Table 2. Regression results predicting TV viewership and Twitter volume.
Dependent Variable | Model | Independent Variable(s) | Model R2 | Model Adj. R2 | Model p-value | Beta Coefficient (standardized) | Beta p-value |
---|---|---|---|---|---|---|---|
TV viewership | LR | Composite EEG score | 0.57 | .57 | <10−5 | 0.76 | <10−5 |
TV viewership | SWMR | Full model | 0.68 | .66 | <10−5 | ||
Alpha/theta power | 1.07 | <10−5 | |||||
Alpha/beta asym. | 0.41 | <10−3 | |||||
Theta/gamma power | 0.30 | 0.003 | |||||
High TV viewershipa | SWMR | Full model | 0.72 | 0.69 | <10−5 | ||
Alpha/theta power | 1.10 | <10−5 | |||||
Alpha/beta asym. | 0.52 | 0.002 | |||||
Low TV viewershipa | SWMR | Alpha/theta power | 0.17 | 0.13 | 0.048 | 0.41 | 0.048 |
Twitter volume | LR | Composite EEG Score | 0.63 | 0.62 | <10−5 | 0.80 | <10−5 |
Twitter volume | SWMR | Full model | 0.63 | 0.61 | <10−5 | ||
Alpha/theta power | 0.71 | <10−5 | |||||
Theta/gamma power | 0.50 | <10−5 | |||||
Alpha/beta asym. | 0.39 | <10−3 | |||||
High Twitter volumea | SWMR | Alpha/beta asym. | 0.48 | 0.44 | <10−3 | 0.68 | <10−5 |
Low Twitter volumea | SWMR | - | - | - | - | - | - |
TV viewership | LR | Twitter volume | 0.51 | 0.50 | <10−3 | 0.72 | <10−5 |
TV viewership | SWMR | Full model | 0.67 | 0.66 | <10−5 | ||
Composite EEG score | 0.51 | <10−5 | |||||
Twitter volume | 0.40 | 0.001 | |||||
Twitter volume | SWMR | Full model | 0.67 | 0.66 | <10−5 | ||
Composite EEG score | 0.58 | <10−3 | |||||
TV viewership | 0.29 | 0.027 |
Adj.–adjusted, Asym.–assymmetry, LR–linear regression, SWMR–step-wise multiple regression.
a For these analyses, TV viewership and Twitter volume values were split along the median for each variable and full step-wise multiple regression models were conducted on each median-split subgroup of data.