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Nonparametric bounds for the risk difference are straightforward to calculate and make no untestable assump-
tions about unmeasured confounding or selection bias due to missing data (e.g., dropout). These bounds are often
wide and communicate uncertainty due to possible systemic errors. An illustrative example is provided.

bias; bounds; inference; missing data

Abbreviation: AIDS, acquired immune deficiency virus.

Nonparametric bounds are the minimum and maximum val-
ues of the target parameter (e.g., risk difference) that are com-
patible with the observed data (1-3). We are often interested in
bounds because, assuming we believe the observed data, these
bounds provide the space in which the true but unknown parame-
ter value must lie. The difference in the risk of an outcome if
everyone in the population were treated minus the same risk if
everyone were untreated is a causal risk difference, which has a
possible range from —1 to 1 (4). In contrast, the associational risk
difference is the difference in the risk of an outcome for those
observed to be treated minus the same risk for those observed to
be untreated. In observational data, the associational risk differ-
ence is point-identified (i.e., we can compute a single numerical
value), but the causal risk difference is not identified without
additional untestable assumptions. The causal risk difference is
point-identified when treatment is assigned randomly, as in ran-
domized experiments.

It is commonly believed that bounds on the causal risk dif-
ference (henceforth, “risk difference”) for nonrandomized
data are uninformative. The logic for this belief is based on
the observation that such bounds are guaranteed to have unit
length and thereby always include the null hypothesis value
of a zero risk difference (1). We believe this is a pessimistic
perspective.

An optimist might say that such bounds cut the interval for
the possible range of the risk difference in half. The bounds do
so with identification conditions stemming from causal consis-
tency (5-7) and negligible measurement bias (8) and
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notably do not require exchangeability of treated and untreated
groups (i.e., unmeasured confounding might be present). Bounds
properly reveal an ignorance interval associated with a possible
lack of exchangeability that occurs in the absence of randomiza-
tion (9). In expectation, ideal randomized experiments guarantee
exchangeability between treatment groups by design. In such
cases, the upper and lower bounds collapse to the same point.

With an important exception (1), discussions and illustrations
of nonparametric bounds are typically limited to a single proba-
bility (2, 3, 10-13) rather than the set of probabilities that define
a survival or risk function (14). In making such a simplification,
discussions fail to address the possible uncertainty due to selec-
tion bias from missing data, such as censoring due to dropout,
which affects both randomized and nonrandomized studies
(15). Here we illustrate how to estimate nonparametric bounds
on the risk difference function over time, which accounts for
possible unmeasured confounding as well as selection bias due
to missing data.

METHODS
Example data

Lau et al. (16) reported on 1,164 adult human immunodefi-
ciency virus (HIV)-positive and acquired immune deficiency
syndrome (AIDS)-free women enrolled in the Women’s Inter-
agency HIV Study (17, 18). We illustrate here the estimation
of bounds for the risks of AIDS or death according to reported
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baseline use of injection drugs, as well as the risk difference,
over the 10-year follow-up period. We note that injection drug
use in these data is prevalent at baseline, and use might change
over follow-up. For pedagogical purposes, we imagine that
drug use is incident and fixed over follow-up (alternatively,
we wish to learn the effect of the point exposure of drug-use
initiation). Specifically, we estimate the crude risk difference
function and the bounds for the risk difference function.
Women were followed from December 6, 1995 (baseline),
for a combined outcome of incident AIDS diagnosis or death
from any cause. Of 1,164 women, 439 (38%) were classified as
exposed to injection drug use based on data reported as of base-
line; 672 of 1,164 women (58%) were black. The median age
was 36 (quartiles: 31, 41) years at baseline, and lowest recorded
CD4 count prior to baseline was 139 (quartiles: 85, 207) cells/
mm°. Of the 1,164 women, 127 (11%) were lost to follow up.

Statistical methods

We assume throughout that the sample of women is effec-
tively a random sample from the population of interest, such
that we can ignore the issue of generalizability (19). We
assume that the data are measured with negligible error (20),
that there is no interference (21), and that exposure versions
are irrelevant (5, 6). For all estimates, we present pointwise
95% confidence intervals based on a standard asymptotic nor-
mal approximation of the crude and bounded risk differences
(i.e., bL — 1.96 X se (bL) to bU + 1.96 X se (bU) where bL
and bU are the estimated lower and upper bounds). These con-
fidence intervals coincide with what Vansteelandt et al. (9)
call a strong uncertainty region. Next we describe the bounds.

First, assume complete follow-up data for all subjects (i.e.,
no dropout). Treatment (or exposure) is denoted as A = a,
say a = {0, 1}. Suppose the outcome of interest is an event
time, denoted as 7, where T > 0. Let T denote the maximum
follow-up length (here T = 10 years). Let T (a) denote the
potential outcome (or counterfactual) event time under treatment
A = a. Then, by the law of total probability, the counterfactual
risk attimer fora = 1, P{T (1) < t}, equals

P(T(1) < 1lA =0}P(A = 0)
+P{T(1) <A =1}1PA=1) (1)

Likewise for a = 0. We observe treatment A and event
time 7', but we do not observe both counterfactuals 7 (0),
T (1). The second probability in equation 1 is the complement
of the fourth probability, both of which are identified with
observed data. With a sample of n subjects, we may consis-
tently estimate P(A = a) using the nonparametric estimator
P(A =q)=n"! 2 I (A; = a). Under causal consistency,
the third probablhty 1n equation 1 is also identified, and we
may consistently estimate it similarly. In a nonrandomized
study, the first probability in equation 1 is not identified with-
out additional assumptions (e.g., exchangeability), and there-
fore cannot have a consistent estimator. However, the first
probability may be replaced with its bounds of 0 and 1 to pro-
vide bounds for the counterfactual risks P {T (a) < t}. Note
that the unidentified first probability in equation 1 is scaled by
the probability of being untreated P (A = 0), such that the
bounds on P {T (1) < t} (or treated risk bounds) are a func-
tion of the proportion untreated (e.g., if 2/3 are treated, then
the bounds for the treated risk have width 1/3). Likewise, for
the untreated risk bounds. Therefore, when we take the maxi-
mal difference between the treated risk bounds and the
untreated risk bounds, we have a resulting unit length.

Next let A = 1 indicate an observed study event, and sup-
pose a fraction of subjects are missing data on their event time
T (e.g., due to dropout), in which case, A = 0. The target
parameter remains P {7 (a) < ¢} and can now be expressed as
ZéyaP{T(a) <tlA=6,A=a}P(A=5,A=a). Identi-

fied probabilities can be consistently estimated using
nonparametric estimators, and unidentified probabilities can be
replaced with bounding values, both as above. Bounds that
account for both confounding and selection bias will be wider
than unit interval.

All that remains is to calculate the bounds. We can opera-
tionalize the above approach as follows. For each subject,
create a doppelganger (or copy) with the treatment set to its
complement. For the first of 2 bounds, treated doppelgangers

Table1. Ten-Year Risks of Diagnosis of Acquired Immune Deficiency Syndrome or Death From Any Cause According to Injection Drug Use in

the Women’s Interagency HIV Study, United States, 1995-2006

Approach No. of Participants No. of AIDS Diagnoses or Deaths 10-Year Risk 10-Year Risk Difference 95% Cl
Crude
Injection drug use 439 272 64.0 18.5 12.5,24.5
Nonuse 725 307 45.5 0
IP-weighted®
Injection drug use 439 272 63.0 16.0 10.0,22.1
Nonuse 725 307 47.0 0
Bounded
Injection drug use 439 272 and 1,023° 23.4and 87.9° —-49.41061.5 -52.3,64.3
Nonuse 725 847 and 307° 72.7 and 26.4° 0

Abbreviations: AIDS, acquired immune deficiency syndrome; Cl, confidence interval; HIV, human immunodeficiency virus; IP, inverse

probability.

2 Accounting for race (black or not) and for age in years and nadir CD4 cell count (cells/mm?), both at baseline.
® First and second numbers are for best and worst case for injection drug use, respectively.
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are immediate events at T = € (where € > 0 is smaller than
the first observed event time), and untreated doppelgangers
are nonevents at the end of the study period T = t. Con-
versely, for the second of 2 bounds, treated doppelgangers
are nonevents at the end of the study period and untreated
doppelgangers are immediate events.

To further account for possible selection bias due to missing
data (e.g., dropout), the observed data from nondoppelgangers
is altered as follows. For the first of 2 bounds, treated observa-
tions with unobserved events A = ( are set to be events at the
time last observed 7 = ¢, and untreated observations with
unobserved events A = 0 are set to remain nonevents with
times moved to the end of the study period 7 = <. For the sec-
ond of 2 bounds the converse is undertaken. Of course, one can
estimate bounds selectively accounting for possible selection
bias due to missing data, while assuming treatment groups are
exchangeable (i.e., no confounding), as might occur in a ran-
domized experiment. [llustrative pseudocode is presented in the
Appendix.

RESULTS

Table 1 presents estimates of the 10-year risks of AIDS diag-
nosis or death from any cause according to injection drug use.
As can be seen, accounting for measured confounders age, race,
and nadir CD4 using inverse-probability weighting did not mate-
rially alter the 10-year risks or risk difference, compared with the
crude risks and risk difference. The 10-year bounded risk differ-
ence was, as expected, notably wide compared with the point
estimator, which assumes no confounding or selection bias.
Figure 1 illustrates the crude risk difference (Figure 1A) and the
risk difference bounded for confounding and selection bias
(Figure 1B) as functions of time on study; the black lines (or
areas) represent point (or set) estimates, and gray areas repre-
sent the 95% confidence intervals. Briefly, the effect apparent
under the strong assumption of no unmeasured confounding or
selection bias weakens to become only suggestive once we
allow for possible unmeasured confounding and selection bias.
Other investigators provide detailed systematic exploration of
how to leverage information provided in the bounds (1, 12, 22).

DISCUSSION

What would it mean to solve the problem of unmeasured con-
founding? Of course, the problem of unmeasured confounding is
solved already in the sense that randomized experiments provide
point-identified solutions for effects of treatment assignment (23).
Randomized experiments prevent unmeasured confounding; at
least the ideal experiment does so in expectation. Rather, when try-
ing to “solve the problem of unmeasured confounding,” we often
mean not prevention but cure. How do we cure the problem of
unmeasured confounding in nonrandomized studies? It is helpful
to think about how we would do so in a randomized experiment
that was broken in the sense that key data were missing. Any such
prevention or cure would avoid (or at least weaken) an assumption
of no unmeasured confounding, as does the randomized experi-
ment. Such exchangeability assumptions (e.g., no unmeasured
confounding, appropriate instrumental variable (24)) are the
current state of the science in nonrandomized studies. Perhaps a
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Figure 1. Difference in risk of acquired immune deficiency syndrome
diagnosis or death from any cause by injection drug use, as a function
of time on study, Women’s Interagency HIV Study, United States,
1995-2006. Crude results (A); bounds for confounding and selection
bias (B). Black line or area is the point or set estimate, and gray area is
the 95% confidence interval. HIV, human immunodeficiency virus.

cure would yield point-identified answers, akin to randomized
experiments. Perhaps it would be folly to expect point identifi-
cation without randomization or something nearly as strong.

However as soon as we relax our insistence on point iden-
tification, we have a solution in hand, albeit not widely rec-
ognized. The solution does not require any assumption about
unmeasured confounding, and the solution immediately and
simply allows estimates as well as confidence intervals. The
solution is to provide an interval or set estimate, rather than a
point estimate. Simply put, bounds are a solution to the prob-
lem of unmeasured confounding. Recalling Tukey’s apocry-
phal use of out-of-focus slides to convey uncertainty, in the
presence of uncertainty about confounding, we have to draw
our figures with a thick marker instead of a sharp pencil.

For confidence intervals, we used what Vansteelandt et al.
called a strong uncertainty region (9). This strong uncertainty
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region is a conservative pointwise uncertainty interval for the
parameter of interest, and tighter intervals with appropriate
coverage can be obtained by replacing the standard multiplier
by an alternative described in Vansteelandt et al. (9) and Imbens
and Manski (25). For bounds that include minimum or maxi-
mum functions, such as instrumental variable bounds (26),
alternative inferential methods are needed to construct valid
confidence intervals (27). Here we discussed pointwise uncer-
tainty intervals for the bounds of the risk functions; one could
also entertain simultaneous uncertainty bands for the bounds
of the risk function, analogous to the well-known distinction
for confidence bands (28, p. 109). In some settings the width
of the bounds might also be reduced by using covariates that
are associated with treatment or the outcome (29).

The foremost argument against the use of bounds is that
they are uninformative. That the bounds are often uninforma-
tive is itself highly informative: It is usually good to learn
what one does not know! Such bounds provide a frame of
reference in which the actual treatment or exposure effect
lies (to the extent that data are measured without error). Such
bounds also provide a logical underpinning to further refine-
ments on analyses, such as point identification by assuming
no unmeasured confounding as well as providing a space for
sensitivity analyses to span. However, presenting the bounds
alongside traditional point estimates provides helpful context
in settings where nonrandomized data are the only feasible
route to causal inference. In some settings, particularly those
with either strong prior beliefs or strong preference functions,
policy decisions can be grounded on set-identified bounding
analyses (22).

We are not the first to call for presentation of bounds. For
example, Swanson et al. conclude “If nothing else, estimating
the bounds can serve as a reminder to remain humble about
how much information the data really provide” (26, p. 945).
Robins and Greenland argue for reporting bounds and state
“Wide bounds make clear the degree to which public health
decisions are dependent on merging the data with strong prior
beliefs” (30, p. 457). Finally, perhaps such bounds will pro-
vide a bridge over which those conducting observational stud-
ies can communicate with colleagues conducting clinical trials
with more signal and less noise.
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APPENDIX
Algorithm to calculate bounds

Bound algorithm:

1. Bound 1, the worst case for treated.

2. Alter the observed record.
Ifa=1and A =0then:al =a, Al =1,¢t1 =+t
Elseifa=0and A =0then:al =a,A1=0,t1 = 7.
Elseif A =1then:al =a, Al =A,tl =+t

3. Augment data with a doppelganger.
Ifa=1then:al=1-a,A1=0,¢1 =.
Elseifa=0then:al =1-a,Al =1,tl =¢.

4. Adapt above steps for bound 2, the worst case for

untreated.

5. Compute standard estimators for risk to the altered and
augmented data.

Note: 7 is the length of the study period, and € is an arbitrarily
small number (i.e., larger than O but smaller than the first
event time).
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