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Abstract

Understanding the function of human proteins is essential to decipher the molecular mechanisms 

of human diseases and phenotypes. Of the 17470 human protein coding genes in neXtProt 

2018-01-17 database with unequivocal protein existence evidence (PE1), 1260 proteins do not 

have characterized functions. To reveal the function of poorly annotated human proteins, we 

developed a hybrid pipeline that creates protein structure prediction using I-TASSER and infers 

functional insights for the target protein from the functional templates recognized by COFACTOR. 

As a case study, the pipeline was applied to all 66 PE1 proteins with unknown or insufficiently 

specific function (uPE1) on human chromosome 17 as of neXtProt 2017-07-01. Benchmark 

testing on a control set of 100 well-characterized proteins randomly selected from the same 

chromosome shows high Gene Ontology (GO) term prediction accuracies of 0.69, 0.57, and 0.67 

for molecular function (MF), biological process (BP) and cellular component (CC), respectively. 

Three pipelines of function annotations (homology detection, protein-protein interaction network 

inference, and structure template identification) have been exploited by COFACTOR. Detailed 

analyses show that structure template detection based on low-resolution protein structure 

prediction made the major contribution to enhancement of the sensitivity and precision of the 

annotation predictions, especially for cases that do not have sequence-level homologous templates. 

For the chromosome 17 uPE1 proteins, the I-TASSER/COFACTOR pipeline confidently assigned 
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MF, BP and CC for 13, 33, and 49 proteins, respectively, with predicted functions ranging from 

sphingosine N-acyltransferase activity and sugar transmembrane transporter to cytoskeleton 

constitution. We highlight the 13 proteins with confident MF predictions; 11 of these are among 

the 33 proteins with confident BP predictions and 12 are among the 49 proteins with confident CC. 

This study demonstrates a novel computational approach to systematically annotate protein 

function in the human proteome and provides useful insights to guide experimental design and 

follow-up validation studies of these uncharacterized proteins.
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INTRODUCTION

As the direct carriers of biological functions in the human body, proteins participate in 

nearly all biological events, including catalysis of endogenous metabolites, regulation of 

most biological pathways, and formation of many subcellular structures. Understanding the 

function of human proteins has become an important prerequisite to uncover the secrets of 

human diseases and diverse phenotypes in modern biomedical studies. As a protein usually 

must be folded into specific tertiary structure in order to be functionally active, determining 

protein structure is an important avenue in protein function annotation.

Despite many years of community efforts in protein characterization, there is still a 

substantial number of proteins whose structure and biological functions are incomplete or 

unknown. Among all the 17470 confidently identified (PE1) human proteins in the 

neXtProt1 release 2018-01-17, there are 1260 uPE1 entries which do not have specific 

functional annotation (Supplementary Text S1). In the same neXtProt release, there are 6188 

out of 17470 PE1 entries with experimental 3D structures but only 32 among the 1260 uPE1 

proteins. The lack of structure and function annotations for many proteins in the human 

proteome limits our capability to understand their functional roles even in tissues with high 

expression. For example, of the 26 uPE1 proteins on chromosome 17 with 

immunohistochemistry data in Human Protein Atlas2 (retrieved on 2018-05-09), 24 have 

“high” expression in at least one tissue as detected by antibody studies. Similarly, 52 of the 

Zhang et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



66 uPE1 proteins on chromosome 17 (as of neXtProt 2017-08-01) have median RNA 

expression levels higher than 10 Transcripts per Million (TPM) in at least one tissue, as 

reported in GTEx3 version 7.

To alleviate the issue in protein structure and function annotations, we developed a hybrid 

pipeline which creates 3D structure prediction using I-TASSER4, with the functional 

insights deduced by COFACTOR5. Both I-TASSER and COFACTOR pipelines have been 

tested in community-wide blinded experiments, which demonstrate considerable reliability 

of structure modeling and functional annotations. For example, in CASP12, for 53 targets 

with template structures identified in PDB, I-TASSER generated correct folds with a TM-

score >0.5 for 47 cases, where in 41 cases structures were driven closer to the native than the 

templates. For 39 free-modeling (FM) targets which do not have any similar fold in the PDB 

database, 11 were correctly folded by I-TASSER.6 In CASP9, the COFACTOR algorithm7 

achieved a functional residue prediction precision of 72% and Matthews correlation 

coefficient 0.69 for the 31 function prediction targets, which were higher than those by all 

other methods in the experiment.7

The original version of COFACTOR8 was built on the transfer of function from structural 

templates detected by homologous and analogous structure alignments. That version of 

COFACTOR was used to suggest structure and function for dubious proteins in the human 

proteome (PE5).9 Recently, C. Zhang et al developed an extended version of COFACTOR 

with additional sequence and Protein-Protein Interaction (PPI) pipelines, which was tested in 

the most recent CAFA3 function annotation experiment.5, 10 According to the CAFA3 

evaluation (https://www.synapse.org/#!Synapse:syn12299467) for GO term prediction in 

MF, BP, and CC aspects, COFACTOR achieved F1-scores (defined in Equation 1 below) 

0.57, 0.60, and 0.61, respectively, which are 43%, 81%, and 17% higher in accuracy than the 

best baseline methods used by assessors. Additionally, we have used the I-TASSER/

COFACTOR pipeline for proteome-wide structure and function modeling of E. coli proteins, 

and the predicted functions of three proteins have been validated by enzymatic assay and 

mutation experiments.11

In light of recent progress, we applied this pipeline to better annotate the human proteome as 

part of the HUPO Chromosome-centric Human Proteome Project (C-HPP).12 As a proof-of-

principle study, we applied the I-TASSER/COFACTOR pipeline to all 66 uPE1 proteins 

from human chromosome 17 in neXtProt 2017-08-01 release to decipher the structure and 

function of these poorly annotated human proteins. The full prediction results as well as 

updated neXtProt annotations for these targets are available at https://

zhanglab.ccmb.med.umich.edu/COFACTOR/chr17/.

MATERIALS AND METHODS

Protein structure and function prediction pipelines

Our computational workflow for structure-based function annotation of a given protein 

consists of two main components: structure modeling by I-TASSER and function annotation 

by COFACTOR (Figure 1). The pipeline is fully automated with the query sequence as the 

sole input.
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In the I-TASSER structure prediction stage, the query protein sequence is first threaded 

through a non-redundant PDB library (https://zhanglab.ccmb.med.umich.edu/library/) by 

LOMETS13, which is a locally-installed meta threading algorithm combining 10 different 

state-of-the-art threading programs14–22, to identify structure templates. Continuous 

fragments are excised from these template structures, which are subsequently assembled into 

full length structure by replica-exchange Monte Carlo (REMC) simulation implemented by 

I-TASSER. Tens of thousands of decoy conformations from the REMC simulation trajectory 

are then clustered by SPICKER23 by structure similarity. The centroid of the largest cluster, 

which corresponds to the conformation with lowest free energy, is selected to undergo 

structure refinement by FG-MD24 to obtain the final structure model. While I-TASSER 

typically reports up to five structure models, ranked in descending order of the size of cluster 

from which a model came, we use only the first I-TASSER model for subsequent function 

modeling. That is because the first model has the highest confidence score and on average is 

closer to native structure than the lower-ranked models.25

To obtain function annotation for the query structure model, the COFACTOR structure-

based function prediction approach uses a modified TM-align26 structure alignment program 

to search the query structure against entries templates from the BioLiP27 structure-function 

database to identify structure templates with function annotations. The functions of structure 

templates are then transferred to query according to global structure similarity, active site 

local similarity and matching of sequence profiles between query and template, as measured 

by a combination of global and local structure alignments10. The combination of global and 

local structure similarity is critical to structure-based function annotation, as shown 

previously.10 If only global similarity is considered, the annotation result can be misled by 

fold promiscuity, where proteins sharing highly similar global topology can have very 

different functions.28 On the other hand, relying only on active site local structure similarity 

can also lead to false positive hits: ligand binding pockets with similar conformation can be 

associated with unrelated biochemical functions due to the very limited number of possible 

pocket structures.29 To further disentangle the structure promiscuity issue, the above 

structure-based function annotation is supplemented by the sequence-based approach, which 

extracts function annotations from BLAST and PSI-BLAST30 hits in the UniProt31 database 

search. Meanwhile, the protein-protein interaction (PPI) based approach infers function from 

UniProt sequences homologous to the query’s PPI partners, as defined by the STRING32 

database. Each of the three structure, sequence, and PPI-based approaches provides a 

confidence score ranging from 0 to 1 for a given predicted GO term; the final consensus GO 

term prediction is a weighted average of the three approaches.

Assessment metrics for structure and function prediction

Following the standard practice of CAFA, the GO term prediction accuracy is mainly 

evaluated by maximum F1-score, i.e., the F-measure:

Fmax = maxt ∈ 0,1
2 ⋅ pr t ⋅ re t
pr t + re t (1)
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pr t = tp t
tp t + f p t , re t = tp t

tp t + f n t (2)

Here, pr(t) and re(t) are the prediction precision and recall, respectively, at confidence score 

cutoff ≥ t. Precision is defined as the number of correctly predicted GO terms tp(t) over the 

number of all predicted GO terms tp(t) + fp(t), while recall is defined as tp(t) divided by all 

GO terms annotated to query by neXtProt gold standard.

The structure modeling quality of I-TASSER is evaluated by TM-score33 between first I-

TASSER model and native experimental structure. Ranging between 0 and 1, TM-score is a 

commonly used metric to assess structure similarity between two protein structures, with a 

TM-score>0.5 indicating the two conformations sharing the same topology:34

TM − score = 1
L

i = 1

Lali
1

1 + di/d0
2 (3)

Here, L is the number of residues in a protein, Lali is the number of aligned residues, di is the 

distance between the ith aligned residue pair, and d0 = max 0.5, 1.24 L − 153 − 18  is a 

normalization factor that ensures TM-score is independent of protein size.

RESULTS AND DISCUSSION

Data Sets

The 66 uPE1 proteins from chromosome 17 were compiled from neXtProt release 

2017-08-01. The detailed protocol for generating this list is specified in supplementary Text 

S2. While most of these uPE1 proteins do not have any GO term annotations for MF and BP, 

some of them have GO terms that are considered too generic by neXtProt to be qualified as 

“annotated” proteins, including protein binding, calcium binding, zinc binding, identical 

protein binding, and protein homooligomerization. As neXtProt does not consider GO CC 

terms when defining uPE1 proteins in the SPARQL query, some of these uPE1 proteins do 

have GO CC term annotations. For example, SYNGR2 (neXtProt ID: NX_O43760–1) is 

annotated as being located at “neuromuscular junction” (GO:0031594) and at “synaptic 

vesicle membrane” (GO:0030672) for CC based on its known role in modulating the 

localization of synaptophysin into synaptic-like microvesicles.35–36 Due to this known bias 

in how neXtProt treats GO CC terms for uPE1 proteins, we later discuss instances where our 

CC term prediction is different from existing neXtProt annotations.

The numbers of uPE1 proteins are “moving targets” due to new experimental evidence as 

well as evolving criteria reflected in excluded MF and BP terms. Thus neXtProt release 

2017-08-01, which this study was based on, had 1218 uPE1 proteins proteome-wide and 66 

uPE1 chromosome 17 proteins; neXtProt release 2018-01-17 has 1260 and 70, respectively 

(supplementary Text S1).
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To establish the dependency of GO term prediction accuracy on confidence score of 

COFACTOR prediction, a benchmark set of 100 well-annotated proteins was randomly 

selected from the same chromosome according to the following criteria: (1) the protein has a 

protein neXtProt existence evidence level of PE1; and (2) it has experimental GO term 

annotation for all three aspects (MF, BP, CC) with “gold” evidence in neXtProt and with at 

least one of the seven high confidence evidence codes (EXP, IDA, IMP, IGI, IEP, TAS and 

IC) in UniProt, excluding non-specific GO terms such as protein binding mentioned above 

(Text S3). These seven UniProt-assigned evidence codes were used by CAFA for assessment 

of function predictions, and include five experimental evidence codes (EXP, IDA, IMP, IGI, 

and IEP) as well as two evidence codes assigned based on assertion of domain experts (TAS 

and IC). Our benchmark set includes a subset of 59 benchmark proteins with experimental 

structure information, on which I-TASSER achieves an average TM-score of 0.88 (Table 

S2).

Benchmark tests on structure and function prediction on well-annotated proteins

To evaluate the prediction accuracy of our approach, the hybrid I-TASSER/COFACTOR 

method was applied on the 100 well-annotated benchmark proteins. As control algorithms, 

we included three baseline GO term prediction methods, “BLAST”, “PSI-BLAST”, and 

“Naïve”, as implemented by CAFA experiments37–38. The “BLAST” and “PSI-BLAST” 

methods transfer function annotation by sequence identity of (PSI-)BLAST hits in UniProt, 

while “Naïve” predicts GO terms solely by the frequency of the GO term in the UniProt 

database regardless of input query. In addition to these three baseline methods, two 

representative state-of-the-art sequence-based function prediction methods, GoFDR39 and 

GOtcha40, are included. GoFDR was a top performing program in CAFA2 and transfers GO 

annotation from sequence homologs based on similarity of putative function discriminating 

residues. GOtcha infers function from BLAST hits using posterior probability calibrated for 

37 representative organisms. To ensure that the benchmark performance on these well 

annotated proteins can be meaningfully extrapolated to uPE1 proteins, which usually lack 

experimentally characterized close homologs, we applied a stringent benchmark protocol of 

excluding any templates sharing >30% sequence identity with the query for both structure 

and function prediction. Since UniProt and neXtProt may have slightly different annotations 

for the same protein, GO term annotation with “GOLD” evidence was used as the gold 

standard for GO term prediction; we found no difference in conclusions if we use either 

UniProt or neXtProt annotation as gold standard (Table S1).

As shown in Figure 2, the sequence-based component in COFACTOR alone already 

outperforms all four control methods (BLAST, PSI-BLAST, Naïve, GOtcha and GoFDR) for 

all three aspects (MF, BP, and CC) of GO term prediction for the benchmark set of 100 PE1 

proteins. Here it should be noted that, while COFACTOR and GoFDR use sequence 

homologs detected by BLAST and PSI-BLAST, both GoFDR and the sequence-based 

component in COFACTOR outperform the “BLAST” and “PSI-BLAST” control methods. 

This is because, while the “BLAST” and “PSI-BLAST” control methods report prediction 

confidence based only on the most significant sequence hit, both COFACTOR and GoFDR 

combine function annotations from multiple sequence homologs, which helps to enrich 

correct function annotations from multiple weakly homologous templates. Our sequence-
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based approach slightly outperforms GoFDR, probably because GoFDR heavily relies on 

comparison of functional discriminating residues, which are not easy to identify or align for 

non-homologous targets.

It should also be noted that, among the three components of COFACTOR, the structure-

based pipeline provides the strongest contribution in function prediction. It has 36%, 21%, 

and 6% higher prediction accuracy than the sequence-based component and 132%, 24%, and 

10% higher prediction accuracy than the PPI-based component in COFACTOR for 

prediction of the three GO term aspects MF, BP, and CC, respectively. These results 

underscore the importance of structure information for functional annotation of challenging 

protein targets with no or few characterized sequence homologs.

For all the three GO term aspects, the final consensus COFACTOR prediction consistently 

outperformed the most accurate component methods for each aspect, suggesting that each 

component method does have positive contribution towards final consensus prediction.

To determine reasonable GO term prediction confidence (Cscore) cutoffs in the I-TASSER/

COFACTOR pipeline, we show in Figure 3 the relation between Cscore and prediction 

accuracy (F-measure). The highest F-measures for MF, BP, and CC are achieved when we 

choose Cscore cutoffs > 0.59, > 0.55, and > 0.56, respectively.

Since the input of COFACTOR function prediction pipeline is the I-TASSER structure 

model, we check the dependency of function prediction accuracy on the I-TASSER structure 

model for the subset of 59 benchmark proteins with experimental structure information 

(Table S2). Interestingly, I-TASSER structure model quality (in terms of TM-score) is only 

moderately correlated to GO term prediction accuracy by structure-based pipeline in 

COFACTOR: the Pearson correlation coefficients between TM-score and F-measure for MF, 

BP, and CC are 0.44, 0.40, and 0.43, respectively. The correlations between TM-score and F-

measure of final consensus COFACTOR function prediction are 0.29, 0.25, and 0.16 for MF, 

BP, and CC, respectively. Such weak dependency of our function prediction accuracy on I-

TASSER structure quality can be partially attributed to the two sequence and PPI-based 

component methods, which compensate the structure-based pipeline when the I-TASSER 

model quality is low. For example, the I-TASSER model of the ZNHIT3 protein (neXtProt 

ID: NX_Q15649–1) has a relatively low TM-score of 0.47 to its native structure (PDB entry 

5l85 chain A), which is one of the reasons for the low F-measures of structure-based 

function prediction (0.35, 0.00, and 0.18, respectively, for MF, BP and CC). Yet, after 

combining with the sequence and PPI-based methods, the final COFACTOR prediction has 

much higher F-measures of 0.46, 0.52, and 0.60 for the three GO term aspects. These data 

suggest that, while accurate structure modeling is certainly desirable for I-TASSER/

COFACTOR pipeline, our function annotation approach is not severely biased by low 

structure modeling quality for targets that are challenging for structure modeling.

As a specific example of the I-TASSER and COFACTOR modeling, we show in Figure 4 the 

TP53 protein (neXtProt ID: NX_P04637–1) from chromosome 17. As the most extensively 

studied tumor-suppressor protein and the guardian of the genome41, TP53 is the 

transcription factor that regulates the expression of multiple downstream cell cycle-related 

Zhang et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proteins in response to DNA damage. Accordingly, a list of the most confident COFACTOR 

predictions for TP53 includes “damaged DNA binding” (GO:0003684, Cscore 0.97), “p53 

binding” (GO:0002039, Cscore 0.97), and “transcription factor activity, sequence-specific 

DNA binding” (GO:0003700, Cscore 0.92) for MF; “regulation of cell cycle” (GO:0051726, 

Cscore 1.00) for BP, and nuclear chromatin (“GO:0000790”, Cscore 0.90) for CC, which are 

all highly consistent with what we know about TP53. It should be noted that such high 

confidence prediction resulted from consensus of multiple weakly homologous function 

templates, as any template sharing >30% sequence identity to query was excluded. 

Meanwhile, while the native full-length structure of TP53 is unavailable, its DNA binding 

domain was experimentally determined, which has a striking structure similarity of TM-

score 0.96 to its respective portion in the I-TASSER model, despite the model being 

predicted without any homologous template. The top COFACTOR hit for structure-based 

function annotation is the CEP-1 (PDB entry 4qo1 chain B, Figure 4 right, TM-score 0.49 to 

TP53), a transcript factor from C. elegans that is also involved in pathways for DNA-damage 

response and cell cycle regulation.

Summary of Predicted Structure and Functions of the 66 uPE1 Proteins

For the 66 chromosome 17 uPE1 proteins, the same I-TASSER/COFACTOR pipeline is 

used, except that homologous templates are not excluded, because we want to obtain the best 

possible structure and function modeling results for these real prediction targets. Among the 

first ranked I-TASSER model of these uPE1 proteins, models of 12 proteins are predicted to 

have correct fold (estimated TM-score >0.5), while 13 are predicted to have roughly correct 

fold (estimated TM-score >0.4 and ≤0.5).

For prediction of GO terms for these uPE1 proteins, using Cscores >0.59, >0.55, and >0.56 

established by Figure 3 as thresholds for reliable COFACTOR prediction for MF, BP, and 

CC, respectively, we obtained confident predictions for 13, 33, and 49 proteins for the 

respective GO term aspects (Figure 5). If these stringent Cscore cutoffs are slightly relaxed 

such that we also consider predicted GO terms with Cscore > 0.5, the number of uPE1 

proteins with predicted GO terms will be increased to 30, 39, and 58 for MF, BP, and CC, 

respectively, as listed (shaded) by Table S3, which summarizes all predicted functions for all 

66 uPE1 proteins.

As a concise entry to Table S3, we list the top 13 uPE1 proteins with highest Cscores for MF 

GO terms in Table 1.

It can also be observed that the number of confidently annotated proteins is smaller for MF 

compared to BP and CC. This is partially due to the fact that, while most of these 66 uPE1 

proteins lack close sequence homologs, the majority (56 of 66) have known or inferred PPI 

information, which COFACTOR can take advantage of in BP and CC prediction. For 

example, the uPE1 protein C17orf82 (neXtProt ID: NX_Q86X59–1) does not have any 

strong sequence or structure template hit, but interacts with proteins known to be involved in 

developmental processes or cellular component organization (https://string-db.org/network/

9606.ENSP00000335229). Using the homologs of these PPI partners, COFACTOR deduces 

that the target protein is involved in “cellular component organization” (GO:0016043, 

Cscore=0.55) and “developmental process” (GO:0032502, Cscore=0.52). While PPI is 
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informative of BP and CC, it is not as useful for MF prediction, because proteins that 

physically interact with each other do not necessarily share the same molecular function 

(MF), even though they generally are involved in the same pathway (BP) at the same 

subcellular location (CC). This phenomenon is revealed in Figure 2 (green bars), where the 

prediction accuracy of PPI for MF GO terms is 39% and 79% lower than that in BP and CC 

prediction, respectively.

Among the uPE1 proteins with relatively confidently predicted functions (Figure 6), 7 are 

associated with cytoskeleton (GO:0008092 “cytoskeletal protein binding” for MF and GO:

0044430 “cytoskeletal part” for CC), while another 7 are putative transmembrane 

transporters (GO:0022857 “transmembrane transporter activity” for MF). Other notable 

predicted biological functions shared by multiple uPE1 proteins include nucleic acid binding 

(GO:0003676 “nucleic acid binding” for MF and GO:0090304 “nucleic acid metabolic 

process” for BP), ubiquitin-dependent protein degradation (GO:0004842 “ubiquitin-protein 

transferase activity” for MF and GO:0006511 “ubiquitin-dependent protein catabolic 

process” for BP), and N-acylsphingosine synthesis (GO:0050291 “sphingosine N-

acyltransferase activity” for MF). Here we include both GO terms predicted with the 

stringent Cscore cutoffs 0.59, 0.55, and 0.56 for MF, BP, and CC, respectively (Figure 6, 

gray), and the GO terms predicted with the relaxed Cscore cutoffs 0.50 for all three aspects 

(Figure 6, white). There is no major difference in the source of prediction (structure, 

sequence, or PPI), the distribution of prevalent GO terms (Table S3) or the Fmax that 

resulted from the two sets of Cscore cutoffs (Figure 3).

Case Studies of Predicted Function of uPE1 Proteins

For this section, we selected four uPE1 proteins whose specific biological functions are 

predicted with a high MF Cscore by COFACTOR (Table 1) plus one uPE1 protein predicted 

with a high CC Cscore (Table S1) for manual interpretation of their likely structure and 

function, as well as the origin of the function assertion by our pipeline.

MFSD11 (neXtProt ID: NX_O43934–1) is a hard function prediction target with neither 

experimentally solved structure nor any functionally characterized sequence homolog 

sharing >30% sequence identity. The I-TASSER structure model of this target shows a 

multi-pass transmembrane helical protein topology with high confidence: the TM-score of 

the model, as estimated by statistical significance of threading template hits and convergence 

of folding simulation,25 is as high as 0.86. The structure model superposes well to a 

proton:xylose symporter (PDB entry 4gby chain A, Figure 7), from which COFACTOR 

asserted that the MF for the target protein of interest is “sugar transmembrane transporter 

activity” (GO:0051119, Cscore=0.74). This function prediction is consistent with a previous 

study42, which suggested that MFSD11 may be a membrane protein that transports soluble 

molecules and is involved in energy regulation.

FAM57A and TLCD2 (neXtProt ID: NX_Q8TBR7–2 and NX_A6NGC4–1, respectively) 

are two protein coding genes located at p13.3 region on chromosome 17, separated from 

each other by 0.96 million base pairs. COFACTOR considers both proteins as sphingosine 

N-acyltransferases (GO:0050291, Cscore=0.99 for FAM57A and Cscore=0.76 for TLCD2) 

in terms of MF. These proteins have sequence identity of only 0.24; the lack of confident 
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predictions for the binding sites makes it infeasible to assess the active site similarity for 

these proteins. Sphingosine is an important phospholipid constituent of the cell membrane, 

and is consistent with both proteins’ I-TASSER structure models, which adopt a fold typical 

of membrane-associated proteins (Figure 8). Moreover, FAM57A is homologous to 

FAM57B (neXtProt ID: NX_Q71RH2–1) with sequence identity 0.46. FAM57B is already 

annotated as sphingosine N-acyltransferases, which further confirms the function assertion.

ANKRD40 (neXtProt ID: NX_Q6AI12–1) is another hard function prediction target without 

functionally characterized close sequence homologs. I-TASSER predicts the target as an 

ankyrin repeat (Figure 9) with an estimated TM-score of 0.51. Based on the known role of 

ankyrin repeat-containing proteins in cytoskeleton anchoring, COFACTOR predicts the 

molecular function of ANKRD40 as “cytoskeletal protein binding” (GO:0008092, 

Cscore=0.62), “spectrin binding” (GO:0030507, Cscore=0.57), and “cytoskeletal adaptor 

activity” (GO:0008093, 0.57).

Another interesting protein, based on CC prediction, is CCDC57 (neXtProt ID: 

NX_Q2TAC2–1), a large protein with 916 residues. While neither the sequence-based nor 

the PPI-based pipeline gives much hint to the function, the structure-based pipeline found 

that 17 of all 19 structure templates identified by the I-TASSER model belong to 

“phosphatidylinositol 3-kinase complex” (GO:0005942, Cscore=0.89) for CC (Figure 10). 

This is consistent with COFACTOR’s molecular function annotation “phosphatidylinositol 

3-kinase activity” (GO:0035004, Cscore=0.31) and biological process annotation “inositol 

lipid-mediated signaling” (GO:0048017, Cscore=0.41), even though both function 

predictions have relatively low to moderate Cscores. Phosphatidylinositol triphosphate 

(PI3P) is a phospholipid found in membranes that helps to recruit a range of proteins, many 

of which are involved in protein trafficking; we conclude that CCDC57 has a related 

function.

Comparing COFACTOR Prediction with Very Recent Function Annotations

The list of 66 uPE1 proteins was originally curated based on the lack of function annotations 

in neXtProt release 2017-08-01. Two previously unannotated proteins have new 

characterized functions. When we were drafting this manuscript, neXtProt release 

2018-01-17 became available, with a finding that EVI2B (neXtProt ID: NX_P34910-1) 

regulates hematopoietic stem cell division and granulocyte differentiation.43 COFACTOR 

failed to predict the highly specific BP function of this protein, only suggesting it is an 

“integral component of plasma membrane” (GO:0005887, Cscore=1.00) for which UniProt 

gave the same CC term. In contrast, a recently published report characterized TRIM47 

(neXtProt ID: NX_Q96LD4-1) as an E3 ubiquitin ligase;44 the corresponding function 

annotation has not yet been updated in neXtProt 2018-01-17. I-TASSER/COFACTOR 

predicted the GO MF for TRIM47 as “ubiquitin-protein transferase activity” (GO:0004842, 

Cscore=0.76).
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Function Predictions that are Inconsistent with Database Annotations

For the uPE1 proteins investigated in this study, there are two cases where the I-TASSER/

COFACTOR prediction is conflicting with existing annotations especially for subcellular 

localization (GO CC terms).

The first protein, TMEM94 (neXtProt ID: NX_Q12767-1), is annotated as “integral 

component of membrane” (GO:0016021) for CC in both neXtProt and UniProt with 10 

predicted transmembrane helices based on automated annotation with IEA (Inferred from 

Electronic Annotation) evidence code by UniProt (https://www.uniprot.org/keywords/

KW-0812) without experimental validation. Consistent with that database annotation, 

COFACTOR assigns “substrate-specific transporter activity” (GO:0022892, Cscore=0.91) 

for MF and “metal ion transport” (GO:0030001, Cscore=0.56) for BP, both of which are 

associated with transmembrane transport.

We present TMEM94 as an example for inconsistency of CC prediction and neXtProt 

annotation. The CC result of COFACTOR for this protein is “nucleoplasm” (GO:0005654, 

Cscore=1.00). This COFACTOR annotation, which has no counterpart in neXtProt, is 

generated by our sequence-based pipeline, whose function library contains the UniProt GO 

term of TMEM94 from year 2017 (line 382 of https://www.uniprot.org/uniprot/Q12767.txt?

version=119). This UniProt annotation, labeled by UniProt with evidence “IDA:HPA” 

(inferred from direct assay, as reported by Human Protein Atlas database), originated from 

immunofluorescence experiments conducted in three human cell lines reported in the 

Human Protein Atlas (https://www.proteinatlas.org/ENSG00000177728-TMEM94/cell). 

Interestingly, while UniProt up to version 2017_02 contained the “nucleoplasm” annotation, 

this annotation is recently dropped by UniProt (https://www.uniprot.org/uniprot/Q12767?

version=119&version=120&diff=true) even though the Human Protein Atlas experiments 

have not been invalidated. Since we do not exclude sequence homologs when predicting 

uPE1 functions, the COFACTOR sequence-based pipeline ends up hitting the TMEM94 

protein itself as the “template” for its CC prediction. These differences in database 

annotations require further experimental efforts to determine the true or at least primary 

cellular component/localization of this protein.

Another example is C17orf99 (neXtProt ID: NX_Q6UX52-1), a putative human cytokine. 

The mouse ortholog of C17orf99 was recently established as a new 27 kDa cytokine called 

Interleukin 40 (IL-40), which is secreted by activated B cells.45 Since the UniProt annotation 

was updated during the peer review process of this manuscript, neither the COFACTOR 

function library nor the current neXtProt database (version 2018-01-17) includes this 

annotation. In our PSI-BLAST search for C17orf99 against human proteome (https://

www.uniprot.org/proteomes/UP000005640, protein list last modified May 26, 2018), none 

of the top hits is cytokine, whereas the most significant hits within the human proteome are 

FCRL2 (neXtProt ID: NX_Q96LA5) and FCRL5 (neXtProt ID: NX_Q96RD9); both are 

transmembrane receptors involved in B cell development, which resulted in our pipeline’s 

predicted CC term of C17orf99 is “intrinsic component of membrane” (GO:0031224, 

Cscore=1.00). Nevertheless, the UniProt CC designation as “extracellular region” (GO:

0005576) due to the predicted N-terminal signal peptide (https://www.nextprot.org/entry/

NX_Q6UX52/sequence) and reported cytokine function may be preferable.
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These contradictions in function annotations underscore the difficulty in CC prediction, 

which is a common challenge among many function prediction programs. In fact, it was 

observed in the CAFA2 experiment that almost none of the state-of-the-art programs could 

outperform the “Naïve” baseline in terms of CC prediction.38 In the future, we will address 

the challenges in CC prediction by incorporation of amino acid composition and local 

sequence signatures such as predicted transmembrane regions and signal peptides into the 

COFACTOR function annotation algorithm.

CONCLUSIONS

As a pilot study on prediction of functions for uncharacterized human proteins, we have 

carried out a comprehensive survey of PE1 proteins on chromosome 17 using the composite 

I-TASSER and COFACTOR structure and function annotation pipeline, which has been 

extensively tested in the community-wide CASP and CAFA experiments.6–7, 10 The 

prediction accuracy of the pipeline was examined on 100 randomly-selected well-

characterized proteins from this chromosome, and achieved a high F-measures of 0.69, 0.57, 

and 0.67 for MF, BP, and CC aspects of GO term predictions, respectively. The structure-

based function prediction component of this pipeline is the main contributor of prediction 

accuracy for the non-homologous protein targets. Applying the pipeline on all of the 66 

poorly- or non-characterized uPE1 proteins coded by genes on chromosome 17, we are able 

to infer the specific biological function with high confidence for 13, 33, and 49 uPE1 

proteins for MF, BP, and CC aspects, respectively. The majority of these function inferences 

could not be achieved using traditional sequence-based function annotation approaches. We 

give extensive details for the 13 highest-rated predictions for Molecular Functions, plus 

structural findings for 5 case studies.

As a proof-of-concept, we started with the set of 66 uPE1 proteins on human chromosome 

17 only. The pipeline can be readily extended to all 1260 uPE1 proteins from the entire 

human proteome, as well as 677 additional unannotated human proteins in neXtProt 

categories PE2, PE3, and PE4 (https://www.nextprot.org/proteins/search?

mode=advanced&queryId=NXQ_00022). The work along this line is in progress.

We hope our modeling results will stimulate the interest of molecular and cell biologists and 

assist them to design appropriate experiments that could validate the computational 

predictions and, more importantly, elucidate the structure and biological function of these 

proteins in human tissues and cells.
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ABBREVIATIONS

PE1 Protein Evidence at protein level.

uPE1 unknown function with PE1 evidence.

GO Gene Ontology.

MF Molecular Function.

BP Biological Process.

CC Cellular Component.

CAFA Critical Assessment of Function Annotation.

CASP Critical Assessment of protein Structure Prediction.

PDB Protein Data Bank.
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Figure 1. 
Flowchart of the hybrid I-TASSER/COFACTOR pipeline for protein structure and function 

prediction, applied to uPE1 proteins from human chromosome 17.
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Figure 2. 
Fmax of different programs for predicting the three aspects of GO terms for the benchmark 

set of 100 PE1 proteins. “PPI”, “sequence”, and “structure” are the three component 

methods of “COFACTOR”. For each of the three GO term aspects, the horizontal dash line 

marks the Fmax of COFACTOR.
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Figure 3. 
F-measures of COFACTOR prediction versus confidence score cutoffs for the three aspects 

of GO terms. From left to right, the three vertical dashed lines indicate Cscores 0.55 (green), 

0.56 (blue), and 0.59 (red) which are Cscore cutoffs corresponding to the highest F-measure 

for BP, CC, and MF, respectively.
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Figure 4. 
I-TASSER model of full length TP53 (yellow), which has a high TM-score 0.96 to its native 

structure for the DNA binding domain (PDB entry 1tup chain B, pink). The double stranded 

DNA associated with 1tup is shown in the lower left cartoon. The top COFACTOR structure 

template (PDB entry 1t4w chain A) with a similar beta sandwich topology is shown in blue 

on the right.
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Figure 5. 
Number of uPE1 proteins with GO term prediction at different Cscore thresholds. The solid 

black vertical line marks the Cscore=0.5, while the red, green, and blue dashed vertical lines 

indicate Cscore cutoffs 0.59, 0.55, and 0.56 for MF, BP, and CC, respectively. Here, GO 

terms associated with more than 20% of proteins in the UniProt database are excluded, 

because these GO terms, such as “protein binding”, are too general to provide meaningful 

insight into their specific function.
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Figure 6. 
Notable GO terms predicted with high Cscore for multiple uPE1 proteins. White bars show 

the number of proteins predicted with Cscore > 0.5 for given GO terms, while the gray bars 

show the number of proteins predicted with Cscore > 0.59, 0.55, and 0.56 for MF, BP, and 

CC, respectively.
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Figure 7. 
I-TASSER model of MFSD11 (yellow) superposed to the E. coli proton:xylose symporter 

(PDB entry 4gby chain A, blue) with TM-score=0.86. The xylose ligand from 4gbyA is 

shown in red spheres in the inset.
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Figure 8. 
I-TASSER models of FAM57A (left) and TLCD2 (right). Both proteins are colored in 

spectrum with blue to red marking N- to C-termini.
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Figure 9. 
I-TASSER structure of ANKRD40 with nine consecutive ankyrin repeat units, each 

consisting of two helices linked by a loop. One ankyrin repeat unit is indicated in dashed 

rectangle.
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Figure 10. 
I-TASSER model of CCDC57 (yellow) superposed to PDB entry 4jsp chain A (blue), one of 

the many structure templates associated with phosphoinositide 3-kinase complex. The ligand 

bound to the 4jsp structure is phosphothiophosphoric acid-adenylate ester (red spheres), 

which is a small molecule analog of ATP, one of the substrates of phosphoinositide 3-

kinases.
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Table 1.

A concise table for 13 uPE1 proteins with high confidence predicted functions for MF. For each of the three 

aspects, MF, BP and CC, the GO term with the highest confidence and the GO term with Cscore >0.5 that can 

provide specific biological insight are listed, with the Cscore enclosed by parentheses. The four entries 

discussed as case studies in the following sections are indicated with asterisks. The entries are in descending 

order according to MF Cscore.

NeXtProt ID (Gene Name) Molecular Function (MF) Biological Process (BP) Cellular Component (CC)

1* NX_Q8TBR7-2 (FAM57A)

GO:0016740 (1.00) transferase 
activity

GO:0050291 (0.99) 
sphingosine N-acyltransferase 

activity

GO:0032502 (0.69) 
developmental process

GO:0007420 (0.54) brain 
development

GO:0005887 (1.00) integral 
component of plasma membrane

GO:0005886 (1.00) plasma 
membrane

2 NX_Q12767–1 (TMEM94)

GO:0022892 (0.91) substrate-
specific transporter activity

GO:0046873 (0.57) metal ion 
transmembrane transporter 

activity

GO:0065008 (0.80) 
regulation of biological 

quality
GO:0030001 (0.56) metal 

ion transport

GO:0005654 (1.00) nucleoplasm

3 NX_Q5BKU9-1 (OXLD1)

GO:0016491 (0.87) 
oxidoreductase activity

GO:0004128 (0.73) 
cytochrome-b5 reductase 

activity, acting on NAD(P)H

GO:0015701 (0.90) 
bicarbonate transport

GO:0008652 (0.53) cellular 
amino acid biosynthetic 

process

GO:0005739 (0.90) Mitochondrion
GO:0005737 (0.66) cytoplasm

4* NX_A6NGC4-1 (TLCD2)

GO:0016740 (0.86) transferase 
activity

GO:0050291 (0.76) 
sphingosine N-acyltransferase 

activity

GO:0006643 (0.76) 
membrane lipid metabolic 

process
GO:0006672 (0.73) 

ceramide metabolic process

GO:0016021 (1.00) integral 
component of membrane

GO:0005783 (0.75) endoplasmic 
reticulum

5* NX_O43934–1 (MFSD11)

GO:0005215 (0.85) transporter 
activity

GO:0005351 (0.66) 
sugar:proton symporter 

activity

GO:0006810 (0.82) 
transport

GO:0008643 (0.68) 
carbohydrate transport

GO:0016021 (1.00) integral 
component of membrane

GO:0005887 (0.77) integral 
component of plasma membrane

6 NX_Q9P298–1 (HIGD1B)

GO:0016740 (0.79) transferase 
activity

GO:0061630 (0.71) ubiquitin 
protein ligase activity

GO:0043234 (0.88) protein 
complex

GO:0005634 (0.71) nucleus

7 NX_Q2TAL5-1 (SMTNL2) GO:0008092 (0.77) 
cytoskeletal protein binding

GO:0016043 (0.70) cellular 
component organization

GO:0048856 (0.59) 
anatomical structure 

development

GO:0005737 (0.66) Cytoplasm
GO:0044430 (0.50) cytoskeletal 

part

8 NX_Q9BQS6-1 (HSPB9)

GO:0042802 (0.76) identical 
protein binding

GO:0051082 (0.52) unfolded 
protein binding

GO:0050896 (0.82) 
response to stimulus
GO:0042981 (0.51) 

regulation of apoptotic 
process

GO:0005634 (0.97) Nucleus
GO:0005737 (0.96) cytoplasm

9 NX_Q96LD4–1 (TRIM47) GO:0004842 (0.76) ubiquitin-
protein transferase activity

GO:0031323 (0.54) 
regulation of cellular 

metabolic process
GO:0019538 (0.54) protein 

metabolic process

GO:0005737 (0.57) cytoplasm

10 NX_Q8N7B9-1 (EFCAB3) GO:0043169 (0.74) cation 
binding

GO:0019538 (0.58) protein 
metabolic process

GO:0016020 (0.82) Membrane
GO:0005737 (0.68) cytoplasm

11* NX_Q6AI12–1 (ANKRD40)

GO:0008092 (0.62) 
cytoskeletal protein binding
GO:0030507 (0.57) spectrin 

binding

GO:0060255 (0.62) 
regulation of macromolecule 

metabolic process
GO:0016043 (0.60) cellular 

component organization

GO:0005737 (0.77) Cytoplasm
GO:0043234 (0.51) protein 

complex
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NeXtProt ID (Gene Name) Molecular Function (MF) Biological Process (BP) Cellular Component (CC)

12 NX_Q6UX52-1 (C17orf99)

GO:0004872 (0.63) receptor 
Activity

GO:0019199 (0.50) 
transmembrane receptor 
protein kinase activity

GO:0032502 (0.68) 
developmental process
GO:0030030 (0.54) cell 
projection organization

GO:0031224 (1.00) intrinsic 
component of membrane

GO:0005887 (0.63) integral 
component of plasma membrane

13 NX_Q3MHD2-1 (LSM12) GO:0003723 (0.59) RNA 
binding

GO:0090304 (0.79) nucleic 
acid metabolic process

GO:0016070 (0.73) RNA 
metabolic process

GO:0005576 (0.55) extracellular 
region
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