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Summary:

GWAS have identified 108 schizophrenia risk loci, but risk mechanisms for individual loci are 

largely unknown. Using developmental, genetic, and illness-based RNA sequencing expression 

analysis in human brain, we characterized the human brain transcriptome around these loci and 

found enrichment for developmentally regulated genes with novel examples of shifting isoform 

usage across pre- and post-natal life. Across the genome, we found widespread expression 

quantitative trait loci (eQTLs), including many with transcript specificity and previously 

unannotated sequence that were independently replicated. We leveraged this general eQTL 

database to show that 48.1% of risk variants for schizophrenia associated with nearby expression. 

We lastly found 237 genes significantly differentially expressed between patients and controls 

which replicated in an independent dataset, implicated synaptic processes and were strongly 

regulated in early development. These findings together offer genetic- and diagnosis-related targets 

for better modeling schizophrenia risk. This publicly-available resource is available at: http://

eqtl.brainseq.org/phase1
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Introduction:

Schizophrenia (SCZD) is a prevalent neuropsychiatric disorder with a combination of 

genetic and environmental risk factors. Research over the last several decades has suggested 

that SZCD is a neurodevelopmental disorder arising through altered connectivity and 

plasticity in relevant neural circuits. However, discovering the causative mechanisms of 

these putatively developmental deficits has been very challenging1. The most consistent 

evidence of etiologic mechanisms related to SCZD has come from a recent genome-wide 

association study (GWAS) in which over a hundred independent single nucleotide 

polymorphisms (SNPs) were identified having a significant allele frequency difference 

between patients with schizophrenia and unaffected controls2. While these findings have 

identified regions in the genome harboring genetic risk variants, almost all of the associated 

SNPs are non-coding, located in intronic or intergenic sequence, and hypothesized to have 

some role in regulating expression3. However, the exact gene(s) and transcript(s) potentially 

regulated by risk-associated genetic variation are uncertain, as most of these genomic 

regions contain multiple genes. In principle, the effects of non-coding genetic variation, by 
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whatever mechanisms (e.g. promoter, enhancer, splicing, noncoding RNA, epigenetics, etc), 

should be observed in the transcriptome. Therefore, to better understand how these regions 

of genetic risk and their underlying genotypes may confer risk of schizophrenia and to better 

characterize the molecular biology of the disease state, we sequenced the polyA+ 

transcriptomes from the prefrontal cortex of 495 individuals with ages across the lifespan, 

ranging from the second trimester of fetal life to 85 years of age (see Table S1), including 

175 patients with schizophrenia (Figure S1).

Here we identify novel expression associations with genetic risk and with illness state and 

explore developmentally regulated features, including a subset of genes with previously 

uncharacterized isoform shifts in expression patterns across the fetal-postnatal 

developmental transition. We further identify many more expression quantitative loci 

(eQTLs) in schizophrenia risk regions than previously observed by surveying the full 

spectrum of expression features to generate potential molecular mechanisms underlying 

genetic risk. We also explore differential gene expression associated with the state of illness 

in a comparison of the postmortem brains of patients with schizophrenia with non-

psychiatric controls. By incorporating a recently described experiment-based algorithm to 

account for RNA quality differences which have not been adequately controlled in earlier 

studies, we report a high degree of replication across independent case-control gene 

expression datasets4,5. By combining genetic risk at the population-level with eQTLs and 

case-control differences, we identify putative human frontal cortex mechanisms underlying 

risk for schizophrenia and replicable molecular features of the illness state.

Results

We performed deep polyA+ RNA-sequencing of 495 individuals, ranging in age from the 

second trimester of fetal life to 85 years old (Table S1), including 175 patients with 

schizophrenia (see Figure S1). We quantified expression across multiple transcript features, 

including: annotated 1) genes and 2) exons, 3) annotation-guided transcripts4 as well as 

alignment-based 4) exon-exon splice junctions5 and 5) expressed regions (ERs)6. These last 

two expression features were selected to reduce reliance on the potentially incomplete 

annotation of the brain transcriptome7 (Info S1). We find a large number of moderately 

expressed and previously unannotated splice junctions that tag potential transcripts with 

alternative exonic boundaries or exon skipping (Figure S2), 95% of which are also found in 

other large RNA-seq datasets, including a subset that were brain-specific (Table S2). 

Similarly, we find that only 56.1% of ERs were annotated to strictly exonic sequence – 

while many ERs annotated to strictly intronic (22.3%) or intergenic (8.5%) sequence, or 

were transcribed beyond existing annotation (e.g. extended UTRs, extended exonic 

sequence).

Developmental regulation of transcription and shifting isoform usage

Characterizing expression changes in unaffected individuals, particularly across brain 

development beginning with prenatal life, has previously offered disease-relevant insights 

into particular genomic loci 8–12. Specifically, we and others 7,13,14 have shown that 

genomic risk loci associated with neurodevelopmental disorders including schizophrenia are 

Jaffe et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2019 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enriched for transcript features showing differential expression between fetal and postnatal 

brains. Here too, among the 320 control samples, the strongest component of expression 

change corresponded to large changes in the contrast of pre-natal and early postnatal life. 

RNA-based cellular deconvolution confirmed the decrease in the proportion of prenatal cell 

types, in line with previous data related to the loss of neural precursor cells at the transition 

of pre- and post-natal life 7 (Figure 1A, Figure S3, S4). We further defined a developmental 

regulation statistic for each expressed feature using a generalized additive model for age (see 

Methods) and found widespread developmental regulation of these expressed features (Info 

S2, Table S3, Figure S5), including previously unannotated sequence (Table S4) that likely 

relates to the shifting cellular composition of the maturing brain15. We further demonstrated 

that these age-related changes in expression strongly related to cell type-specific changes 

(Figure S6). These developmental statistics and visualized expression trajectories from all 

features are available at http://eqtl.brainseq.org/phase1/devel.

We then formally identified the subset of genes showing alternative isoform expression 

patterns across fetal and postnatal life using those exons, junctions, transcripts, and ERs that 

meet the statistical criteria for developmental regulation (i.e. those genes with at least one 

developmentally changing feature, see Methods). Figure S4 highlights CRTC2, a 

transcription co-activator, as representative of a gene with isoform shifts. There were 6672 

Ensembl genes (23.7% of the set of developmentally regulated genes) with both positive and 

negative expression features having genome-wide significant correlations with age (each 

with pbonf<0.05, Figure 1B, Table S5, Figure S5), representing alternate transcript isoforms 

of the same gene that show opposite patterns of expression across the prenatal-postnatal 

transition. In principle, this interaction would obscure developmental expression variation 

measured at the gene level and might better reflect how different cells in the human frontal 

cortex use the same gene differently across development.

We next performed gene set analyses of genes with shifting isoform usage compared to the 

larger set of genes with developmentally regulated features but without shifting isoform 

usage to identify more specific biological functions of this unique form of developmental 

regulation (Table S6). The former set was relatively enriched for localization, catalytic 

activity, signaling-related processes, including synaptic transmission and cell 

communication, and neuronal development. Interestingly, genes identified with shifting 

isoforms across development based exclusively on junction counts were enriched for both 

dopaminergic (FDR=1.67×10−4) and glutamatergic (FDR=2.04×10−4) synapse KEGG 

pathways (Figure 1C), the two neurotransmitter systems most prominently implicated in 

schizophrenia pathogenesis and treatment.

Schizophrenia risk is associated with novel shifting isoform usage across brain 
development

Interestingly, genes with developmental isoform shifts identified by exon, junction and 

expressed region counts were 75% (p=9.51×10−6), 84% (p=1.63×10−7) and 71% 

(p=2.0×10−4) more likely to lie within the PGC2 risk regions (with permutation-based 

p=0.02, p=0.01, and p=0.03 respectively, see Methods) than developmentally regulated 

genes without isoforms shifts (Table S7). These enrichments were robust to controlling for 
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gene length (both coding length and number of exons, see Methods) and were specific to 

schizophrenia, as we found no association for Type 2 diabetes 16, Parkinson’s Disease 17, 

and Alzheimer’s Disease 18 GWAS regions (all p > 0.05). These results further underscore 

the role of changes in the regulation of transcription and splicing in the early brain 

developmental components in genomic regions implicated in schizophrenia risk.

Large-scale genetic regulation of transcript-specific and previously unannotated 
sequences

While genomic loci association with schizophrenia risk highlights potential enrichment of 

genes within those loci, we sought to more directly assess the specific role of individual risk 

variants on nearby expression. We therefore first performed a genome-wide cis (<500kb) 

expression quantitative trait loci (eQTL) analysis within the 412 post-adolescent subjects 

(see Methods) across the five convergent transcript features (Table 1, Info S3). Exon-level 

analysis showed widespread transcript-specificity of eQTL associations - almost all exons 

with eQTL signal mapped to genes with more than one annotated transcript (N=45,239, 

94.2%), and the majority of these showed eQTL associations to exons belonging to a single 

transcript isoform (N=30,283, 66.9%). This transcript-specificity was also evident in the 

eQTL effect sizes, as the median additive effect size was approximately two-fold higher for 

exon- than gene-level analysis (15.6% versus 7.0% expression change per allele copy). 

Analyses focusing on annotation-agnostic expression levels further revealed extensive 

genetic regulation of previously unannotated transcript sequences, including novel exon-

skipping and shifted exonic boundary splice junctions and both strictly intronic and 

intergenic sequence (Table 1, Info S3). These results demonstrate extensive transcript 

specificity of many eQTL signals that are missed by traditional analyses.

Given the large degree of genetic regulation of transcript-specificity and unannotated 

sequences, we sought to confirm the identified eQTLs (“LIBD”) in independent human 

brain RNA-seq data from the CommonMind Consortium (“CMC”) DLPFC project19. 

Among those significant eQTL SNP-feature pairs that were well-imputed, polymorphic and 

expressed in the replication dataset (~84% of pairs, ~95% of eFeatures, see Methods, Figure 

S6), >94% had consistent directionality in the two datasets, between 75.7% (eTxns) and 

81.5% (eJxns) were directionally consistent and marginally significant (at p < 0.01), and just 

over half (52.1%−57.0%) were directionally consistent and FDR-corrected significant 

(published set, p<10−5). Meta-analysis between datasets demonstrated extensive significance 

and replication of the 9.3M SNP-feature Bonferroni-significant eQTL pairs including 97.6% 

at p < 1×10−5 and 82.0% at p < 10-9. We further reprocessed and quantified GTEx v6 RNA-

seq brain data (“GTEx”) from raw reads using the same pipeline, and assessed replication 

and regional specificity in these data using meta-analysis across 13 brains regions compared 

to frontal cortex alone. Here we found that many of the DLPFC-identified eQTLs showed 

strong concordant signal across all brain regions, suggesting an overall lack of regional 

specificity for the majority of our identified eQTLs (Figure S7). All significant eQTLs are 

searchable on our publicly available database: http://eqtl.brainseq.org/phase1/eqtl/ which 

provides visualizations and eQTL statistics across three independent datasets.
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Clinical enrichment of eQTL associations for schizophrenia and other traits

We interrogated the potential clinical relevance of our full catalog of significant eQTLs 

particularly in the context of transcript feature-level and previously unannotated sequence 

associations using published genome-wide association study (GWAS) risk variants. We first 

considered the common (MAF > 5%) and well-measured risk variants from the 128 index 

variants (N=106, see Methods) in the latest PGC2 GWAS for schizophrenia 2 and their 

highly correlated proxies (see Methods). We identified FDR-significant eQTL associations 

to 51 risk SNP signals (of 106 tested, 48.1%, Table S8), a substantially higher proportion of 

risk variants classified as brain eQTLs than previously reported19 (Table 2, supple results). 

In total, there were 1,244 unique SNP-feature pairs that were genome-wide FDR-significant 

eQTLs (83 genes, 553 exons, 49 transcripts, 192 junctions and 367 ERs) mapping to 194 

unique Ensembl Gene IDs (of which 162 have HUGO gene symbols). Among these 51 risk 

SNPs, 17 were eQTLs only to exons, junctions or expressed regions, and 7 were eQTLs to 

only unannotated transcribed sequence. These unannotated sequences were enriched for 

transcriptional chromatin states in brain and other tissues in the Epigenome roadmap 

compared to the rest of the genome (Figure S8A). There were only 17 loci with annotated 

eQTLs to only a single gene and another 10 loci with eQTLs to two genes.

We also assessed enrichment of 23,704 GWAS risk SNPs from the NHGRI GWAS catalog 

present and common in our genetic data (of 44,738 available) and found eQTL evidence for 

8988 variants (37.9%) at FDR < 0.01. These GWAS variants that were identified as eQTLs 

were from GWAS for the majority of all tested traits in the literature (68.1%, 1415 of 2078 

present) across all sites in the body, suggesting that many of the identified eQTLs in brain 

are likely shared with other tissue sites as previously described 20. Of the 8,988 GWAS 

eQTL variants, 2,982 were eQTLs only to exons, junctions or expressed regions, of which 

995 were only to unannotated sequence (Table 2), which were also enriched for 

transcriptional chromatin states in human cell types and tissues (Figure S8B). These results 

highlight the ability to identify more eQTL signal for clinical risk variants by casting a wider 

net of RNA-seq feature summarization, including previously unannotated transcribed 

sequences.

Refining risk transcripts through conditional analyses

We used conditional analyses to partition the GWAS-associated eQTLs to better identify the 

downstream molecular features of genetic risk. For each of the 51 GWAS variants with 

eQTLs, we iteratively conditioned on the most significant eQTL feature for each variant and 

then performed eQTL reanalysis of all other features. These analyses resulted in 238 

conditionally-independent SNP-feature eQTLs (35 genes, 73 exons, 9 transcripts, 55 

junctions and 66 ERs) to the 51 schizophrenia GWAS variants (Table S8) which mapped to 

130 unique Ensembl Gene IDs. Conditional analysis resulted in an additional locus with 

eQTLs to a single gene (totaling 18 loci) and an additional five loci with eQTLs to features 

in two genes (totaling 15 loci, Table 3). Interestingly, these conditional analyses further 

highlighted the potential importance of transcript-specific and previously-unannotated 

eQTLs, as more loci were associated only with exons, junctions and ERs (27 versus 17), 

more were strictly unannotated (11 versus 7), and more showed eQTL associations to a 

single annotated transcript isoform (18 versus 11).
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In figure 2, we highlight select eQTLs for different classes of associations. The top GWAS 

risk variant rs1233578 associated with strictly intergenic sequence downstream of 

ZSCAN23 (Figure 2A,2B, p=2.7×10−8) as confirmed in both CMC (p=0.01) and GTEx 

(T=3.1), suggesting potential novel transcribed sequence linked to schizophrenia risk. We 

also found significant eQTL signal to specific 5’ junction and exon sequences of CTNNA1 
to rs3849046 (Figure 2C, 2D; discovery p=6.2×10−8, CMC replication p=1.4×10−8). 

Another example of eQTL associations of partially annotated sequence was rs9841616 

exclusively associating with the 3’ sequence of the most proximal short transcript isoform of 

SOX2-OT (Figure 2E, 2F; discovery p=8.2×10−12, replication p=2.9×10−8). We also found 

novel eQTL associations to annotated exons in CD46 (Figure 2G, p=9.2×10−38, replication p 

= 2.9×10−14), SRR (Figure 2H, p=2.0×10−12, replication p=4.7×10−6) and GPM6A (Figure 

2I, p=2.8×10−6, replication p=0.02).

We did find significant enrichment of these conditionally independent schizophrenia risk-

associated eQTLs among genes with developmental isoform shifts identified above – 44.0% 

of genes with eQTLs compared to 23.6% without eQTLs (OR=2.54, p=5.38×10−8). These 

conditional analyses could suggest potential regulatory roles of these unannotated 

transcribed sequences on annotated transcripts that play a putative role in the manifestation 

of schizophrenia risk in brain. More generally, these eQTL results highlight significant and 

independently-replicated risk-associated schizophrenia candidate genes and their specific 

transcripts that comprise links in the causative chain of schizophrenia in the human brain.

Expression associations with chronic schizophrenia illness

Genetic association with gene expression is an approach to understanding the molecular 

mechanisms of risk, but it does not directly address the molecular landscape of the illness 

state. We therefore explored the expression landscape of the prefrontal cortex of the 

schizophrenia illness state and its potential link with developmental regulation and genetic 

risk. We performed differential expression modeling using 351 high quality adult samples 

(age >16, 196 controls, 155 cases), and found extensive bias by RNA degradation within 

both univariate analysis (where 12,686 genes were differentially expressed at FDR<5%) and 

even after adjusting for standard measured levels of RNA quality typical of all prior studies. 

We therefore implemented a recently described statistical framework based on an 

independent molecular degradation experiment (see Methods, Info S4), called “quality 

surrogate variable analysis” (qSVA, see Methods)21. We further utilized potential replication 

RNA-seq data from the CommonMind Consortium (CMC) dataset, using a subset of age 

range-matched 159 schizophrenia patients and 172 controls. Interestingly, adjusting for 

observed factors related to RNA quality that characterize all earlier studies of gene 

expression in schizophrenic brain, including an earlier report using CMC data19, the 

proportion of genes with differentially expressed features at genome wide significant FDR < 

5% that replicate (with directionality and marginal significance at p<0.05) in the CMC 

dataset was very small (11.0%). In contrast, using qSVA, 40.1% of differentially expressed 

genes at FDR < 5% (N=75/183) replicate in CMC data. At FDR<10% (see Methods), we 

identified 237 genes with 556 DE features that replicated in the CMC dataset (33.6% gene-

level replication rate, Table S9, Table S10). Case-control statistics from both discovery and 

Jaffe et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2019 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



replication datasets, as well as boxplots from all expressed features, are available at http://

eqtl.brainseq.org/phase1/sz.

The differences in expression levels between cases and controls of these DE features were 

generally small in both discovery and replication data (Figure 3A, Figure S9), in line with 

the clinical and molecular heterogeneity of this disorder 13,22. Gene ontology analysis 

implicated transporter- and channel-related signaling as significantly consistently 

downregulated in patients compared to controls across genes annotated in all three 

expression summarizations (Figure 3B, Table S11). These results suggested decreased 

signaling in patients with schizophrenia, but could raise the possibility that these replicated 

expression differences between patients and controls relate to epiphenomena of illness, such 

as drug treatment which affect signaling in the brain14, as the majority of patients were on 

anti-psychotics at the time of death (64%, Table S1). While only two genes located in the 

latest schizophrenia GWAS loci were significantly differentially expressed (KLC1 and 

PPP2R3A), we found significant associations comparing the genome-wide differential 

expression statistics within versus outside of the GWAS significant loci, although the 

absolute biological effects were small (Info S5, Figure S10, Table S12). We also investigated 

the relationships between transcription and genomic risk for schizophrenia using genome 

wide Polygene Risk Scores (PRS) from each subject calculated as previously described2 (see 

Methods), and found lack of association between PRS and expression of individual 

expression features, lack of enrichment of PRS on expression comparing the differentially 

expressed and replicated case-control features, and lack of directionally consistency between 

PRS- and diagnosis-associated statistics among expressed features (Table S13). These 

results further suggest that the significant case-control expression differences show little 

overlap with genetic risk for the disorder.

In an earlier study of the epigenetic landscape of frontal cortex of patients with 

schizophrenia, we showed that DNA methylation levels in patients were closer to fetal 

methylation levels than to those of adult control samples15. Here we tested for analogous 

effects in the RNA-seq data related to the illness state. Every significant gene with 

differentially expressed features in the adult case-control analysis and replicated in the 

independent dataset showed evidence for developmental regulation across at least two 

expression feature types. We further found that expression features more highly expressed in 

postnatal life tended to be more lowly expressed in patients compared to controls (max: 

p=3.24×10−11, min: p=1.05×10−70, Figure 3C) and features more highly expressed in fetal 

life tended to be more highly expressed in patients with schizophrenia compared to controls 

(max: p=6.86×10−33, min: p < 10−100, Figure 3D). Analogous analyses for developmental 

regulation of schizophrenia-associated features without adjusting for the RNA quality qSVs 

were significant in the opposite directions, namely that schizophrenia-associated changes 

were further from, rather than closer to, fetal expression levels, as might be predicted as a 

confounding artifact of residual RNA quality differences (Table S1).These results further 

converge on a role for genes changing during brain development and maturation in the 

pathogenesis of schizophrenia, specifically that both DNA methylation and expression levels 

in adult patients appear to reflect levels in the developing brain more strongly than do those 

of unaffected individuals.
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Discussion

We have explored the diverse landscape of expression correlates of schizophrenia risk and 

illness state in the postmortem human frontal cortex across the lifespan. Using deep RNA 

sequencing to define convergent measures of gene expression and early brain development, 

we identified widespread developmental regulation of transcription, including novel 

discoveries related to preferential isoform usage across brain development. These 

unexpected isoform “shifts” were associated with genetic risk for schizophrenia, and the 

directionality of dysregulation of developmentally regulated features suggest a more fetal-

like expression profile in patients with schizophrenia compared with controls. Our approach 

to transcript characterization, which included extensive characterization of unannotated 

sequence, revealed that many more schizophrenia risk associated SNPs are brain eQTLs than 

previously reported - many risk SNPs only associate with a single gene, or even a single 

transcript, and many of these adult-identified eQTLs show overlap with genes with dynamic 

isoform regulation across human brain development. Lastly, we identified significant and 

replicated genes differentially expressed in patients with schizophrenia compared to 

unaffected controls using an experiment-based framework to better model RNA quality. It is 

important to note that while much of the signal relating to developmental regulation likely 

relates to changing cellular composition across brain development, the use of latent variable 

adjustment in the diagnosis and eQTL modeling likely controls for these effects23. These 

data, therefore, suggest a convergence of developmental regulation and genetic risk for 

schizophrenia that appears relatively stable in patients ascertained at death, following 

decades of illness after diagnosis. We previously observed analogous stability of epigenetic 

marks highlighting prenatal life in adult patients with schizophrenia15, suggesting that both 

genetic and environmental risk factors implicated in schizophrenia illness involve early 

developmental events that are still observable in the brain tissue of adult individuals despite 

many years of illness.

While our approach utilizing convergent expression features – genes, exons, transcripts, 

junctions, and expressed regions – results in more complicated data processing and analysis, 

it casts a wider net in the search for signals in RNA-seq data. Using all convergent features 

overcomes the limitations related to any given feature summarization, including the inability 

to measure and interrogate unannotated or novel transcribed sequences using gene and exon 

counts, and the difficulties in full transcript assembly from short sequencing reads 24. We 

note that both quantifying and analyzing splice junctions, and transcripts, rely on junction-

spanning reads for statistical power which are approximately 3-fold depleted compared to 

those assigned to exons, likely explaining why gene counts discovered more differentially 

expressed genes in the schizophrenia diagnosis analyses. Two relatively new approaches 

utilized here – direct quantification and statistical analyses of splice junction counts and 

expressed regions – can identify differential expression signal when it is outside of the 

annotated transcriptome. The junction-level approach can also identify previously 

uncharacterized novel transcribed sequences, which we replicated in other large publicly 

available datasets, as well as delineate individual transcripts or classes of transcripts that 

share a particular splice junction. As read lengths increase, the proportion of reads 

Jaffe et al. Page 9

Nat Neurosci. Author manuscript; available in PMC 2019 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



containing splice junctions will increase, making junction- and transcript-based approaches 

even more powerful, including those recently developed to identify splicing QTLs 25.

Our analysis of RNA-seq data identified widespread shifts in preferential isoform use across 

brain development and its changing cellular landscape, which would have been impossible 

to identify using only gene-level data and incomplete with only exon-level data (Figure 2). 

The genes with these isoform shifts were significantly enriched for neurodevelopmental and 

cellular signaling processes, and as well as for genes in regions of genetic risk for 

schizophrenia. A prevalent hypothesis suggests that schizophrenia is a neurodevelopmental 

disorder that arises because of altered connectivity and plasticity in the early assembly of 

relevant neural circuits26 and the potential convergence of genetic risk with developing 

signaling processes across human brain development should point to specific candidate 

molecular disruptions occurring during the wiring of the fetal brain. Indeed, inefficient or 

disrupted signaling and tuning is thought to underlie the expression of illness in the adult 

brain 26, and the most successful therapeutics work through improving these processes14. 

Consistent with this hypothesis, we find evidence for differences in the expression of genes 

coding for subunits of ion channels in the cortices of patients with schizophrenia compared 

to controls. We observed significant differential expression of both voltage-gated (KCNA1, 

KCNC3, KCNK1, KCNN1, SCN9A) and ligand gated ion channels (GRIN3A, GABRA5, 

GABRB3), transporters (SLC16A2, SLC25A33, SLC26A11, SLC35F2, SLC7A3), and ion 

channel auxiliary subunits (KCNIP3, SCN1B), supporting other evidence that the clinical 

phenomenology of schizophrenia is associated with altered neuronal excitability 27. While 

these findings implicating basic mechanisms of cortical circuit dynamics may underlie 

fundamental aspects of the clinical disorder, the possibility that they are driven by the effects 

of pharmacological treatment and are thus state dependent epiphenomena cannot be 

excluded. Indeed, our failure to find association of genomic risk scores and differential gene 

expression in the illness state adds weight to the latter interpretation.

Our data also suggest more widespread regulation of specific transcript isoforms, which we 

were able to identify using exon- and junction-level analyses. This transcript-specific genetic 

regulation was particularly prevalent among schizophrenia risk variants, where 66.9% of loci 

containing multiple transcripts showed clinically- and molecularly-consistent eQTL signal to 

a single Ensembl transcript isoform. Overall, we have identified many more eQTLs to 

genome-wide significant schizophrenia risk variants – 48.1% - than previously reported, 

experimentally implicating far more potential “risk” genes within these loci than previously 

characterized. Our database of eQTLs is searchable for candidate genes or SNPs and 

provides publication-ready visualizations (e.g. boxplots in Figure 2) and a “one-stop-shop” 

for eQTL statistics across three independent studies (LIBD, CMC, and GTEx) for both 

annotated and unannotated transcribed sequence in the human cortex, and can export results 

to the UCSC Genome Browser 28 for additional interrogation.

We have highlighted GWAS loci that contain significant and statistically independent 

eQTLs, as they often point to individual “risk” genes or even more specific “risk” 

transcripts. These “risk” genes and transcripts are targetable entry points for more focused 

cellular assays and model organism work to better characterize schizophrenia risk 

mechanisms. Moreover, these eQTLs of specific transcript features identifies a compelling 
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strategy and directionality for target rescue, specifically to increase or decrease the function 

of the target transcript(s) and downstream effectors. Focusing solely on increased or 

decreased expression in brains of patients compared to controls, without considering genetic 

risk variants and their regulation of local gene expression, will likely predominantly 

highlight molecular changes resulting from the schizophrenia illness state, as we suggest 

with consistent down-regulation of ion channels. We stress the priority of identifying the 

most relevant cellular consequences of genetic risk, which we view as production of 

particular isoforms with predicted directionality, rather than trying to identify “causal” 

mutations tagged by “marker” risk SNPs from the GWAS. We suggest that identifying 

convergence between genetic risk and potential molecular consequences of the disorder is 

likely to result in better - or at least more consistent support for - targets for drug discovery 

efforts.

Methods

Postmortem brain samples

Post-mortem human brain tissue was obtained by autopsy primarily from the Offices of the 

Chief Medical Examiner of the District of Columbia, and of the Commonwealth of Virginia, 

Northern District, all with informed consent from the legal next of kin (protocol 90-M-0142 

approved by the NIMH/NIH Institutional Review Board). Additional post-mortem fetal, 

infant, child and adolescent brain tissue samples were provided by the National Institute of 

Child Health and Human Development Brain and Tissue Bank for Developmental Disorders 

(http://www.BTBank.org) under contracts NO1-HD-4–3368 and NO1-HD-4–3383. The 

Institutional Review Board of the University of Maryland at Baltimore and the State of 

Maryland approved the protocol, and the tissue was donated to the Lieber Institute for Brain 

Development under the terms of a Material Transfer Agreement. Clinical characterization, 

diagnoses, and macro- and microscopic neuropathological examinations were performed on 

all samples using a standardized paradigm, and subjects with evidence of macro- or 

microscopic neuropathology were excluded. Details of tissue acquisition, handling, 

processing, dissection, clinical characterization, diagnoses, neuropathological examinations, 

RNA extraction and quality control measures were described previously in Lipska, et al. 29. 

The Brain and Tissue Bank cases were handled in a similar fashion (http://

medschool.umaryland.edu/BTBank/ProtocolMethods.html). Antipsychotic use was 

measured using toxicology at time of death. Given the retrospective nature of this project, 

data collection and analysis were not performed blind to the conditions of the experiments.

RNA extraction and sequencing

Post-mortem tissue homogenates of dorsolateral prefrontal cortex grey matter (DLPFC) 

approximating BA46/9 in postnatal samples and the corresponding region of PFC in fetal 

samples were obtained from all subjects. Total RNA was extracted from ~100 mg of tissue 

using the RNeasy kit (Qiagen) according to the manufacturer’s protocol. The poly-A 

containing RNA molecules were purified from 1 µg DNAse treated total RNA and 

sequencing libraries were constructed using the Illumina TruSeq© RNA Sample Preparation 

v2 kit. Sequencing indices/barcodes were inserted into Illumina adapters allowing samples 

to be multiplexed in across lanes in each flow cell. These products were then purified and 
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enriched with PCR to create the final cDNA library for high throughput sequencing using an 

Illumina HiSeq 2000 with paired end 2×100bp reads. While polyA+ libraries tend to be 

biased towards the 3’ end of transcripts (which increases as RNA quality decreases), our 

higher starting RNA quality (for postmortem studies) allowed us to generate high quality 

sequencing data (see Table S1). No statistical methods were used to pre-determine sample 

sizes but our sample sizes are similar to those reported in previous publications {Fromer, 

2016 #19}. Balancing samples by diagnoses and age across sequencing batches was 

attempted to reduce technical biases.

RNA sequencing data processing

The Illumina Real Time Analysis (RTA) module performed image analysis, base calling, and 

the BCL Converter (CASAVA v1.8.2), generating FASTQ files containing the sequencing 

reads. These reads were aligned to the human genome (UCSC hg19 build) using the spliced-

read mapper TopHat (v2.0.4) using the reference transcriptome to initially guide alignment, 

based on known transcripts of the previous Ensembl build GRCh37.67 (the “–G” argument 

in the software) 30. We achieved a median of 85.3 million (IQR: 71.7M-111.2M) aligned 

reads per sample (see Table S1).

We characterized the transcriptomes of these 495 samples using five convergent 

measurements of expression (“feature summarizations”)– (1) gene and (2) exon counts, and 

(3) transcript-level quantifications that rely on existing gene annotation, and two annotation-

agnostic approaches we have developed that are determined solely from the read alignments 

– (4) read coverage supporting exon-exon splice junctions (e.g. coordinates of potentially 

intronic sequence that are spliced out of mature transcripts captured by a single read) and (5) 

read coverage overlapping each base in each sample which we have summarized into 

contiguous “expressed regions” (ERs, see Methods, Figure S1). These last three 

measurements generate expression for features of interest that can “tag” elements of 

transcripts in the data that are not constrained by limitations or incompleteness of existing 

annotation, and the counts for these features can then be directly used for differential 

expression analysis.

1. Gene counts were generated using the featureCounts tool31 (v1.4.3-p1) based on 

the more recent Ensembl v75, which was the last stable release for the hg19 

genome build, using single end read counting [featureCounts –a $GTF –o $OUT 

$BAM]. We converted counts to RPKM values using the total number of aligned 

reads across the autosomal and sex chromosomes (dropping reads mapping to the 

mitochondria chromosome). As our libraries were unstranded, reads that mapped 

to exons belonging to genes on different strands were excluded from counting 

(which is the default behavior of the tool.

2. Exon counts were also generated using the featureCounts tool31 (v1.4.3-p1) 

based on the more recent Ensembl v75, using single end read counting, and 

allowing reads to be assigned to multiple exons (e.g. those with splice junctions) 

[featureCounts –O –f –a $GTF –o $OUT $BAM]. We converted counts to 

RPKM values using the total number of aligned reads across the autosomal and 

sex chromosomes (dropping reads mapping to the mitochondria chromosome).
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3. Junction counts were generated by first filtering the TopHat BAM file to primary 

alignments only [samtools view -bh -F 0×100 $BAM > $NEWBAM] and 

regtools 32 (v 0.1.0) was used to extract analogous junction information 

(coordinates and number of reads supporting) as the TopHat output. We found 

that native TopHat output (junctions.bed) was based on both primary and 

secondary alignments, which could influence the degree of potentially novel 

splice junctions. We used a modified version of TopHat’s “bed_to_juncs” 

program to retain the number of supporting reads (in addition to returning the 

coordinates of the spliced sequence, rather than the maximum fragment range), 

and used R code (see Supplementary Code) to combine and annotate these 

junctions across all samples. We identified splice junctions using Ensembl v75 – 

while the initial alignment was guided by Ensembl v67, novel junctions, by 

definition, are identified in the second genome alignment, rather than the initial 

guided transcriptome alignment step. We converted counts to “RP80M” values, 

or “reads per 80 million mapped” using the total number of aligned reads across 

the autosomal and sex chromosomes (dropping reads mapping to the 

mitochondria chromosome), which can be interpreted as the number of reads 

supporting the junction in an average library size (we were targeting 80M reads 

in the sequencing). Most junctions were lowly expressed in our homogenate 

tissue, with fewer than 1 average normalized supporting read (N=3,330,642; 

92.98%) including approximately half unique to a single individual (N= 

1,779,241, 49.67%).

4. Transcripts were assembled using StringTie4 (version 1.1.2) guided by Ensembl 

v75 annotation within each sample [stringtie $BAM –o $OUT –G $GTF]. We 

then used “CuffMerge” 33 (version 2.2.1) to merge all assembled transcriptomes 

across all samples, and then re-quantified the expression of each transcript 

isoform in each sample again using StringTie to this global set of transcripts 

[stringtie $BAM –B –e –o $OUT –G $GTF_ALL] to have expression 

measurements on the same transcripts across all samples. We then used the 

“ballgown” tool34 to merge all assembled and quantified transcripts across all 

samples (N= 733,339), and used liberal filtering to remove lowly or uniquely 

expressed transcripts (mean FPKM > 0.025), resulting in 188,578 transcripts 

across the 495 samples.

5. Expressed regions (ERs) were calculated using the “derfinder” R Bioconductor 

package6 using a cutoff of 5 normalized (to 80M reads) read coverage, which 

identified 389,797 ERs. We retained the 275,885 ERs that were at least 12 

basepairs, and annotated the ERs to Ensembl v75.

Genotype data processing

SNP genotyping with HumanHap650Y_V3 (N=135), Human 1M-Duo_V3 (N=357), and 

Omni5 (N=3) BeadChips (Illumina, San Diego, CA) was carried out according to the 

manufacturer’s instructions with DNA extracted from cerebellar tissue. Genotype data were 

processed and normalized with the crlmm R/Bioconductor package35 separately by 

platform. Genotype imputation was performed on high-quality observed genotypes 
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(removing low quality and rare variants) using the prephasing/imputation stepwise approach 

implemented in IMPUTE236 and Shape-IT37, with the imputation reference set from the full 

1000 Human Genomes Project Phase 3 data set, separately by platform. We retained 

common SNPs (MAF > 5%) that were present in the majority of samples (missingness < 

10%) that were in Hardy Weinberg equilibrium (at p > 1×10−6) using the Plink38 version 1.9 

tool kit [`plink --bfile $BFILE --geno 0.1 --maf 0.05 --hwe 0.000001`]. We then identified 

linkage disequilibrium (LD)-independent SNPs to use in genome-wide clustering of samples 

and in the number of independent eQTL tests performed [`plink –bfile $BFILE --indep 100 

10 1.25`]. Multidimensional scaling (MDS) was performed on the autosomal LD-

independent construct genomic ancestry components on each sample, which can be 

interpreted as quantitative levels of ethnicity – the first component separated the Caucasian 

and African American samples. This processing and quality control steps resulted in 

7,421,423 common variants in this dataset of 495 subjects.

Public data processing

GTEx: Raw RNA-seq reads from all brain samples with corresponding genotype data were 

downloaded from SRA and aligned to the genome using TopHat2 30 (version 2.0.14) using 

the iGenomes transcriptome and genome annotations based on hg19. As above, 

featureCounts 31 was used to quantify expression of genes and exons relative to Ensembl 

v75, and junctions were quantified with regtools32 as above. We used StringTie with the 

assembled merged GTF from the LIBD DLPFC samples on the GTEx BAM files to quantify 

the same transcripts, and used bwtool41 to quantify the coverage of the same expressed 

regions from the GTEx brain samples. Genotype data from the two platforms (Illumina 

Omni 5M and 2.5M) were imputed separately as described above and merged into a single 

plink38 set.

GEUVADIS: Raw RNA-seq reads from all LCL samples were downloaded from SRA and 

aligned to the genome using TopHat2 30 (version 2.0.9) using the iGenomes transcriptome 

and genome annotations based on hg19. As above, featureCounts31 was used to quantify 

expression of genes and exons relative to Ensembl v75, and junctions were quantified with 

regtools32 as above. We used StringTie with the assembled merged GTF from the LIBD 

DLPFC samples on the GEUVADIS BAM files to quantify the same transcripts, and used 

bwtool to quantify the coverage of the same expressed regions from the GEUVADIS LCL 

samples.

CommonMind Consortium (CMC): 547 BAM files were downloaded from Synapse, 

which were aligned with TopHat2 (version 2.0.9) using Ensembl v70 transcriptome 

annotation and the hg19 genome. As above, featureCounts 31 was used to quantify 

expression of genes and exons relative to Ensembl v75, and junctions were quantified with 

regtools 32 as above. We used StringTie with the assembled merged GTF from the LIBD 

DLPFC samples on the CMC BAM files to quantify the same transcripts, and used bwtool to 

quantify the coverage of the same expressed regions from the CMC brain samples. 

Genotypes were converted to plink file sets from GEN files obtained from Synapse using 

posterior probabilities > 90%, resulting in genotype data across 9,506,038 SNPs and 547 

samples.
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Differential expression across brain development

We modeled differential expression across age at each of the five feature summarizations 

(gene, exon, junction, transcript, and ER) in the 320 control subjects across the lifespan. We 

modeled expression, after transforming with log2 with an offset of 1 (to better fulfill the 

assumptions of linear regression), as a function of age after creating using linear splines with 

breakpoints at ages: birth (0), 1, 10, 20, and 50, further adjusting for sex and ancestry/

ethnicity (first 3 MDS components). F-statistics were computed comparing the model 

containing age (including the linear splines), sex, and ethnicity, to a statistical model with 

just sex and ethnicity, with corresponding p-values calculated based on an F-distribution 

with 7 and 308 degrees of freedom, and Bonferroni adjustment within each feature type was 

performed using the number of features with non-zero expression (gene RPKM > 0.01, exon 

RPKM > 0.1, and junction RP80M > 0.2 with non-novel annotation) across all samples as 

the number of tests (which varied by feature type). We also computed post-hoc statistics on 

the data, including the Pearson correlation between “cleaned” expression (after regressing 

out the effects of sex and ethnicity, holding the age effects constant), and age to determine if 

the expression of the fetal rose or fell across the lifespan, and also measured the fetal versus 

postnatal log2 fold changes.

Preferential isoform usage across aging was determined by identifying the subset of genes 

(by Ensembl ID) that contained at least one Bonferroni-significant feature that had positive 

correlation with age and another Bonferroni-significant feature that had negative correlation 

with age. Specifically, the procedure that we performed was:

1. Fitting a (linear) spline model using all samples (N=320) with break points at 

birth/0, 1, 10, 20, and 50 years of age at all expressed features, further allowing 

an offset at birth (ie the slope in prenatal life does not connect to the slope 

between birth/0 and 1 (since we did not have 3rd trimester prenatal samples), 

further adjusting for sex and ethnicity. Examples of the spline fit are shown in the 

panels of the Figure S4B-H.

2. Calculating an F-statistic comparing this full model (age spline, sex, ethnicity) to 

a null model just containing sex and ethnicity) and Bonferroni-adjust the 

resulting p-values for this F-statistic within each feature summarization type 

(Gene, Exon, Junction, Transcript, and ER).

3. Calculating post-hoc Pearson correlation coefficients comparing age and log2 

fold changes comparing pre- and post-natal samples for all features – note there 

are no p-values retained from nor statistical inference performed from these 

correlations.

4. Then, for a given gene and feature summarization type (Exon, Junction, 

Transcript and ER), filtering to only Bonferroni-significant features and checking 

whether there is at least one feature with positive age correlation and another 

feature with negative age correlation.

We also computed the difference in positive and negative correlations as a measure of the 

magnitude of the preferential isoform use, which showed linear replication with the 

BrainSpan42 project (i.e. computing the same age correlations in identically processed and 
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summarized data, Figure S11). Gene set analyses using pre-defined gene ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) sets were performed using the 

clusterProfiler R/Bioconductor package43, here using the genes (mapping from Ensembl to 

Entrez ID) that had such preferential isoform use to those that were developmentally 

regulated (having at least one feature that was associate with age at Bonferroni significance). 

Enrichments with the PGC2 schizophrenia risk loci – defined by the chr:start-end roughly 

corresponding to linkage disequilibrium blocks in the published manuscript - were 

performed both parametrically, by overlapping the genomic coordinates of the 108 risk 

regions with those genes that had preferential isoform usage, compared to a background of 

all genes with each set of expressed features, as well as by permuting the locations of the 

108 regions across the genome 10,000 times and each time, re-computing the overlap within 

these null regions – see additional details in Jaffe et al 20157. Empirical p-values were 

calculated by counting the number of the odds ratios across the 10,000 null permutations to 

each observed odds ratio.

We performed sensitivity analyses to assess the role of gene length on these GWAS 

enrichments of isoform switch genes, using either the coding length (log2-transformed) or 

the number of exons (log2-transformed). We assessed confounding using logistic regression 

analysis among all expressed genes, computing the odds of genes with isoform shifts being 

within the risk loci, within and without adjusting for these gene length variables. 

Schizophrenia GWAS enrichments at the exon and junction level remained significant and 

approximated the empirical p-values obtained from permutation (as the act of randomly 

permuting GWAS regions should have removed potential confounding). We performed 

analogous logistic regression analyses using GWAS LD regions from Type 2 diabetes 16, 

Parkinson’s Disease 17, and Alzheimer’s Disease 18, adjusting for the log2 coding length and 

found no association to genes with isoform shifts in the developing cortex.

Reference-based cellular deconvolution

We analogously processed RNA-seq data from Darmanis et al 44 consisting of 25 replicating 

and 110 quiescent fetal neurons, 18 oligodendrocyte progenitor cells (OPCs), 131 neurons, 

62 astrocytes, 38 oligodendrocytes,16 microglia and 20 endothelial cells. We defined stage-

specific genes using the same framework described by Jaffe and Irizarry 201423, which 

involved creating a “barcode” of 40 genes per cell type, such that 20 genes were more highly 

expressed and another 20 genes were more lowly expressed for one stage compared to all 

others (t-statistic p-values < 1e-8), and ranking subsequent significant genes by log2 fold 

changes for selection. From our final set of 258 unique genes, we scaled each gene 

expression value to the standard normal distribution to improve comparability between 

single cell and bulk RNA-seq data, and created the regression calibration design matrix 

based on Houseman et al.45, shown in Table S14. We then projected samples into the design 

matrix using the `projectCellType()` function in the minfi Bioconductor package46.

eQTL discovery analyses

We performed eQTL analyses separately by feature type (gene, exon, junction, transcript, 

and ER) allowing for a 500kb window around each of the 7,421,423 common SNPs in the 

412 age > 13 samples, adjusting for ancestry (first three MDS components from the 
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genotype data), sex, diagnosis, and the first K principal components (PCs) of the normalized 

expression features, where K was calculated separately by feature type using the Buja and 

Eyuboglu permutation-based algorithm39 in the “sva” Bioconductor package40 (gene: 22 

PCs, exon: 19 PCs, junction: 26 PCs, transcript: 25 PCs, expressed regions: 20 PCs). The 

eQTL analyses were run using the MatrixEQTL R package47, which returned the log2 fold 

change per allele copy, and corresponding T-statistic, p-value, and FDR for each SNP-

feature pair. We further used the LD-independent SNPs to estimate the effective number of 

tests (by counting the number of features within a 500kb window around each LD 

independent SNP) for a more conservative Bonferroni adjustment. For all five feature types, 

we retained all eQTLs with FDR < 1%.

eQTL replication analyses

We sought to replicate all significant SNP-Feature pairs for each eQTL in two independent 

datasets across all five feature summarizations: CommonMind Consortium and the GTEx 

project. We used chromosome and position of variants to attempt to match across dataset –

almost all SNPs in the discovery sample were present in each replication samples. Within 

each dataset, we tested all polymorphic SNPs (e.g. not monomorphic) and corresponding 

expressed features, adjusting for the first 10 PCs of each feature summarization type and the 

first 5 MDS components of the corresponding common genotype data. Analyses within 

CMC were performed on the 285 controls and analyses in GTEx were performed within 

each brain region separately. After identifying and matching back on SNP-feature eQTL 

pairs, we checked whether the counted alleles were the same within the discovery and 

replication datasets and flipped the directionality of eQTL associations where the alleles 

were discordant. Note that in GTEx, some residual discordancy was still present across 

dataset (e.g. off-diagonal points in Figures S6, S7A and S7B) but not within a dataset 

(Figure S7C). Meta-analysis between discovery (LIBD) and CMC was performed using 

Stouffer’s Methods 48, by summing the T-statistics and dividing by the square-root of the 

number of datasets (N=2). Meta-analysis within GTEx brain regions was performed using 

the same approach, here dividing by the square root of number of datasets/brain regions 

(N=13). When replication statistics were not present in replication datasets due no/low 

expression or being monomorphic, the discovery eQTL was “penalized” by setting the 

replication statistic to 0 prior to meta-analysis.

eQTL clinical enrichment analyses

We downloaded the 128 linkage-disequilibrium-independent variants that reached genome-

wide significance in combined analysis from the latest schizophrenia GWAS (their 

Supplementary Table 2) and matched those variants to our data by chromosome and position 

relative to hg19. Of the 128 variants, only 106 were present in our final QC’d and common 

(MAF>5%) genotype data. Most were excluded due to MAFs less than 5% although several 

variants were dropped for other reasons (not present in 1000 Genomes, failed Hardy 

Weinberg equilibrium, poorly imputed, etc). We therefore interrogated only those 106 

schizophrenia-associated variants among our eQTL associations. We utilized a similar 

strategy for the latest NHGRI GWAS catalog (downloaded 7/24/2017) with an additional 

step of lifting over our variants to hg38 and again matching by variant coordinates. Here, 

only approximately half of the variants were well-measured in our samples (see Table 2). We 
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used 3 significance levels to associate eQTLs with GWAS variants: a) more liberal FDR-

significant eQTLs in the discovery dataset, b) these FDR-significant eQTLs with additional 

replication data support (meta-analysis p-values with CMC < 10−8), and c) Bonferroni-

significant eQTLs in the discovery dataset, e.g. Table 1. We assessed the chromatin state 

enrichments of unannotated sequences associated with these risk variants using published 

data from the 15 state ChromHMM Epigenome Roadmap project49. We evaluated the set of 

expressed region (ER) eQTL features that were completely novel in both the SCZD GWAS 

(1096 regions, 323.7kb total coverage) as well as the NHGRI GWAS catalog (5068 regions, 

~1.59Mb total coverage) described in the text. We compared the chromatin states for the 

ERs compared to the rest of the genome not contained in the ERs (including the entire 

coding genome).

eQTL conditional analyses

We performed conditional analyses within the eQTLs for each schizophrenia risk variant to 

remove highly correlated signal and improve resolution of associations. We used the 

residuals of the statistical model described above within each feature type (regressing out 

PCs, MDS components and diagnosis) to allow for analyses across feature types. We 

iteratively conditioned on the expression level of the most significant eQTL feature and 

recomputed the eQTL p-values for all other features to the risk SNP. Those features that 

were still marginally significantly (at p<0.05) were retained, and then next-best expression 

feature (following conditioning) was additionally adjusted for in the statistical model. This 

procedure of iteratively testing for conditional independence among remaining features and 

subsequently adjusting for the most significant feature continued until no additional features 

were independently associated with the genetic risk variant at p < 0.05. This procedure was 

performed separately within each of the 51 loci with eQTL signal.

Polygene risk score (PRS) analysis: Using the allelic dosage files following 

imputation described above and the SNPs from provided by the PGC to the Lieber Institute 

that did not contain completely different clinical subjects used in the GWAS2. We 

considered expression associations at the gene, exon and junction-level to the PRS scores 

from the first 5 clinical SNP sets, corresponding to GWAS p-value thresholds of p < 5e-8 

(s1), p < 1e-6 (s2), p < 1e-4 (s3), p < 0.001 (s4), and p < 0.01 (s5) – subsequent SNP sets 

were ignored due to clinical risk plateauing at s5. We also focused only on Caucasian 

individuals (96 cases, 113 controls), as the s5 PRS was increased in patients relative to 

controls in this sample (p=3.2×10−5), but did not differ among African Americans (p=0.9). 

Within each expression feature type, we modeled expression levels as a function of each 

PRS set (s1-s5), adjusting for 3 MDS components of the genotype data, sex, and the first K 
principal components (PCs) of the normalized expression features, where K was calculated 

using the Buja and Eyuboglu permutation-based algorithm39 in the “sva” Bioconductor 

package40. The resulting p-values of PRS on expression, adjusting for the above factors, 

were subject to false discovery rate (FDR) control to account for multiple testing.

Schizophrenia differential expression analyses

Discovery dataset analysis: we first filtered the subjects with RNA-seq to retain a more 

stringent set of 155 SCZD cases and 196 controls (criteria: ages between 17–80, gene 
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assignment rate > 0.5, mapping rate > 0.7, RIN > 6, not outlying on 2nd ancestry PC, only 

self-reported Caucasians and African Americans). We fit three statistical models across each 

of the expression summarizations, modeling log2 transformed expression (with an offset of 

1) as a function of:

(1) Adjusted (“_adj” suffix in supplementary tables): SCZD diagnosis, adjusting for age, 

sex, ancestry (SNP PCs 1, 5, 6, 9, 10, which were at least marginally associated with 

diagnosis), and then observed measures related to RNA quality: RIN, mitochondrial 

mapping rate, and gene assignment rate.

(2) Adjusted + Quality Surrogate Variables (“_qsva” suffix in supplementary tables): SCZD 

diagnosis adjusting for “Adjusted” model as well as the first 12 PCs from the degradation 

matrix (see below) based on polyA+ libraries (selected using to using the BE algorithm 39 in 

the sva Bioconductor package40 while providing the adjusted model as input).

(3) Adjusted + Principal Components (“_pca” suffix in supplementary tables): SCZD 

diagnosis adjusting for “Adjusted” model as well as the first k PCs from the expressed 

features (using the 50000 most variable features) depending on the feature type (gene: 23 

PCs, exon: 20 PCs, transcript: 26 PCs, junction: 26 PCs, ERs: 23 PCs).

We used the `lmTest` and `ebayes` functions in the limma Bioconductor package 50 to fit all 

of the statistical models to estimate log2 fold changes, moderated T-statistics, and 

corresponding p-values. Multiple testing correction via the false discovery rate (FDR) was 

applied using the set of expressed features in this sample set for each summarization type: 

24,122 genes (mean RPKM > 0.1), 420,022 exons (mean RPKM > 0.2), 61,950 transcripts 

(mean FPKM > 0.2), 229,846 junctions (mean RP80M > 1), and the 275,885 ERs.

RNA quality correction: We summarize the RNA quality correction approach here – for 

more detail, see the companion paper by Jaffe et al 2017. Briefly, the quality surrogate 

variable analysis (qSVA) uses RNA sequencing data generated from five DLPFC tissue 

samples left unfrozen for 0, 15, 30 and 60 minutes, resulting in 20 RNA samples. These 

samples were sequenced with both polyA+ and RiboZero library preparations, and gene, 

exon and junction counts were derived as above. We utilized the gene-level effects of 

degradation in these data in Figure S5 to demonstrate residual confounding by RNA quality, 

which we call the “DEQual Plot”.

For a given preparation type, we identified the genomic regions most susceptible to 

degradation by correlating coverage at expressed regions 6 to degradation time, adjusting for 

donor. This statistical modeling identified 515 regions significantly susceptible to 

degradation (at Bonferroni significance) in the RiboZero libraries and the top 1000 regions 

most susceptible to degradation (among the 35,287 at Bonferroni significance) in the polyA

+ libraries – the BED files for these degradation-susceptible regions are available in Jaffe et 

al 201721

The algorithm then involves selecting the set of regions for a particular library type and 

calculating total coverage within each region in the new user-provided samples (e.g. the 495 

DLPFC RNA-seq polyA+ samples) to form the degradation matrix (which is either 515 or 
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1000 rows by N samples). Then PCA is performed on the log2 transformed degradation 

matrix (with an offset of 1) and the top K PCs are selected, for example using the BE 

algorithm 39, and extracted – the set of these PCs are referred to as quality surrogate 

variables (qSVs), and are included as adjustment variables in subsequent differential 

expression analyses.

Replication dataset analysis: we performed analogous sample selection procedures as 

in the discovery dataset to select 159 patients and 172 controls (total gene assignment rate > 

0.3, alignment rate > 0.8, RIN > 6, ages between 18–80, non-outlying on genetic ancestry 

PCs 3 and 5 and keeping only reported Caucasians and African Americans). We similarly fit 

the three sets of statistical models to all five feature summarizations, with the following 

differences compared to the discovery analysis:

(1) Adjusted model: the model here was diagnosis adjusting for age, sex, race, brain bank, 

RIN, gene assignment rate, alignment rate.

(2) qSVA model: the degradation matrix was constructed using the 515 regions based on the 

RiboZero libraries in the degradation experiment.

(3) PC adjustment: for each feature summarization type, we included: 27 PCs for genes, 29 

PCs for exons, 39 PCs for transcripts, 39 PCs for junctions, and 33 PCs for ERs.

In these replication data we did not perform FDR correction. We were using the study for 

replication, not discovery, and therefore only used the features that were expressed in our 

data regardless of the expression levels in CMC. We considered features independently 

replicated if they had the same directionality for the SCZD versus control log2 fold change 

and were marginally significant (at p < 0.05) in the CMC dataset.

Gene set analyses on replicated differentially expressed features and genes were performed 

with clusterProfiler43 as described above. Set-level analyses on features in the GWAS risk 

regions were conducted by assigning each expressed feature a binary variable for whether it 

was in the risk regions or not. Then we fit a linear regression model of the t-statistics for 

diagnosis, adjusted by the qSVA approach, as a function as whether the feature was in the 

risk region, adjusting for its average expression level. This analysis was conducted across 

and then within each of the five feature summarization types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Developmental regulation of expression. (A) Principal component #1 of the gene-level 

expression data versus age (N=320 independent samples/subjects); PCW: post-conception 

weeks, remaining ages are in years. (B) Expression features fall into two main development 

regulation signatures, increasing in expression from fetal to postnatal life (orange) or 

decreasing from fetal to postnatal life (blue). Y-axis is Z-scaled expression (to standard 

normal), dark lines represent median expression levels, and confidence bands represent 

25th-75th percentiles of expression levels for each class of features. (C) KEGG pathways 

enriched for genes with isoform shifts, stratified by which feature type identified the gene as 

having a switch. Coloring/scaling represents -log10(FDR) for gene set enrichment. 

Analogous data for GO gene sets (biological processes, BP, and molecular function, MF) are 
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available in Table S6. DER: differentially expressed region. Enrichment analyses for isoform 

shift genes among PGC2 schizophrenia GWAS risk loci with exon and junction counts using 

both (D) parametric p-values) and (E) permutation-based p-values. OR: odds ratio.
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Figure 2: 
Clinical enrichment of schizophrenia risk using representative eQTLs. (A) Association 

between rs1233578 and intergenic sequence downstream (B) of ZSCAN23. (B) Association 

between rs3849046 and a splice junction (C) of a particular longer isoform (D) of CNNTA1. 

(E) Association between rs9841616 and very proximal extended UTR (F) of SOX2-OT. 

Associations between risk SNPs and annotated sequences are shown for (G) CD46, (H) SRR 

and (I) GPM6A. In panels B, D, and F: thicker/dark blue: exon, thinner/light blue: intron; 

coordinates relative to hg19; N=412 independent samples for all panels; box plots show 

median and interquartile range (IQR), with whiskers representing 2.5*IQR.
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Figure 3: 
Differential expression comparing patients with schizophrenia to controls. (A) Histogram of 

fold changes of the diagnosis effect of those features that were significant and independently 

replicated, colored by feature type. (B) Gene set analyses of genes with decreased 

expression in patients compared to controls by feature type. Coloring/scaling represents -

log10(FDR) for gene set enrichment. Significant directional effects of developmental 

regulation among diagnosis-associated genes for those that (C) increased and (D) decreased 

across development. P-values (two-sided) were calculated using linear regression Wald tests 

for those genes developmentally regulated among case-control differences to those not 

developmentally regulated across the 24,122 expressed genes.
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Table 1:

eQTL summary statistics at FDR and Bonferroni significance thresholds across five feature summarizations. 

“logFC” is the log2 fold change in expression per minor allele copy and “% Unann” is the percent of features 

that were not strictly annotated.

Type eQTLs # SNPs # Features p-cutoff Ensembl Genes Symbol Genes log2FC % Unann

FDR < 1%

Gene 1815172 1055186 18416 1.84E-04 18416 12874 0.061 NA

Exon 13255860 1390362 157923 1.00E-04 20696 15697 0.13 NA

Transcript 1465179 616346 26870 3.07E-05 11272 11219 0.094 50.7%

Junction 4813472 1092615 67358 6.39E-05 14792 13204 0.33 21.3%

ER 8115891 1367619 94200 1.25E-04 16379 12914 0.22 47.4%

Bonf < 5%

Gene 648597 431704 6748 8.41E-09 6748 4955 0.097 NA

Exon 4019197 529237 48031 7.64E-10 8386 6439 0.21 NA

Transcript 514563 236633 6349 1.73E-09 3263 3249 0.15 46.9%

Junction 1557370 439920 18908 1.10E-09 5827 5205 0.55 21.6%

ER 2575655 533978 27643 1.28E-09 6822 5643 0.37 53.9%
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Table 2:

eQTL summary metrics for GWAS variants from the latest schizophrenia GWAS and the more general 

genome-wide suggestive loci from the NHGRI GWAS catalog. “# SNPs Tested” were those that were 

observed or imputed with high quality and that were relatively common in our samples (MAF > 5%). “Unann” 

= unannotated, “Tx” = transcript

SCZD GWAS NHGRI GWAS Catalog

FDR<1% FDR+Meta Bonf<5% FDR<1% FDR+Meta Bonf<5%

# SNPs Tested 106 106 106 23704 23704 23704

# SNP eQTLs 51 37 26 8988 5490 4255

> # w/o Gene 21 17 9 3763 2370 1891

> # w/o Gene+Tx 17 15 8 2982 1824 1445

> # Unann 47 28 17 5858 3470 2579

> # Only unann 7 6 3 995 671 589

> # Single Tx 11 10 5 1933 1156 976
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Table 3:

GWAS-significant index variants and eQTL associations, for those GWAS loci associating with only one or 

two genes following conditional analysis. *Formerly C10orf32

SZ GWAS Locus SNP Gene SZ GWAS Locus SNP Gene

1 rs1233578 Intergenic 59 rs10520163 CLCN3

1 rs1233578 ZSCAN26 63 rs9420 Intergenic

3 rs11191419 AS3MT 73 rs3849046 CTNNA1

3 rs11191419 BORCS7* 82 rs6704641 SATB2

5 rs4129585 TSNARE1 84 rs1106568 GPM6A

7 rs10650434 MAD1L1 86 rs10043984 FAM53C

7 rs10650434 FTSJ2 86 rs10043984 NME5

11 rs4702 FES 88 rs7819570 AC090568.2

11 rs4702 AC068831.1 96 rs8082590 ATPAF2

12 rs75968099 LRRFIP2 96 rs8082590 DRG2

12 rs75968099 AC011816.1 98 rs12325245 GOT2

16 rs13240464 LRRN3 98 rs12325245 NDRG4

16 rs13240464 IMMP2L 103 rs324017 STAT6

17 rs10791097 SNX19 105 rs55833108 AS3MT

20 rs7893279 NSUN6 105 rs55833108 USMG5

23 rs6704768 C2orf82 106 rs9841616 SOX2-OT

23 rs6704768 GIGYF2 109 rs149009306 DFNA5

24 rs55661361 NRGN 114 rs12421382 AP003049.1

30 rs11682175 FANCL 114 rs12421382 Intergenic

42 rs7432375 AC117382.2 117 rs75575209 FANCL

42 rs7432375 PCCB 119 rs14403 AKT3

47 rs4523957 SRR 119 rs14403 SDCCAG8

47 rs4523957 TSR1 120 rs6670165 BRINP2

52 rs140505938 Intergenic 120 rs6670165 Intergenic

57 rs34269918 RERE 121 rs7523273 CD46

57 rs34269918 SNORA77
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