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Abstract
In recent years, immunotherapy has produced many unexpected breakthroughs in oncological therapy; however, it still has many
deficiencies. For example, the number of patients who are unresponsive to anti-programmed death-ligand 1 (PD-L1), anti-
cytotoxic T-like antigen-4 (CTLA4), and anti-programmed death-1 (PD1) therapies cannot be ignored, and the search for an
undiscovered immunosuppressive pathway is imminent. Five decades ago, researchers found that activation of the adenosinergic
pathway was negatively correlated with prognosis in many cancers. This review describes the entire process of the adenosinergic
pathway in the tumor microenvironment and the mechanism of immunosuppression, which promotes tumor metastasis and drug
resistance. Additionally, the review explores factors that regulate this pathway, including signaling factors secreted by the tumor
microenvironment and certain anti-tumor drugs. Additionally, the combination of adenosinergic pathway inhibitors with che-
motherapy, checkpoint blockade therapy, and immune cell-based therapy is summarized. Finally, certain issues regarding treat-
ment via inhibition of this pathway and the use of targeted nanoparticles to reduce adverse reactions in patients are put forward in
this review.
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Introduction

To avoid being recognized by the immune system, tumor cells
have developed mechanisms such as immune escape and im-
munosuppressive pathways that protect the tumor and contin-
ue to operate from the early stage to the advanced stage [1–3].
According to further research in this field, the immunosup-
pressive checkpoint molecules CTLA4 and PD1, which are
expressed on CD8+ T lymphocytes, are targets to recover the
immune response [4]. Currently, ipilimumab and nivolumab
can successfully increase the survival of patients with various
cancers, and the combination of ipilimumab and nivolumab
has shown improved efficacy in patients with non-resectable

metastatic melanoma [5, 6]. However, the adverse events
caused by immunotherapy and the ineffectiveness of check-
point inhibitors for certain patients should be seriously con-
sidered [7].

In recent years, in the adenosinergic pathway, the ADO
(adenosine) generated by the ectonucleotidases CD39 and
CD73 has been considered as a new Bimmune checkpoint
mediator^ that impairs the function of the immune system
[8]. Interestingly, researchers found that regulatory T (Treg)
cells are eliminated by checkpoint blockade therapy; however,
they release a high amount of adenosine triphosphate (ATP),
and CD39 and CD73 quickly transform ATP to ADO that
targets T cells to hamper immune checkpoint blockade-
mediated immune response [9]. This observation can explain
why some patients relapse or experience worsened conditions
after checkpoint blockade treatment. In addition, the
adenosinergic pathway has an important effect on cancer cells
and tumor microenvironment (TME); thus, it is worth consid-
ering it as a new target in clinical treatment [10].

Cancer patients have received great benefits from check-
point blockade therapy, and how to optimize this treatment for
more patients and less adverse reactions should be focused on
in the next step [6, 7]. It has been shown that inhibitors of the
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adenosinergic pathway have great advantages of solving these
difficulties, so we should explore how they can be combined
with anti-PD1 and anti-CTLA4 therapies [9]. In this review,
we propose to use nanoparticles for improving safety and
efficacy of inhibitors of the adenosinergic pathway and also
have shown an optimized approach of designing associated
nanoparticles.

The adenosinergic pathway in cancer

What role the adenosinergic pathway plays in cancer?

High expression in malignant tumors

In humans, overexpression of CD73 has been shown in vari-
ous cancers such as ovarian carcinoma, melanoma, breast can-
cer, colon cancer, and head and neck cancer, and these articles
have reported a potential relationship between high CD39/
CD73 expression and poor prognosis [11–19], highmetastasis
[20], and chemoresistance [21–23]. Similarly, this study ana-
lyzed publicly available gene expression data that correlated
the expression of adenosine A2B receptor (A2BR) with prog-
nosis and found that expression of A2BR was actually corre-
lated with poor prognosis of triple-negative breast cancer
(TNBC) patients [24], indicating that A2BR could be

considered as a new target in some breast cancers. In addition,
another study indicated that high expression levels of the
adenosine A2A receptor (A2AR) gene and protein have same
prognostic effects in non-small cell lung cancer (NSCLC) [17]
(Table 1).

Several aspects of poor prognosis

Drug resistanceDrug resistance was involved in poor progno-
sis; the number of CD39+ Treg cells and level of ADO in-
creased significantly and CD4+ T helper cells decreased after
chemoradiotherapy, which could increase the tumor resistance
to chemoradiotherapy [33]. Similarly, the EGF inhibitor
cetuximab was found to upregulate the level of ADO to in-
crease resistance in HNSCC [34]. Additionally, this study in-
dicated that overexpression of CD73 would confer drug resis-
tance to anthracyclines, such as doxorubicin [22]. Another
study found that constant exposure to interferons derived from
the adenosinergic pathway can confer an adaptive resistance
to checkpoint blockade immunotherapy by inducing PD-L1
expression on tumor cells [35]. Similarly, in HER2/ErbB2
breast cancer, CD73 confers tumor cell resistance to anti-
ErbB2 mAb has been reported [36].

Anti-apoptosis Recently, it was observed that CD73 could
downregulate the apoptosis of Jurkat leukemia cells mediated

Table 1 The clinical implication of adenosinergic molecules in cancers

Biomarker Cancer type Clinical implication Reference

CD39 Chronic lymphocytic
leukemia

High CD39 expression on T cells was associated with poor prognosis [176]

High-grade serous
ovarian cancer

High CD39 expression was associated with poor OS [13]

Gastric cancer High CD39 expression associated with poor prognosis [177]

CD73 Gastric cancer High CD73 expression was associated with poor prognosis [178]

Triple negative breast
cancer

High CD73 expression was associated with a poor prognosis in TNBC patients but not in luminal or
HER2+ breast cancer patients

[22]

Non-small cell lung
cancer

High CD73 expression was associated with poor prognosis [16]

Malignant melanoma High CD73 expression was associated with metastatic site specificity in malignant melanoma [179]

Ovarian cancer High CD73 expression was associated with poor prognosis in patients who have many CD73+CD8+

T cells in TME (meta-analysis)
[13]

Rectal adenocarcinoma High CD73 expression was associated with poor prognosis [180]

Colorectal cancer High CD73 expression was associated with poor prognosis in human CRC [18, 181]

Gallbladder cancer Patients with high NT5E (encoding CD73) expression was associated with poor prognosis [182]

Leukemia High CD73 expression was associated with the development of leukemia subtype [183]

Chronic lymphoblastic
leukemia

High CD73 expression was associated with poor prognosis [23]

Prostate cancer High CD73 expression was associated with poor prognosis and more metastatic burden [14, 184]

A2AR Non-small cell lung
cancer

High A2AR gene and protein expression levels have same prognostic effects in non-small cell lung
cancer

[17]

A2BR Triple negative breast
cancer

High A2BR expression was significantly associated with poorer survival in TNBC (meta-analysis) [24]
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by tumor necrosis factor-related, apoptosis-inducing ligand
(TRAIL) [37]. This effect is not associated with the enzymatic
activity of CD73 but associated with the colocalization of
CD73 with the TRAIL receptor DR5 [38]. Similarly, this ar-
ticle indicated that CD73 would downregulate the frequency
of anti-apoptotic factors which always are BCL2 and BCLxL
[39].

Tumor metastasis CD73 has a significant effect on cancer cell
growth and invasion [40]. In particular, high CD73 expression
has been proposed as a biomarker for high metastasis in mel-
anoma and breast cancer [41–43]. Similarly, this study found
that CD73 is both expressed on MITFlow and a part of
MITFhigh melanoma cells, and CD73 is considered a signifi-
cant metastatic biomarker [44]. It was found that myeloid-
derived suppressor cells (MDSCs) as source of VEGF which
upregulated tumor cell metastasis in melanoma. Some A2BR
inhibitors (PSB1115 and PBF-1129) delayed MDSC invasion
and downregulated the VEGF concentration has been report-
ed, which strongly reduced angiogenesis in these mice [45].

Immune suppression CD39 has a significant effect on down-
regulating immune cell response [46]. These studies indicated
that TGF-β-cultured Th17 cells expressed CD73 and exhibit-
ed the capability to inhibit the immunity function [47, 48].
Similarly, the ADO generated by CD39/CD73 that was
expressed on Tregs exhibited strong immunosuppression in
these studies [49, 50]. In another study, T cells and MDSCs
could produce ADO that activated A2AR, which suppressed
the immune response to tumor cells [51].

How does the adenosinergic pathway affect cancer?

Overview of the adenosinergic pathway

In normal physiological tissue, ATP was located in the intracel-
lular compartment at concentrations greater than 1 mM but less
than 10 mM and has a low concentration (10–100 nM) in TME
[52]. Specially, extracellular ATP concentration rose strongly in
response to homeostasis-interfered conditions, including inflam-
mation, hypoxia, tissue stress, chemotherapy, radiotherapy, cell
apoptosis, ischemia, and malignancy [11, 53]. Additionally,
CD39 can catalyze extracellular ATP into adenosine diphosphate
(ADP) and ADP into adenosine monophosphate (AMP). Next,
CD73, which is downstream of CD39 in adenosinergic pathway,
can convert AMP intoADO (Fig. 1). Importantly, the conversion
of ATP into AMP via CD39 is reversible; however, the catalysis
of AMP into ADO mediated by CD73 is not reversible [54].
Therefore, CD73 was regarded as the decisive enzyme in the
progress of extracellular ADO production [55]. In addition, ex-
tracellular ADO can be catalyzed into inosine through
ectoadenosine deaminase (ADA) (associated with CD26 in
humans) [56] (Fig. 1).

Ectonucleotidases CD39 is widely expressed [57]. Consistent
with all nucleoside triphosphate diphosphohydrolases
(NTPDases), there are five conserved sequences that are also
known as Bapyrase conserved regions^ on CD73, which par-
ticipate in active site formation [58] and is important to
ectoenzymatic activity [59, 60].

CD73 is a 70-kD, glycosylphosphatidylinositol (GPI) pro-
tein located on the cell membrane and is encoded by the NT5E
gene [61]. The dissociative form of CD73 is similar to
membrane-bound form of CD73 [62, 63]. CD73 has three
domains, which contain an N-terminal domain, C-terminal
domain, and a short alpha helix [64]. Importantly, functional
CD73 must be a homodimer with a non-covalent interaction
between adjacent C-terminal domains, which exist in two con-
formations: open and closed. Switching from the open to the
closed conformation is required for ectoenzymatic activity by
allowing substrate binding and product releasing [65].
Additionally, the zinc ions are important to the ectoenzymatic
activity of CD73 [64, 65]. Additionally, functional glycosyla-
tion modifications occurred on CD39, which is also signifi-
cant for the catalytic activity of CD39 [66]. In this research, it
was found that the experiment for depleting membrane cho-
lesterol through drugs exhibited a significant inhibition of the
CD39 catalytic activity [57].

Receptors ADO binds to P1 (type 1 purinergic receptors) re-
ceptors, a family of G protein-coupled receptors. This family
includes four isoforms, A1R, A2AR, A2BR, and A3R [67].
A1R, A2AR, and A3R, which exhibit high activity in a low
concentration of ADO (1–100 nM), are high-affinity recep-
tors, but A2BR is a low-affinity receptor that only exhibits
activity in surroundings with high levels of ADO, such as
TME (25 μM) [39]. Therefore, the host A2BR is unlikely to
be involved in metastasis [24]; however, the host A2AR con-
tributes to tumor metastasis and immunosuppression [68].
Activated A2AR and A2BR promote adenylyl cyclase (AC)
and the product cyclic AMP to suppress the function of im-
mune cells [69–71]; however, the activated A1R and A3R
inhibit cAMP generation to enhance the function of immune
cells [72, 73]. A1R has a broad distribution and is particularly
abundant in the nerves, heart, and kidneys. A2AR is expressed
on cancer, NK cells, CD4+ Tcells, B cells, Tregs, CAFs, CD8+

T cells, macrophages, the endothelium, and striatal area.
A2BR is distributed in the endothelium, MDSCs, CAFs,
DCs, and tumor cells. A3R is expressed in the nervous and
cardiovascular systems, immune cell subsets, the liver, and
tumor cells. [4].

The mechanism of the adenosinergic pathway

ADO catalyzed by CD39/CD73 acts on a wide range of cells
and causes many cascades to contribute to tumor growth, anti-
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apoptosis, drug resistance, tumor metastasis, angiogenesis,
and immune escape in TME [39].

Tumor cells It has been observed that the inhibition of CD39
can improve development and immunosuppressive function
of immune cells in melanoma, ovarian, and TNBC [74–76].
Similarly, the knockdown of A2BR in tumor cells decreased
VEGF production and lung metastases and even reduced tu-
mor cell proliferation and invasion [24]. Additionally, it acti-
vated A2BR in TNBC cells and enhanced their invasion and
proliferation through the ERK signaling pathway. Another
study indicated that A2BR as an activated form is important
to growth and survival of tumor [71]. Interestingly, both host-
and tumor-expressed CD73 are critical to immunosuppres-
sion. And knockdown or overexpression of CD73 on tumor
cells can affect the proliferation and metastasis in cancer [75,
77]. Additionally, another study indicated that the overexpres-
sion of A2BR on tumor cells promotes metastasis [24].

CAFs Activated A2BR on cancer-associated fibroblasts
(CAFs) can upregulate the frequency of fibroblast activation

protein (FAP)-positive fibroblasts. Additionally, activated
A2BR results in the enhanced production of CXCL12, which
is released by FAP-positive fibroblasts, and CXCL12 acts on
tumor cells to release VEGF, which can increase the number
of CD31+ endothelial cells [78]. Activated A2BR on CAFs
can promote the protein kinase C (PKC) signaling to release
interleukin-6 (IL-6), which is important for the epithelial-to-
mesenchymal transition (EMT) [39]. In addition, this study
has shown that fibroblasts can promote Tregs via
ectoenzymatic activity of CD73. α,ß-Methylene adenosine-
5′-diphosphate (APCP), a specific CD73 inhibitor, and an
anti-CD73 mAb (AD2) can inhibit CD73 and are applied to
promote CD8+ T cells [79, 80]; additionally, this study indi-
cated that therapy via inhibiting CD73 can restore the function
of immune cells.

CD4+ T cells/Treg cells Several studies have shown that CD39
expressed on CD4+ T cells can downregulate IL-17 produc-
tion by suppressing the function of T cells [81, 82] and can
inhibit that T cells become Th17 cells [83, 84]. Additionally,
in these studies, enhanced levels of CD39+ Treg cells, which

Fig. 1 The entire process of the adenosinergic pathway in the tumor microenvironment and the mechanism of immunosuppression, metastasis and drugs
resistance. Note: Positive sign (+) means increasing, Negative sign (-) means decreasing
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impaired T cell immunity, were recognized in AT3 mammary
carcinoma model [85, 86]. In another study, CD39+CD8+ T
cells always exhibited the enhanced frequency of checkpoint
molecules such as PD1 and CTLA4 [87]. Interestingly, it has
been shown that CD4+FOXP3− Tcells exhibited a high CD73
expression in mouse model [88]. The frequency balance be-
tween Treg cells and T helper cells could be mediated by
adenosinergic pathway inhibitors in mice with malignant tu-
mor [89]. In the TME, it had been shown that increased num-
ber of CD39+CD4+ Tcells and the presence of CD73+CD4+ T
cells expressing immune checkpoints were strongly associat-
ed with immunosuppression in breast and ovarian tumors
[90].

B cells Both CD39 and CD73 and adenosine receptors are co-
expressed on human B cells. The CD39+CD73+ B cell sub-
type is associated with decreased immunity via CD4+/CD8+

effector T cells [91]. It has been observed that human regula-
tory B cells (Bregs) with high CD39 expression have a high
proliferative capacity and produce a large amount of ADO and
IL-10 [92]. It was found that ADO and agonists of B cell
receptors (BCR) and toll-like receptors (TLR) can co-
stimulate B cells and elevate the frequency of these cells to
convert B cells to class-switched B cells. Additionally, high
CD73 level was correlated with enhanced Breg [93]. In addi-
tion, it was illuminated that the ADO-producing B cells se-
creted IL-6, which contributed to tumor cell proliferation [9]
and that the adenosinergic pathway was involved in inhibition
of T cells [40].

CD8+ T cellsRecently, A2AR activated by ADO that regulated
the intracellularWnt-signaling has been reported, which led to
the blockade of the conversion of immature CD8+ T cells into
activated T cells [94, 95]. Another study found that CD73
expression influenced the reliability of the prognosis assess-
ment of infiltrating CD8+ T cells in highgrade ovarian cancer
in the clinic [13]. In addition, genetic ablation of A2AR and
inhibition of A2AR via antagonists could enhance immune
cell-based therapy that restored immunity in the TME [70].
Similarly, it has been indicated that A2AR located on tumor
cells intrinsically regulated the frequency of CD8+ T cells in
the TME [77, 96, 97].

NK cells It has been indicated that the expression of CD73 on
human NK cells increased after these cells contacted mesen-
chymal stromal cells (MSC) and that this could be involved in
a follow-up immunosuppressive process [98]. On the other
hand, only A2AR, and no A2BR, was expressed on NK cells,
and its frequency was greatly enhanced under certain patho-
logical stimuli such as sickle cell disease (SCD) [99].
Subsequently, upregulated A2AR contributed to the inhibition
of activated NK cells and their cytotoxicity function [87].
Moreover, we have tested this idea by detecting the expression

of granzyme B on NK cells isolated from A2AR-antagonist-
treated mice, and it was found that the frequency of granzyme
B was enhanced. Interestingly, it was indicated that the upreg-
ulation of A3R was correlated with enhanced NK cell activity
[100]. In summary, A2AR signaling suppressed natural killer
cell maturation and contributed to the metastasis of CD73+

tumors in the tumor microenvironment [101].

TAMs It has been found that CD39 onmonocytes could inhibit
the chemotaxis, adhesion, and trans-migration capacity of
these cells [102]. Compared with immunosuppressive M2
macrophages, M1 macrophages expressed lower frequency
of CD39 and CD73 [103]. In associated studies, it was indi-
cated that the CD73 inhibitor APCP increased the proportion
of M1 macrophages between these macrophages [104].
Similarly, downregulated M2 macrophages have also been
found in CD73-deficient mice [105]. In contrast, ADO bind-
ing to A2AR and A2BR contributed to impairment of macro-
phage function. For example, the increased level of M2
markers and IL-10-induced STAT-3 via the adenosinergic
pathway has been shown to suppress CD4+ Tcell proliferation
[106–108].

MDSCsThe inhibition of A2BR could prevent the migration of
CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) and
could downregulate VEGF levels, which are important for
reducing angiogenesis [45]. In contrast, it was found that ag-
onists of A2BR contributed to infiltration and expansion of
MDSCs, and the potential mechanism could be phosphoryla-
tion of STAT-3 [109, 110].

Which factors regulate the adenosinergic pathway

Endogenous factors Certain endogenous molecules have an
important impact on the adenosinergic pathway. It was found
that IL-27 contributed to the expression of CD39 on DCs via
STAT3 and aryl hydrocarbon receptor (AhR) [46]. TNBC,
ovarian cancer, and colorectal cancer often carried the TP53
mutation [111]. And TP53 mutation was positively associated
with the epithelial-to-mesenchymal transition (EMT).
Consequently, tumor cells underwent EMT, which exhibited
enhanced expression of CD73 on the cell surface [36]. In
addition, the expression of A2AR and A2BR was increased
by tumor necrosis factor (TNF), due to activated NFκB path-
way [112, 113]. Interestingly, HIF-2α but not HIF-1α in hu-
man lung endothelial cells promoted the expression of A2AR,
and siRNA knockdown of HIF-2α completely downregulated
the frequency of A2AR [114]. On the other hand, TLR4 (toll-
like receptor 4)-dependent inflammation caused a significant
improvement of A2AR and A2BR levels in tumor-associated
macrophages (TAMs) [115]. Moreover, it was indicated that
transforming growth factorβ (TGFβ) and hypoxia-inducible
factor (HIF)-1α could profoundly upregulate the level of
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A2AR, CD39, and CD73, which is located on both CD8+ and
CD4+ T cells [39].

Exogenous factors In addition to endogenous molecules, ex-
ogenous treatments also took part in the progress of immuno-
suppression, metastasis, and drug resistance caused by the
adenosinergic pathway. Metformin inhibits MDSC activity
in patients with ovarian cancer by decreasing the levels of
CD39 and CD73 [116]. In contrast, CD40mAb, as an agonist,
enhances CD73 and CD39 expression; however, the mecha-
nism is not very clear [86]. Additionally, it has been shown
that CD73 expression on tumor cells in a subset of patients
with melanoma increases after receiving antiPD1 immuno-
therapy and that it impairs the treatment effect [44].
Similarly, another study has reported that carboplatin, doxo-
rubicin, gemcitabine, and paclitaxel induce enrichment of
CD47+/CD73+/PDL1+-immune-evasive tumor cells in
TNBC [117]. Triiodothyronine (T3) treatment causes a signif-
icant enhancement of CD73 expression in a dose–response
manner in C6 rat glioma cells and smooth muscle cells, and
this effect may be caused by thyroid follicular cell hyperfunc-
tion [118, 119]. Interestingly, in rats receiving chronic stimu-
lation via a low-iodine diet or treated with propylthiouracil,
the enzymatic activity of CD73 is augmented [120].
Moreover, LEC (low-dose endotoxin conditioning) treatment
of RPMФ (resident peritoneal macrophages) causes an ~ 3-
fold increase in the A2AR level and an ~ 28-fold increase in
the ADO level [121].

Current status of treatment of adenosinergic pathway

Combination therapy

Combination with checkpoint blockade treatment Currently,
a research indicated that antiPD1 therapy upregulated A2AR
expression on CD8+ T cells in cancer. Similarly, it was indi-
cated that CD73 expression increased in patients with ac-
quired resistance to antiPD1 therapy, which showed that the
adenosinergic pathway was involved in the impairment of
immune checkpoint blockade therapies [47]. It has been
shown that the simultaneous blockade of PD1 and A2AR
upregulated the frequency of CD8+ T cells and NK cells,
which could inhibit the metastasis of tumor cells [122]. In
addition, the combination of CD73 mAb (MEDI9447) and
antiPD1 therapy impaired the growth of mouse CT26 colon
carcinoma [123]. Additionally, it has been shown that the
CD73specific inhibitor APCP and antiCTLA4 profoundly re-
duced melanoma survival compared with monotherapy [124].
In another study, B7DC-Fc fusion protein could reduce check-
point molecule-mediated immunosuppression, which im-
proved the survival of mice [125]. It also indicated that com-
bination therapy conferred a prolonged survival to mice [125].

Combination with chemotherapies It has been reported that
the blockade of CD73, A2AR, or A2BR enhances the effect of
chemotherapy [22, 24, 126]. This indicates that inhibition of
the adenosinergic pathway contributes to the enhancement of
chemotherapy [22]. It has been shown that high CD73 level in
patients is correlated with upregulated resistance to
anthracycline [22]. It has also been elucidated that combina-
tion therapy with doxorubicin and anti-CD73 or A2AR antag-
onists contributes to prolonged survival in mice. Similar re-
sults have demonstrated that the blockade of CD39 on fibro-
sarcomas restores sensitivity to anthracyclines [127].
Moreover, a higher efficacy has been reported with the com-
bination of A2BR inhibitors with chemotherapeutic drugs
such as dacarbazine and doxorubicin, which showed similar
results to those described above [24, 126].

Combination with immune cell-based therapy In addition to
conventional chemotherapies and checkpoint blockade treat-
ment, the combination of the inhibition of the adenosinergic
pathway and CD8+ Tcell-based therapies is a significant strat-
egy [128]. Antigenspecific T cells in combination with APCP
enhanced the impairment of tumor growth compared with
monotherapy [128]. It has been shown that the inhibition of
A2AR significantly improved the treatment effect of chimeric
antigen receptor (CAR) T cells on mammary tumor cells
[129], which was explained by enhanced levels of CARTcells
and cytokines released by T cells [129]. In addition to T cell-
based therapies, a high A2AR frequency has been reported on
NK cells, and the suppression of A2AR could significantly
enhance NK cells in malignant cancers [77, 122]. Thus, NK
cell-based therapies were enhanced by blocking the activation
of A2AR [39].

Drugs that have entered clinical studies

In recent years, many small molecule drugs or antibodies
inhibiting the adenosinergic pathway are undergoing clin-
ical trials. Their targets include CD73, A2AR, and A2BR
but not CD39, and most of these inhibitors are applied to
malignant tumors such as ovarian cancer, NSCLC, and
other advanced cancers. Additionally, they will also be
used in combination with checkpoint blockers such as
anti-PDL1 and anti-PD1 to achieve better efficacy
(Table 2). Many researchers and medical companies wait
for the first clinical trial results, which would come from
patients who are receiving inhibitors that reduce extracel-
lular ADO generation or activity in tumors. These obser-
vations present a good opportunity to develop anti-CD73
therapy for the treatment of certain cancer patients. Based
on this knowledge, although there is still a long way to
go, future studies can be expected that aim at translating
anti-CD73 therapy for cancer patients in the clinic.
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What should we do for a better therapeutic
effect in the future?

Because A2AR/A2BR and CD39/CD73 are important to
maintain the health and homeostasis in normal tissues, the
ubiquitous effects of drugs in the body will destroy these
intact systems and cause unnecessary or even fatal toxic side
effects. For example, a study has shown that some cells have
a high expression of efflux pump P-glycoprotein (P-gp),
which pumps out drugs to promote drug resistance; activating
A2AR via an FDA-approved A2AR agonist (Lexiscan) sig-
nificantly decreased P-gp expression and function to enhance
the drug efficacy in a time-dependent manner. This suggests
that medication without delivery systems targeting tumor
sites may cause some serious adverse reactions [130].
Similarly, the ubiquitous expression of CD73 has a significant
effect in adjusting the dynamic balance between ATP and
ADO to maintain physiological homeostasis; therefore, drug
delivery without tumor-targeting may decrease effective met-
abolic activity of CD73 [131]. Another article has reviewed
that CD73-KO mice exhibits functional defects in multiple
aspects [132]; for example, intestinal epithelium motility
and permeability, reducing damage associated with ischemia,
hypoxia-induced vascular leakage, renal function, leukocyte
trafficking, immunity and endothelial barrier function, are
downregulated compared with wild-type mice [133–143].
Therefore, care should be taken during treatment, considering
that an antagonist of CD73 could cause potential damage to
patients who receive adenosinergic pathway blockade treat-
ment in the clinic [132]. On the other hand, formulations with
no carrier are unstable for drug delivery to tumor sites. Many
cells, such as macrophages, can clear the drug, and other
molecules can neutralize the active ingredients via processes
such as opsonization. In addition, drugs without
nanoencapsulation will be rapidly metabolized by the liver
and excreted by the kidneys, which will result in a very low
half-life and will greatly reduce the efficacy of the drug [144].
Overall, to enhance the efficacy and reduce the side effects of
adenosinergic pathway blockade drugs, the use of tissue- and

cell-targeting systems has become the focus of future drug
development in this area.

The advantages of nanoparticles for delivering
inhibitors of the adenosinergic pathway

In short, the original intention of developing drug delivery
systems was to improve the therapeutic effect by altering the
transport process for drug molecules in the body. The optimi-
zation of drug delivery systems focused on aspects including
formulation, controlled release, delivery routes, and half-life,
which could significantly enhance treatment efficacy
[145–147]. In recent years, drug delivery systems have been
developed quickly and efficiently, and nanoparticles (NPs)
gradually have become the most popular drug-carrier [147].
Scientists highly recommend nanoparticles because of multi-
ple aspects. There are many efficient and convenient
manufacturing methods (solvent displacement, salting out,
emulsion diffusion, emulsion–solvent evaporation, in situ po-
lymerization) to form a wide variety of NPs such as micelles,
liposomes, magnetic nanoparticles, gold nanoshells, carbon
nanotubes (CNTs), nanohydrogels, and dendrimers, which
can effectively cope with various diseases [148–150]. They
possess the capacity to carry multiple types of insoluble drugs
[149]. For example, NP formulations of hydrophobic drugs
such as paclitaxel can overcome the difficulties of drug insol-
ubility in water [151]. Efficient delivery systems could be
applied in diagnostics in a multitude of diseases [152]. NPs
exhibit increased drug-loading capacity due to their large sur-
face area to volume ratio [153]. NPs exhibit a longer systemic
circulation than conventional systems and reduce clearance by
the kidneys. NPs can protect drug molecules from attack by
the host immune system and enzymatic degradation, and cer-
tain immune-modifications on NPs can inhibit the suppressive
TME, which is associated with tumors, for enhancing cancer
chemotherapy and reducing drug resistance. NPs extravasate
into tissues from leaky blood vessels more easily compared
with drugmolecules. Combining this factor with the enhanced
permeation and retention (EPR) effect reduces the challenges

Table 2 Clinical trials of antagonists of the adenosinergic pathway

Target Drug Clinical trial number Cancer type Combination partner Study phase References

CD73 MEDI9447 NCT02503774 Solid tumors Anti-PDL1 (MEDI4736) Phase 1 [25]

NCT03267589 Ovarian cancer Anti-PDL1 (durvalumab) Phase 2 [26]

CPI-006 NCT03454451 Advanced cancers Anti-PDL1 (pembrolizumab)
A2ARi(CPI-444)

Phase 1/1b [27]

A2AR NIR178 NCT03207867 Solid tumors and non-Hodgkin lymphoma Anti-PD1 (PDR001) Phase 2 [28]

PBF-509 NCT02403193 NSCLC Anti-PD1 (PDR001) Phase 1, phase 2 [29]

CPI-444 NCT02655822 Advanced cancers Anti-PDL1 (durvalumab) Phase 1/1b [30]

AZD4635 NCT02740985 Advanced cancers Anti-PDL1 (durvalumab) Phase 1 [31]

A2BR PBF-1129 NCT03274479 NSCLC N/A Phase 1 [32]
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of off-target effects caused by increasing the drug concentra-
tion [154, 155]. In addition, NPs, such as liposomes, can avoid
drug efflux pumps to weaken multidrug resistance (MDR),
which will enhance the anti-tumor drug accumulation in tu-
mor cells. Additionally, safer and less expensive nanocarriers
are constantly being developed and innovated to achieve more
effective drug delivery and improved efficacy [156]. Targeted
delivery systems have been studied for delivering adenosine
pathway antagonists [157], and it has been found that CD73-
specific siRNA-loaded chitosan-lactate nanoparticles (ChLa
NPs) can lead to reduced expression of CD73 in tumor cells.
This decreases tumor growth and metastasis and improves
mice survival, thus enhancing the efficacy of DC-based cancer
immunotherapy compared with naked CD73-specific siRNA
and eventually achieving the downregulation of Tregs,
MDSCs, and TAMs in the TME. Therefore, the potential of
NPs has been identified to improve the efficiency of drug
delivery and to decrease the side effects associated with pres-
ent therapeutics.

Applying nanoparticles in combination therapy

In the earlier part of this review, the combination of
adenosinergic pathway blockade and other therapies (check-
point blockade treatment, chemotherapy and immune cell-
based therapy) has been elucidated in detail, and combination
therapy is expected to show great prospects. However, it is
worth exploring a strategy to achieve an effective cooperation
of two or even more drugs. The emergence of NPs has solved
this problem because NPs can effectively combine the effects
of multiple drugs and serve as a multilayered, synchronous,
and collaborative drug delivery system. In addition, theoreti-
cally, the NPs can be used in evaluating the efficacy of com-
binatorial therapy via designing multiple drug-loaded parti-
cles. Compared with separated drug administration, co-
delivery of two or more drugs in a carrier has some significant
merits, including (1) reduce drug dosage, (2) significantly im-
proves patient compliance, and (3) controls the individual
dosage [158]. In this study, the application of nanoparticle
for combination therapy confers several potential advantages
such as good biodistribution, enhanced blood stability, con-
trollable drug release, high carrier capacity, prolonged system-
ic circulation lifetime, and multidrug encapsulation for com-
bination therapy [159]. Some researches indicated that co-
delivery of two therapeutic agents has a synergistic effect,
and it could enhance the efficiency of delivering two drugs
to the same cell population by at least one order of magnitude
when compared with delivering them in two separate carriers.
It is important to recognize the relationship between the mech-
anisms of each agent, pharmacological activity, and the mode
of delivery. Conversely, the propound understanding could
contribute to the better design of co-delivery vectors with

proper timing and sequence of delivery of individual drugs
of the combination [160].

The design of active targeted nanoparticles

Comparedwith passive targeting, active targeting (also known
as ligand-mediated targeting) involvesmodification of the sur-
face of NPs with affinity ligands for specific retention and
uptake by the targeted cells. Therefore, it is urgent to seek
appropriate modifiers to be applied in NPs for more effective
adenosinergic pathway blockade therapy. Representative li-
gands include antibodies, proteins, peptides, nucleic acids,
sugars, and small molecules such as vitamins [161]. Thus,
using antagonists of CD39, CD73, A2AR, and A2BR as mod-
ifiers on NPs could be a good choice according to the targeted
therapy theory [161]. At present, multiple inorganic analogues
have been shown to effectively bind to CD73 and potently
inhibit CD73 enzymatic activity, including non-hydrolyzable
AMP analogs such as APCP, flavonoid-based compounds
such as quercetin, and purine nucleotide analogs such as
tenofovir and sulfonic acid compounds [162–164]. In addi-
tion, several proteins have been identified such as concanav-
alin A and tenascin C, which can potentially inhibit CD73
enzymatic activity [165, 166]. It is worth studying intrinsic
protein inhibitors, including various monoclonal antibodies
targeting CD73 and TY/23, which specifically targets murine
CD73 [167–169]; other monoclonal antibodies targeting hu-
man CD73 include IE9, 7G2, 4G4, and AD2 [63, 80, 167,
168]. Similarly, antagonists of CD39 such as POM1 [8], in-
hibitors of A2AR such as ZM241385, and antagonists of
A2BR such as PSB1115 should also be considered as modi-
fiers on NPs for active targeting [39]. The targeted therapy
theory put forward by Paul Ehrlich in 1906 conceived of a
selective delivery of effective drugs. For example, chemother-
apy is ubiquitously toxic to tumor and normal tissues. There
would be excellence in that these toxic agents are only deliv-
ered to the cancer tissues and cancer-related tissues to kill
cancer cells with minimal adverse reactions. Therefore, it is
significant that active targeting drug delivery enables the
targeted delivery of agents to specified tissues via active li-
gands [170].

Conclusion and prospect

This review has addressed the whole process of the
adenosinergic pathway in the TME. The pathway-
associated enzymes (CD39 and CD73) and activated re-
ceptors (A2AR and A2BR) play roles in promoting tumor
growth, metastasis, immunosuppression, and drug resis-
tance through multiple mechanisms. Endogenous factors
(IL-27, TGFβ, HIF-1/2α, TP53 mutation, EMT transcrip-
tion factor, TNF, and TLR4) and exogenous factors
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(metformin, CD40 mAb, antiPD1, carboplatin, doxorubi-
cin, gemcitabine, paclitaxel, triiodothyronine, low-iodine,
propylthiouracil and low-dose endotoxin), which can reg-
ulate adenosinergic pathway-associated molecules, have
also been summarized. Next, the three major treatments
that inhibit this pathway in combination with other thera-
pies such as checkpoint blockade, chemotherapy, and im-
mune cell-based therapy will greatly improve the efficien-
cy of treatment, and this approach will be the focus of
future treatments. Most importantly, because many en-
zymes and receptors in the pathway are widely distributed
throughout the body, using the drug by itself may result in
many unavoidable side effects. Therefore, the best choice
is to encapsulate these antagonists via nanocarrier systems
to reduce unnecessary drug distribution. Passive and ac-
tive targeted nanocarrier systems is significant in cancer
therapy, and finding suitable targeting modifications ac-
cording to the targeted therapy theory could prove to be
highly efficient. This review additionally clarifies the di-
rection of future treatments in this area.

To apply the inhibitors of the adenosinergic pathway via a
more effective and safe approach in the future, certain prob-
lems should be focused on and solved. It is important to in-
vestigate whether the suppression of A2AR can enhance the
susceptibility of A2BR to ADO, and conversely, whether the
suppression of A2BR can enhance the susceptibility of A2AR
to ADO. The low A2AR level would downregulate A2BR
expression in splenocytes [171], which needs further study
to clearly explain the intrinsic mechanism. It remains un-
known whether the therapeutic effect of CD73 inhibition is
similar to that of A2A/A2B inhibition. It may be possible that
blocking CD73 will be more efficient than blocking A2A/
A2B receptors due to the combined inhibition of enzymatic
and non-enzymatic functions of CD73. It may be more effec-
tive to induce activation of the CD26 pathway plus inhibition
of the CD73 pathway for adenosinergic pathway blockade
than inhibition of the CD73 pathway alone. (CD26-associated
ADA can degrade ADO, while CD73 generates ADO.) When
selecting patients for clinical trials or selecting experimental
tumor models for animal experiments, we should know how
to select appropriate subjects for a better experimental out-
come. High expression levels of relevant biomarkers, includ-
ing CD39, CD73, A2AR, and A2BR, should be the standard
for better choice. NECA, 5′-(N-ethylcarboxamido) adenosine,
a non-specific ADO receptor agonist, was identified to upreg-
ulate caspase-3 and cause tumor cells apoptosis in cancers
which have a high A2BR expression [172]. Additionally, the
NECA was also identified to upregulate caspase-dependent
apoptosis caused by chemotherapeutics in osteosarcoma
[173]. Reversely, the activation of A2BR was identified to
improve growth of prostate cancer [174] and glioblastoma
[175]. We should clearly define the different mechanisms that
are involved. Overall, we believe that the inhibition of the

adenosinergic pathway will result in a good outcome in clin-
ical applications and will become an indispensable part of
oncological therapy in the future.
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