Skip to main content
. 2019 Mar 28;14(3):e0214507. doi: 10.1371/journal.pone.0214507

Table 2. Regression results predicting TV viewership and Twitter volume.

Dependent Variable Model Independent Variable(s) Model R2 Model Adj. R2 Model p-value Beta Coefficient (standardized) Beta p-value
TV viewership LR Composite EEG score 0.57 .57 <10−5 0.76 <10−5
TV viewership SWMR Full model 0.68 .66 <10−5
Alpha/theta power 1.07 <10−5
Alpha/beta asym. 0.41 <10−3
Theta/gamma power 0.30 0.003
High TV viewershipa SWMR Full model 0.72 0.69 <10−5
Alpha/theta power 1.10 <10−5
Alpha/beta asym. 0.52 0.002
Low TV viewershipa SWMR Alpha/theta power 0.17 0.13 0.048 0.41 0.048
Twitter volume LR Composite EEG Score 0.63 0.62 <10−5 0.80 <10−5
Twitter volume SWMR Full model 0.63 0.61 <10−5
Alpha/theta power 0.71 <10−5
Theta/gamma power 0.50 <10−5
Alpha/beta asym. 0.39 <10−3
High Twitter volumea SWMR Alpha/beta asym. 0.48 0.44 <10−3 0.68 <10−5
Low Twitter volumea SWMR - - - - - -
TV viewership LR Twitter volume 0.51 0.50 <10−3 0.72 <10−5
TV viewership SWMR Full model 0.67 0.66 <10−5
Composite EEG score 0.51 <10−5
Twitter volume 0.40 0.001
Twitter volume SWMR Full model 0.67 0.66 <10−5
Composite EEG score 0.58 <10−3
TV viewership 0.29 0.027

Adj.–adjusted, Asym.–assymmetry, LR–linear regression, SWMR–step-wise multiple regression.

a For these analyses, TV viewership and Twitter volume values were split along the median for each variable and full step-wise multiple regression models were conducted on each median-split subgroup of data.