].

Researchers need to be more aware of the consequences of treatment effect heterogeneity 

across outcomes when interpreting and generalizing treatment effect estimates using 

observational healthcare data. Previous methodological research that focused on making 

inferences about a single outcome of interest laid the groundwork for this stipulation. This 

prior research showed that regression estimators yield the ATT, and IV estimators yield 

LATEs for the outcome of interest [9, 13–15, 17]. Proper generalization of estimates of ATT 

or LATE for the outcome of interest to the untreated patients in a study population requires 

the assumption that treatments were not chosen based on expected treatment benefit, i.e. no 

‘sorting on the gain’ or essential heterogeneity [18, 51]. It has also been shown that different 

IVs affect the treatment choices of a different subset of patients in the same study, producing 

different but valid estimates of LATE [18–21]. Other studies have shown that treatment 

effect estimates can vary across study populations with factors affecting outcome valuations 

[22, 23].

This study expanded on this earlier work to assess the implications on treatment effect 

estimates when treatments have heterogeneous effects on more than one outcome. We use 

simulation modelling to assess an expanded version of essential heterogeneity, which we 

coin as ‘sorting on the mix’. Decision dyads make treatment choices considering the effects 

of treatment on more than one outcome with treatment effects that vary across patients. Our 

simulation models showed that, under such conditions, the interpretation of estimates when 

using regression and IV estimators remains consistent for each outcome. Regression 

estimators yield ATT, and IV estimators yield LATE, for each outcome. Estimates of ATT 

and LATE across outcomes can be used to help address whether a treatment has been under 

or overused in the given study population. However, we also showed that the true values of 

ATT and LATE for each outcome are sensitive to the relationships in treatment effects across 

outcomes in each study population. Therefore, researchers and policy makers should be very 

cautious about assuming that estimates of ATT and LATE from a single study population 

can be generalized to other populations of patients. External validity must be based on 

arguments that the relationships of treatment effect distributions across outcomes are 

consistent across populations.
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5 Conclusions

Analysis of observational data has been suggested as an approach to finding treatment effect 

estimates across patient circumstances and across outcomes. Observed treatments found in 

these databases are not the result of randomization but rather of choice. Real-world 

treatment choices often involve complex assessments of the expected effects of treatments 

across outcomes. This study demonstrates that failing to consider this complexity when 

interpreting treatment effect estimates using observational data could lead to clinical and 

policy mistakes. If treatment choices reflect expected effects over more than one outcome, 

our simulation results showed that treatment effect estimates can provide evidence as to 

whether treatments were over or underused in the study population. We also showed that 

these estimates are very sensitive to the distributions of treatment effects across outcomes in 

each study population. As a result, researchers and policy makers should be extremely 

cautious of generalizing estimates from a single study population to other patient 

populations.
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Key Points for Decision Makers

In clinical scenarios in which treatment effects are heterogeneous across patients for 

more than one outcome, treatment effect estimates for each outcome share properties 

previously demonstrated in single outcome models.

Treatment effect estimates can properly vary across study populations with differences in 

the correlations in treatment effects across outcomes in each population.

Treatment effect estimates across multiple outcomes can be used to assess whether 

treatments rates are ‘right’ in the study population, but decision makers should be very 

careful in generalizing treatment effect estimates to other patient populations.
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Fig. 1. 
Negative relationship between benefit and detriment treatment effects: Scatter plots 

containing the benefit probabilities and detriment probabilities for subsets of the simulated 

population in scenario I. a All simulated patients, b simulated patients who chose treatment 

T, c simulated patients who chose the alternative treatment, d marginal simulated patients, or 

those whose treatment choice would have changed if their instrument value switched
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Fig. 2. 
Negative relationship between benefit and detriment treatment effects with detriment effects 

larger than scenario I: Scatter plots containing the benefit probabilities and detriment 

probabilities for subsets of the simulated population in scenario II. a All simulated patients, 

b simulated patients who chose treatment T, c simulated patients who chose the alternative 

treatment, d marginal simulated patients, or those whose treatment choice would have 

changed if their instrument value switched
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Fig. 3. 
Positive relationship between benefit and detriment treatment effects: Scatter plots 

containing the benefit probabilities and detriment probabilities for subsets of the simulated 

population in scenario III. a All simulated patients, b simulated patients who chose 

treatment T, c simulated patients who chose the alternative treatment, d marginal simulated 

patients, or those whose treatment choice would have changed if their instrument value 

switched

Brooks et al. Page 18

Appl Health Econ Health Policy. Author manuscript; available in PMC 2019 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Negative relationship between benefit and detriment treatment effects and expected 

detriment effects as in scenario I and true detriment effects as in scenario II: Scatter plots 

containing the benefit probabilities and detriment probabilities for subsets of the simulated 

population in scenario IV. a All simulated patients, b simulated patients who chose treatment 

T, c simulated patients who chose the alternative treatment, d marginal simulated patients, or 

those whose treatment choice would have changed if their instrument value switched

Brooks et al. Page 19

Appl Health Econ Health Policy. Author manuscript; available in PMC 2019 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Expected negative relationship between benefit and detriment treatment effects in scenario I 

and but true positive relationship between benefit and detriment treatment effects in scenario 

III: Lots containing the benefit probabilities and detriment probabilities for subsets of the 

simulated population in scenario IV. a All simulated patients, b simulated patients who 

chose treatment T, c simulated patients who chose the alternative treatment, d marginal 

simulated patients, or those whose treatment choice would have changed if their instrument 

value switched
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