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Abstract

Nanoparticles improve drug efficacy by delivering drugs to sites of disease. To effectively deliver a 

drug in vivo, a nanoparticle must overcome physical and physiological hurdles that are not present 

in cell culture, yet in vitro screens are used to predict nanoparticle delivery in vivo. An ideal 

nanoparticle discovery pipeline would enable scientists to study thousands of nanoparticles in 
vivo. Here, we discuss technologies that enable high throughput in vivo screens, focusing on DNA 

barcoded nanoparticles.

Abstract

RNA therapies are limited by inefficient delivery to target tissues

Advances in genomics have armed scientists with lists of genes that cause diseases. This has 

brought about a significant change in the way drugs are designed and discovered. 

Researchers were previously limited to targeting broad cellular phenotypes; for example, 

cisplatin intercalates into double stranded DNA, causing toxicity in any cell undergoing cell 

division. Although many of these drugs successfully treated disease, they also caused severe 

side effects driven by drug activity in ‘off-target’ cells. Researchers now often use small 

molecules that target specific mutations. However, only 15% of the protein coding genome – 

and a much smaller percentage of the non-coding genome – is ‘druggable’ using small 

molecules [1]. This has led scientists to develop technologies to target all genes.
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RNA therapies have emerged as a promising solution to the problem of ‘undruggable’ 

targets [2]. RNAs can specifically turn any gene in the genome on or off, regardless of its 

eventual protein structure. Gene silencing can be mediated by RNA interference (RNAi), a 

well characterized mechanism where base pairing between small interfering RNA (siRNA) 

and target mRNA catalyzes RISC-mediated mRNA degradation. Gene silencing can also be 

mediated by DNA nucleases, including those derived from zinc fingers (ZFNs) [3], 

transcription factor-like effectors (TALENs) [4], or clustered regularly interspaced short 

palindromic repeats and their associated proteins (CRISPR-Cas) systems [5,6]. Similarly, 

mRNA-based therapies can transiently upregulate genes [7]. To date siRNA therapies have 

shown the most promise in patients. In one example, a degenerative disease that was 

uniformly fatal has been halted (and in some cases, reversed) in Phase III clinical trials [8,9]. 

More generally, over 1,200 patients have been treated with siRNA; some for as long as 36 

months. With a few exceptions, primarily limited to antisense nucleotides (which are distinct 

from siRNA) [10], siRNA therapies have been well tolerated and efficacious. Advances in 

siRNA biochemistry [11] and improved delivery vehicles [12] raise the exciting prospect 

that once yearly injections to treat genetic disease are within reach.

Although siRNA is currently the most clinically advanced RNA therapy, DNA nucleases and 

mRNA therapies are up and coming. They have shown efficacy in mice [13,14] and 

nonhuman primates [15], and are poised to treat disease in humans [16–18]. The results 

described above have one limitation: most clinical trials have involved RNAs locally injected 

into muscle (e.g., vaccines), eye, or lymph nodes, administered to cells ex vivo, or 

systemically delivered to hepatocytes. Systemically delivering therapeutic RNA outside the 

liver remains a substantial unsolved problem [19] that limits the development of gene 

therapies targeting other organs. RNA therapies will require delivery because naked RNAs 

are quickly degraded by nucleases, and their large molecular weight and highly negative 

phosphodiester backbone prevents them from crossing the anionic cell membrane [20].

Thousands of nanoparticles are screened in vitro; this may not predict in 

vivo delivery

RNA delivery vehicles are designed to protect the nucleic acid and transport it to the target 

cell. Although many drug delivery vehicles have been used to deliver RNA, we will focus on 

nanoparticles, which have generated promising clinical data [8]. Here we define a 

nanoparticle as a structure with all 3 dimensions less than 1,000 nm. Scientists have made 

steady advances in nanoparticle design. Nanoparticles can be made with variable size [21], 

ionizability [22], hydrophilicity [23], shape [24], and with varying degrees of active 

targeting ligands [25]. Large, chemically diverse libraries have been synthesized using 

simple synthetic routes including, but not limited to, Michael addition [26], epoxides [27], 

peptide [28], and thiol chemistry [29]. Importantly, advances in nanoparticle formulation – 

defined here as the process of ‘loading’ the nucleic acid into the nanoparticle – have also 

been reported. High throughput microfluidics has been shown to reliably make small, 

consistent batches of nanoparticles that are stable for weeks [30,31]. It is still difficult to 

cover the entire nanoparticle chemical space; formulating nanoparticles using available 
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chemistries, it is feasible to formulate between 100 million and 200 billion chemically 

distinct nanoparticles (Fig. 1).

After nanoparticles are formulated, they are screened in vitro. More specifically, scientists 

(a) synthesize thousands of different nanoparticles before (b) evaluating whether they deliver 

RNA in easily expandable cell lines (e.g., HeLa). Scientists have also used primary cells in 

place of immortalized cells [32]. Based on in vitro results, a very small number of 

nanoparticles are (c) tested in vivo. This process is only an efficient use of time and 

resources if in vitro nanoparticle delivery predicts in vivo delivery. To test this, we compared 

how the same 300 nanoparticles delivered nucleic acids in vitro and in vivo in multiple cell 

types; we found no correlation [33] (Fig 2A). The discrepancy between in vitro and in vivo 
delivery is not necessarily surprising. If a nanoparticle is systemically administered, it must 

travel through the blood stream and enter the target tissue. Several physical factors dictate 

where the nanoparticles go. For example, it is difficult for nanoparticles to access the brain, 

which is physically cordoned off by the blood brain barrier. Nanoparticles can also be 

physically disassembled by the glomerular membrane in the kidney [34]. As a 

counterexample, nanoparticle often target hepatocytes since nanoparticles can exit the blood 

via nanoscale pores in sinusoidal blood vessels and basement membrane [35]. Physiological 

factors also influence nanoparticle delivery. For example, serum proteins can bind to 

nanoparticles in the blood [36,37], changing nanoparticle interactions with the immune 

system and target cells [38]. Interestingly, systemic nanoparticle delivery can also change 

with local disease states; in one example, scientists found that delivery to systemic organs 

was affected by the presence of a primary tumor [39]. Even if the nanoparticle reaches its 

target cell, it must enter the cytoplasm, often by escaping an endosome. Endosomal escape is 

inefficient; a LNP that delivers siRNA to hepatocytes very efficiently (50% target gene 

silencing after a 0.01 mg / kg injection) still had >95% of its siRNA sequestered within 

endosomes [40]. The nanoparticle must also evade liver, kidney, and splenic clearance, as 

well as avoid initiating an immune response. The majority of these obstacles are not 

recapitulated in vitro. Some processes are required for in vitro delivery and in vivo delivery 

(e.g., endocytosis and endosomal escape). However, these processes are carefully regulated 

[41] by gene expression that is likely to change with microenvironmental cues. Increasing 

evidence suggests that gene expression in cultured cells may not reliably predict gene 

expression in primary cells or in vivo [42].

Nanoparticle barcoding enables simultaneous analysis of >100 

nanoparticles in vivo

The lines of evidence described above suggest screening nanoparticles directly in vivo 
would be useful. However, the expensive nature of in vivo experiments has limited the field 

to testing a few in vivo. This is a universal problem in nanomedicine, and it has driven 

groups to design systems that facilitate high throughput in vivo nanoparticle screens. In all 

cases, these systems utilize ‘multiplexed’ signals, which are signals that can be quantified 

without interfering with one another. In the simplest case, nanoparticle 1, with chemical 

structure 1, is ‘barcoded’ (i.e., ‘tagged’) with signal 1; nanoparticle N, with chemical 

structure N, is barcoded with signal N. The nanoparticles are co-administered, and later, 
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signals 1 and N are quantified simultaneously. In one example, scientists isotopically-

barcoded silver nanoparticles with different functional peptides to evaluate potential 

targeting ligands [43]. Another group has used quantum dots to barcode polymeric 

nanoparticles; in vivo screens were performed to understand how nanoparticle surface 

modifications altered delivery through the blood brain barrier [44].

One multiplexed signal that has been used by groups (including ours) is DNA [33,45,46]. 

DNA is an excellent molecule for multiplexing. The number of different barcodes scales 

exponentially faster than any other signaling molecule; 4N different barcodes can be 

generated with a DNA sequence N nucleotides long. An 8 nucleotide barcode can create 

65,536 different sequences. Additionally, DNA sequence readouts are easy to analyze. The 

cost of DNA sequencing has decreased more rapidly than Moore’s Law; it is now possible to 

generate 400 million DNA reads for $2,000 using a machine that fits on a desktop. Because 

DNA sequencing has become an increasingly more common tool in several fields [47], easy 

to use software packages are readily available to help analyze and interpret the data.

Two distinct nanoparticle DNA barcoding systems have been reported to date [33,45,46]. In 

one example, DNA was formulated into liposomes alongside different chemotherapies [45] 

(Fig. 2B). By varying the primers or altering the barcode length, different sequences were 

detected using gel electrophoresis or real time PCR. The authors tested several drugs at once 

in vivo and concluded that the DNA barcodes found in dead cells corresponded to 

nanoparticles containing effective chemotherapies. This method may be used in the future to 

test hundreds of different cancer drugs in vivo. We developed a separate DNA barcoding 

system that utilizes next generation sequencing. Our barcodes contain (i) universal primer 

sites, (ii) a 7 nucleotide region with fully randomized sequences (to monitor for biased PCR 

amplification), and (iii) an 8 nucleotide barcode region in the center [46] (Fig 3A). Initially, 

we demonstrated that this system predicted siRNA delivery in vivo and generated DNA 

sequencing outputs that were linear with respect to the administered DNA [46]. Later, we 

demonstrated that this system, which we named Joint Rapid DNA Analysis of Nanoparticles 

(JORDAN), could simultaneously analyze over 150 nanoparticles simultaneously in vivo 
[33] (Fig 3B).

Although there are different ways to design DNA barcodes, specific traits help increase the 

robustness of the data. Most importantly, universal primer sites – which are primer sites that 

do not change - confer an important advantage, maximizing the chance all barcodes are 

amplified in an unbiased way. This seems counterintuitive, but the vast majority of a DNA 

barcode should be identical; the barcode region of the DNA should be small. Adding 

chemical modifications including phosphorothioates to the 5’ and 3’ termini increase 

barcode stability. The barcode regions should also be designed to work together on solid 

phase next generation sequencing (NGS) platforms like Illumina. Since solid phase NGS 

relies on fluorophores (Fig. 3C), each individual barcode must have a ‘base distance’ of at 

least 3; in other words, each barcode must be different from all other barcodes at 3 of the 8 

positions (Fig. 3D). We have designed >200 barcodes with base distances of 3 or more [33]. 

It is also critical to sequence the DNA ‘input’ administered to the animals. This allows us to 

normalize the data and compare different cell types to each other within an experiment. 

Finally, like all big data systems, nanoparticle DNA barcoding experiments should include 
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proper controls in each experiment. Two examples include a liposome loaded with caffeine 

(instead of a chemotherapeutic) [45] and a naked barcode [33]; in both cases, the negative 

controls performed poorly relative to the experimental conditions, as expected. A detailed 

protocol describing barcode design and a nanoparticle bioinformatics pipeline is available on 

DahlmanLab.org.

DNA barcodes enable nanotechnologists to track how hundreds of distinct nanoparticles 

deliver drugs in vivo for the first time; this enables nanoparticle studies that were not 

feasible using traditional methods. As an example, we compared how dozens of different 

nanoparticles delivered DNA to 8 different cell sub-types in the spleen. Using unbiased 

Euclidean clustering – a common bioinformatics technique that analyzes large datasets – we 

found that specific types of immune cells tended to be targeted by the same nanoparticles 

[33]. DNA barcodes have enabled large scale experiments in fields as varied as oncology, 

developmental biology, and viral delivery. As an example, by using the single guide RNA 

(sgRNA) sequence as a ‘barcode’ to denote a gene that was knocked out, scientists 

performed whole genome screens to identify genes and non-coding regions that regulate 

cellular response to cancer and immunotherapies [48–51]. More specifically, a system 

named Genome-Scale CRISPR-Cas9 Knockout Screening (GeCKO) helped determine 

which genes promote resistance to anti-cancer drugs [50]. GeCKO was used to targeted 

18,080 in the same experiment; multiple sgRNAs were designed per gene. The pool of 

sgRNAs were administered to human cancer cell lines that also expressed Cas9; as a result, 

each cell – on average – had no gene knocked out, or 1 gene knocked out. After adding an 

anti-cancer drug, cells were allowed to grow; enriched sgRNA sequences in live cells 

corresponded to genes that increased drug resistance (Fig 4A). The same approach has been 

used to study metastasis in vivo. In this case, a pool of tumor cells were edited using 

GeCKO and administered in the hind limb of a mouse. After waiting a period of time, the 

authors isolated metastatic tumor cells from different organs, and thereby identified genes 

that promoted metastasis [52]. Similar approaches have been used to identify genes that 

suppress primary tumor growth in the liver and brain (Fig. 4B) [53,54]. Scientists also 

designed a combinatorial DNA barcode system named ‘PolyLox’ that identified stem and 

progenitor cells that led to the development of the immune system [55]. Finally, there are 

reports of ‘capsid shuffling’ and other combinatorial cloning strategies; these use sequences 

that code for amino acids as barcodes that denote which amino acids successfully enabled 

Adeno-associated viral (AAV) vectors that facilitate cellular entry and DNA delivery [56–

58]. Given that DNA is a highly efficient method to store and access information, it is likely 

that many other biology and engineering fields will use DNA barcodes in the future.

Outlook

RNA therapies have tremendous clinical potential but will require on-target drug delivery to 

reach the clinic. siRNA drugs in the liver are a great example; several patient populations are 

already benefiting from treatments that silence genes in hepatocytes. However, without new 

delivery vehicles, the clinical impact will be limited to local injection, and to the liver [19]. 

To target new cell types, it is important to test as many nanoparticles as possible. Traditional 

screening methods test delivery vehicles in vitro; however, in vitro particle screens may 

inaccurately predict delivery in vivo. In conjunction with rapid nanoparticle synthesis, 
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highthroughput in vivo nanoparticle screening methods will allow scientists to track more 

particles simultaneously than ever before. Over time, this may allow scientists to better 

understand how nanoparticles behave in the body. We envision a time where enough 

nanoparticles have been tested in vivo that nanoparticles which target a given cell type can 

be rationally designed. We find it likely these high throughput approaches will help 

accelerate the development of new genetic therapies.
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Figure 1. 
(A) Lipid nanoparticle libraries can be generated with a variety of chemical compounds. 

LNPs are formulated by combining different biomaterials with cholesterols, lipid-PEG 

compounds, and helper lipids. (B) High-throughput nanoparticle formulation allows for the 

rapid production of large, diverse libraries. (C) Nanoparticle libraries can be generated by 

varying the molar ratio of biomaterials, cholesterols, PEG, and helper lipids. (D) Between 1 

× 108 and 2 × 1011 chemically distinct nanoparticles can be made by combining these 
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compounds. Notably, these numbers do not include variations in the molar ratio of the 

compounds (e.g., Figure 1C).
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Figure 2. 
DNA barcodes have analyzed nanoparticle delivery in vivo. (A) Chemically diverse LNPs 

are tagged with unique DNA barcodes. LNPs were pooled together and administered both in 
vitro and in vivo. For in vitro studies, delivery at condition 1 often correlates with delivery at 

condition 2. However, in vitro delivery does not correlate to in vivo delivery. These results 

were consistent across many cell types, and across different experiments, for >300 different 

LNPs [33]. (B) Liposomes carrying different chemotherapies were formulated with unique 

barcodes. After administering the liposomes in vivo, tissues were removed and cells were 

stained with propidium iodine (PI), which distinguishes dead cells from live cells. Barcodes 

enriched in dead cells corresponded to successful chemotherapy agents.
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Figure 3. 
DNA barcodes can be rationally designed to track hundreds of nanoparticles in vivo using 

next generation sequencing. (A) JORDAN barcodes contain universal primer sites, a 7 

nucleotide randomized region, and an 8 nucleotide barcode region. This barcode design 

allows us to multiplex hundreds of different barcodes. The normalized delivery for every 

barcoded LNP is determined; this is analogous to ‘counts per million’ in RNAseq studies. 

(B) JORDAN uses DNA barcodes and next generation sequencing to analyze the 

biodistribution of thousands of particles in vivo. Next generation sequencing is an effective 

way to read DNA barcodes. (C) Solid phase next generation sequencing reads each 

nucleotide of the sequencing using fluorescent nucleotides. Understanding how NGS 

generates data is important to understanding barcode design; NGS is reviewed extensively in 
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reference 47. (D) For example, it is helpful if the sequence of a barcode differs from all other 

barcodes at 3 of the 8 positions.
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Figure 4. 
DNA barcodes are regularly used by biologists to perform whole genome studies. (A) In 

cancer cells, each gene in the genome of Cas9 expressing cells was knocked out individually 

using sgRNAs. The sgRNA served as the barcode that denoted which gene was silenced. 

After knocking every protein coding gene, an anti-cancer drug is added to the cells and time 

is allotted to facilitate drug resistance. Enriched sgRNA sequences in the live cells 

correspond to genes that affect cancer drug resistance. In this example, knocking down Gene 

A promotes drug resistance. (B) The same whole genome studies have identified genes that 

– when knocked down – promote primary tumor growth.
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