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Abstract
Purpose Oocyte maturation is a complex process involving nuclear and cytoplasmic modulations, during which oocytes acquire
their ability to become fertilized and support embryonic development. The oocyte is apparently Bprimed^ for maturation during
its development in the dominant follicle. As bovine oocytes immediately resume meiosis when cultured, it was hypothesized that
delaying resumption of meiosis with cyclic nucleotide modulators before in vitro maturation (IVM) would allow the oocytes to
acquire improved developmental competence.
Methods We tested the Simulated Physiological Oocyte Maturation (SPOM) system that uses forskolin and 3-isobutyl-1-
methylxanthine for 2 h prior to IVM against two different systems of conventional IVM (Con-IVM). We evaluated the ultrastruc-
ture of matured oocytes and blastocysts and also assessed the expression of 96 genes related to embryo quality in the blastocysts.
Results In summary, the SPOM system resulted in lower blastocyst rates than both Con-IVM systems (30 ± 9.1 vs. 35 ± 8.7; 29 ±
2.6 vs. 38 ± 2.8). Mature SPOM oocytes had significantly increased volume and number of vesicles, reduced volume and surface
density of large smooth endoplasmic reticulum clusters, and lower number of mitochondria than Con-IVM oocytes. SPOM
blastocysts showed only subtle differences with parallel undulations of adjacent trophectoderm plasma membranes and peripherally
localized ribosomes in cells of the inner cell mass compared with Con-IVM blastocysts. SPOM blastocysts, however, displayed
significant downregulation of genes related to embryonic developmental potential when compared to Con-IVM blastocysts.
Conclusions Our results show that the use of the current version of the SPOM system may have adverse effects on oocytes and
blastocysts calling for optimized protocols for improving oocyte competence.
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Introduction

In bovine oocytes, meiosis is initiated around Day 82 of ges-
tation in the fetus. Subsequently this process is arrested in the

diplotene, i.e., the germinal vesicle stage, until puberty when
selected recruitment to resumemeiosis occurs in the ovulatory
follicle in response to gonadotrophins [1, 2]. The oocyte’s
basic competence for resuming meiosis and sustaining
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embryonic development is gradually built during the oocyte
growth phase, when the oocyte grows from a diameter of
approximately 30 to around 120 μm. Hence, it is estimated
that bovine oocytes have acquired the competence for resum-
ing meiosis at a diameter of approximately 100 μm and that
they have acquired the further competence for completion of
meiosis and for sustaining embryonic development to the
blastocyst stage at around 110 μm corresponding to a follicle
size of approximately 3 mm [3, 4]. It is, however, also clear
that the oocytes undergo certain morphological changes dur-
ing the development of the dominant follicle towards the time
when the luteinizing hormone (LH) peak stimulates final oo-
cyte maturation [5]. These changes in the oocyte of the dom-
inant follicle have been referred to as oocyte Bcapacitation^ or
Bpre-maturation^ and it is believed that they contribute to
enhanced oocyte competence and Bprime^ the oocyte for final
maturation and further development. Accordingly, in vivoma-
tured oocytes have higher developmental competence than
their in vitro matured counterparts [6].

Before the LH surge, the natriuretic peptide precursor type
C (NPPC) produced by mural granulosa cells stimulates the
generation of cyclic guanosine monophosphate (cGMP) in the
cumulus cells through stimulation of natriuretic peptide recep-
tor 2 (NPR2) [7]. cGMP produced by the NPPC/NPR2 system
is transferred to the oocyte via gap junctions and inhibits the
activity of phosphodiesterase 3A (PDE3A) in the oocyte [8,
9], maintaining increased levels of cyclic adenosine
monophosphate (cAMP) in the gamete and hereby sustaining
meiotic arrest [7]. After the LH surge, the gap junctional con-
tact is broken and cGMP levels decline allowing for the
PDE3A to hydrolyze cAMP molecules in the oocyte, trigger-
ing meiotic resumption [10]. For the purpose of in vitro pro-
duction of bovine embryos, the final stage of oocyte develop-
ment is mimicked in vitro by removal of the cumulus-oocyte
complex (COC) from antral follicles. Without the mural gran-
ulosa cell compartment, meiosis is resumed spontaneously and
immediately. Hence, oocyte meiotic arrest is dependent on
optimum concentrations of cAMP within the oocyte [11, 12].

In order to compensate for that, certain approaches aiming
at improving oocyte developmental competence are based on
two-step culture systems, which during the initial step block
resumption of meiosis in order to allow for a mimic of oocyte
capacitation and Bprime^ the oocyte for development [13–18].
Among the systems that have been developed, the most prom-
ising are those that pharmacologically inhibit or retard meiotic
resumption with cyclic nucleotide modulators elevating the
cAMP levels in the oocyte while sustaining functionality of
the gap junction communication functionality (reviewed in [19].

However, little information is available about the morpho-
logical and molecular effects of such treatments on oocytes
and resulting embryos. Therefore, our aim was to evaluate the
potential effects of a treatment with cyclic nucleotide modu-
lators prior to IVM (SPOM system) on the ultrastructure of

oocytes and blastocysts as well as on the expression in the
blastocysts of 96 genes related to embryo quality. Hence, we
have challenged the SPOM system [19] against two different
systems of conventional IVM (Con-IVM).

Material and methods

All chemicals and reagents were obtained from Millipore-
Sigma (Merck KGaA, Darmstadt, Germany) unless otherwise
stated. In vitro production of embryos was performed in two
different laboratories in Denmark: Aarhus University (AU-
system) and University of Copenhagen (UCPH-system,
EmbryoTrans Biotech). The in vitro performance of the
SPOM-system was challenged against two different Con-
IVM-systems. For the AU-system, we used a protocol that
includes cattle serum (CS, Danish Veterinary Institute, DTU,
Frederiksberg, Denmark) in its composition during IVM
(15%) and embryo culture (5%). For the UCPH-system we
used the whole package of commercially available serum-free
ready-to-use media from IVF Bioscience (BO-Wash, BO-
IVM, BO-IVF and BO-IVC). For the SPOM-system, we used
the commercially available ready-to-use media (VitroWash,
VitroMat, VitroFert and VitroCleave and VitroBlast) from
IVF Vet solutions (Adelaide, Australia) for the whole proce-
dure and performed the pre-maturation step according to man-
ufacturer’s instructions. Methods described are similar for all
systems, unless otherwise stated.

In vitro embryo production

Oocyte collection for conventional and experimental IVM
(Con-IVM and SPOM)

Bovine (Bos taurus) ovaries were collected from local slaugh-
terhouses and then transported to the laboratory in 0.9% phys-
iological saline solution in a thermo container at approximate-
ly 30–33 °C. COCs were aspirated from follicles 2 to 6 mm in
diameter with a 19-G needle. The COCs were collected and
washed once in Hepes-buffered Ml99 supplemented with
5 IU/mL heparin (LEO Chemical Factory, Ballerup,
Denmark), 2.5 mg/mL amphotericin, and 1% CS (Danish
Veterinary Institute, DTU, Frederiksberg, Denmark). COCs
with minimum of 3–4 cumulus cell layers were selected for
IVM and transferred in groups of 25 per well of 4-well dishes
(Thermo Fisher Scientific, Roskilde, Denmark) containing
400 μl IVM medium (bicarbonate-buffered Ml99) supple-
mented with 10 IU/mL eCG and 5 IU/mL hCG (constituents
of Suigonan Q, lntervet Scandinavia, Skovlunde, Denmark),
0.4 mM L-glutamine, 50 pg/mL gentamycin, and 15% CS and
overlaid with 400 μl oil. Immature COCs were incubated for
24 h at 38.5 °C in 5% CO2 in humidified air.
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The SPOM-system

Briefly, COCs were selected to form groups of 50 and were
pre-cultured for 2 h in 4-well plates containing 500 μL of
VitroMat medium (IVF Vet Solutions, Adelaide, Australia)
supplemented with the adenylate cyclase activator, forskolin
(FSK, 100 μM), and the phosphodiesterase (PDE) inhibitor 3-
isobutyl-1-methylxanthine (IBMX, 500 μM), according to
[18]. After 2 h of pre-maturation, COCs were deeply washed
(VitroWash media, IVF Vet Solutions, Adelaide, Australia) to
completely remove SPOM medium and transferred to a well
containing 500 μL of fresh VitroMat medium enriched with
100 mTU/mL recombinant human (rh) -FSH for IVM and
cultured for 24 h.

In vitro fertilization and culture

Frozen-thawed semen from a Danish Holstein-Friesian bull
(DAVID) was used for IVF in both facilities for all groups.
Semen was thawed in 36 °C water and transferred into a cen-
trifuge tube (Thermo Fisher Scientific, Roskilde, Denmark).
The semen was washed in 2 mL Sperm-TALP (5.8 g/L NaCl,
0.2 g/L KCl, 0.04 g/L NaH2OP4, 0.3 g/L CaCl2, 0.2 MgCl2,
3.7 ml/L lactic acid, 1.4 g/L Hepes, 1.1 g/L Hepes-acid, 2.1 g/
L NaHCO3, 110 mg/L pyruvic acid, 100 mg/L gentamycin)
by centrifugation for 10 min at 1500 rd/min. The supernatant
was removed and the pellet re-suspended in 2 ml sperm-
TALP. This procedure was repeated twice.

While washing the sperm, the oocytes were transferred to
the IVF wells, 50 oocytes per well, containing 400 μL IVF
medium (Sperm-TALP supplemented with 5 IU/mL heparin,
10 pM penicilliamine, 15 pM hypotaurine, and 1 pM epineph-
rine overlaid with 400 μl oil. Semen was added to the IVF
wells in a concentration of 2,000,000 sperm/mL. The gametes
were co-cultured for 20–22 h at 38.5 °C in 5% CO in humid-
ified air.

Presumptive zygotes were vortexed to remove attached
cumulus cells before transferred in groups of 25 per well of
a 4-well dish containing 400 μL IVC medium. The embryos
were cultured in a humidified mixture of 5%O2, 5%CO2, and
90% N2 in air. The in vitro performance was assessed for rates
of cleavage and blastocyst.

Transmission electron microscopy

Oocytes after IVM (minimum of 35 oocytes per group) and
good-morphology expanded blastocysts (minimum of 10
equally-graded blastocysts per group) were collected from
culture and fixed in 0.1 M Na-phosphate buffer (pH 7.3) con-
taining 3% glutaraldehyde for 1 h at room temperature and
stored at 4 °C in Na-phosphate buffer for later preparation for
transmission electron microscopy (TEM) (Figs. 1 and 2).

Glutaraldehyde-fixed specimens were embedded in 4%
agar at 45 °C (Bacto Agar; Difco Laboratories, Detroit, MI),
post-fixed in 1% OsO4 in 0.1 M Na-phosphate buffer for 1 h
at room temperature and washed briefly in 0.1 M Na-
phosphate buffer. Embedded oocytes and embryos were
stained with 1% uranyl acetate (Polysciences, Niles, IL) and
dehydrated serially in ethanol. Subsequently, they were
washed in propylene oxide twice for 10 min, further embed-
ded in Epon (TAAB 812 embedding resin; VWR, West
Chester, PA) and polymerized for 48 h at 60 °C for semithin
sectioning. Semithin (2 μm) sections were cut serially through
the oocytes/embryos on an ultramicrotome (Reichert Ultracut
S; Leica, Microsystems, Wetzlar, Germany) using glass
knives produced from a glass knife maker (LKB Bromma
7800; Leica Microsystems). Semithin sections were stained
with 1% toluidine blue and examined under bright-field
microscopy.

Sections of interest were re-embedded for ultrathin section-
ing (60–80 nm) and sectioned using a diamond knife (Jumdi;
Canemco and Marivac, Quebec, Canada) as previously de-
scribed [20]. Ultrathin sections were contrast-stained using
2% uranyl acetate and lead citrate (Merck, Rahway, NJ), col-
lected on 150 mesh copper grids covered with parlodion/
amylacatate film (EMS; Fort Washington, PA) and examined
on a transmission electron microscope (CM100, Philips,
Darmstadt, The Netherlands) for assessment of ultrastructure
of oocytes and blastocysts.

Analyses of cytoplasmic organelle parameters

Only matured oocytes, represented by a metaphase II plate
and presence of polar body in the semithin sections, were
further processed for TEM (minimum of 25 oocytes per
group). Electron micrographs of areas representing randomly
chosen areas of peripheral ooplasm (zone within 10 μm of the
oocyte plasma membrane) and central ooplasm were ana-
lyzed. Quantitative analyses were performed in oocytes by
standard stereological methods [21], which consisted in the
placement of a test-grid over an electron micrograph adapted
in the Fiji plugin software, an open source package from the
image processing software Image-J (Wayne Rasband,
National Institutes of Health, Bethesda, MD, USA, available
for free download at https://imagej.nih.gov/nih-image/index.
html) according to [22]. The distance between each adjacent
cross-points on the grid provided an area of 0.25 μm2. The
surface area density (surface area of organelle per unit volume
of cytoplasm; μm2/μm3), volume density (volume of organ-
elle per unit volume of cytoplasm; μm3/μm3) and/or numeri-
cal density (number of organelle per unit volume of cyto-
plasm; number/μm3) were calculated for selected organelles
[23, 24]. For simplicity, the numerical density of organelles is
presented as number/1000 μm3 of oocyte volume. The rela-
tionship between the peripheral and central regions was
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calculated for each oocyte and the resulting index was statis-
tically compared between groups. Only blastocysts being
evaluated as having good quality by stereomicroscopy were
processed for TEM (minimum of ten equally-graded blasto-
cysts per group). Representative areas of the trophectoderm
(TE) and the inner cell mass (ICM) were analyzed.

Gene expression

Collection of blastocyst samples

Blastocysts were collected individually from cultures at 180 h
post-insemination and stored in small volume of PBS-PVP at
− 80 °C until RNA extraction. We selected only grade 1 good-
quality expanded blastocysts without morphological signs of
degeneration [25]. Embryos were combined to form pools of
three blastocysts, defined as biological replicate and submitted
to RNA extraction.

RNA isolation and reverse transcription

Total RNA from each pool of blastocysts was extracted with
the PicoPure RNA Isolation kit (Life Technologies, Foster
City, CA, USA) following the manufacturer’s protocol.
DNAse treatment was performed in all samples during RNA
isolation as instructed by the manufacturer. Extracted RNA
was stored at − 80 °C until further analysis by reverse tran-
scription quantitative real time polymerase chain reaction (RT-
qPCR). RNA concentration was quantified by a spectropho-
tometer (Nanodrop, ThermoFischer Scientific, MA, USA),
and a 2100 Bioanalyzer apparatus (Agilent Technologies,
CA, USA) was used to assess RNA quality with RNA Pico
Chips (Agilent Technologies). All analyzed blastocyst sam-
ples had a RNA integrity number (RIN) ≥ 7. We used
100 ng of each sample to reverse transcription and the
cDNA synthesis was performed using High Capacity
Reverse Transcription kit (Applied Biosystems, Foster City,
CA, USA), following manufacturer’s instructions.

SPOM oocytesCon-IVM oocytesFig. 1 Transmission electron
micrographs of mature bovine
oocytes produced by the Con-
IVM system (A, B, and C) or by
the SPOM system (D, E, and F).
AMature oocyte identified by the
presence of a polar body (PB).
Note the low density and central
localization of vesicles. Inset:
light micrograph of a mature
oocyte. B Oocyte showing
cortical granules located at
solitary positions in the periphery
of the ooplasm. C Detail from
oocyte showing the close
interaction of mitochondria (M)
and a vesicle (V) with the smooth
endoplasmic reticulum (SER). D
Mature oocyte, identified by the
PB, showing high density and
more even distribution of
vesicles. Inset: light micrograph
ofmature oocyte.EOocyte with a
big cluster of cortical granules. F
Detail from oocyte showing
mitochondria (M) with less
prominent association with
smooth endoplasmic reticulum
(SER)
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Pre-amplification and real time polymerase chain reaction

Gene expression analysis of bovine blastocysts was performed
using Applied Biosystems™ TaqMan® Assays, specific for
Bos taurus. We analyzed the mRNA abundance of genes per
functional categories for blastocysts (for gene symbols, names
and further details, see supplementary material 1). Prior to RT-
qPCR thermal cycling, each sample was submitted to
sequence-specific pre-amplification process as follows:
1.25 μL assay mix (TaqMan® Assay was pooled to a final
concentration of 0.2× for each of the 96 assays), 2.5 μL
TaqMan PreAmp Master Mix (Applied Biosystems,
#4391128), and 1.25 μL cDNA (5 ng/μL). The reactions were
activated at 95 °C for 10 min followed by denaturing at 95 °C

for 15 s, annealing and amplification at 60 °C for 4 min for
12 cycles. These pre-amplified products were diluted fivefold
prior to RT-qPCR analysis.

Assays and pre-amplified samples were transferred to an
integrated fluidic circuits (IFC) plate. For gene expression
analysis, the sample solution prepared consisted of 2.25 μL
cDNA (pre-amplified products), 2.5 μL of TaqMan Universal
PCR Master Mix (2×, Applied Biosystems) and 0.25 μL of
20× GE Sample Loading Reagent (Fluidigm); and the assay
solution: 2.5 μL of 20× TaqMan Gene Expression Assay
(Applied Biosystems) and 2.5 μL of 2× Assay Loading
Reagent (Fluidigm). The 96.96 Dynamic Array™ Integrated
Fluidic Circuits (Fluidigm) chip was used for data collection.
After priming, the chip was loaded with 5 μL of each assay

SPOM Blastocysts Con-IVM Blastocysts

Fig. 2 Transmission electron micrographs of bovine blastocysts
produced after oocyte maturation via conventional IVM (Con-IVM; A,
B and C) and via the simulated-physiological oocyte maturation (SPOM;
D, E and F) system. A Inner cell mass, polar trophectoderm, and zona
pellucida (ZP) of blastocyst. Inset: light micrograph of blastocyst with
inner cell mass (ICM), trophectoderm (TE), and blastocyst cavity (BC).B
Detail showing the connection between two trophoblasts with a well-
developed tight junction (arrow) followed by two desmosomes
(arrowheads). C Detail of inner cell mass cell showing nucleus (N) and
rough endoplasmic reticulum (RER) in close association with the

mitochondria (M). Note that the ribosomes (Rb) are attached to RER
and distributed freely throughout the cytoplasm. D Inner cell mass,
polar trophectoderm, and zona pellucida (ZP) of blastocyst. Inset: light
micrograph of blastocyst with inner cell mass (ICM), trophectoderm
(TE), and blastocyst cavity (BC). E Detail showing the connection
between two trophoblasts with undulating lateral plasma membranes
and less developed tight junction (arrow). Note the lipid droplet (L) in
the trophoblast. F Detail of inner cell mass cell showing nucleus (N) and
ribosomes (Rb) mostly located in the periphery of the cells of the
cytoplasm
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solution and 5 μL of each sample solution before being loaded
into an automated controller that prepares the nanoliter
reactions.

The RT-qPCR thermal cycling was performed in the
Biomark HD System (Fluidigm, South San Francisco, CA,
USA) using the protocol TaqMan GE 96 × 96 Standard, that
consisted of one stage of Thermal Mix (50 °C for 2 min, 70 °C
for 20min and 25 °C for 10min) followed by a Hot Start stage
(50 °C for 2 min and 95 °C for 10 min), followed by 40 cycles
of denaturation (95 °C for 15 s), primer annealing, and exten-
sion (60 °C for 60 s).

Statistical analysis

Data from in vitro production performance and ultrastructure
assessment of oocytes and blastocyst were analyzed using
Proc GENMOD of SAS software (2003). Individual ultra-
s t ruc tu ra l images were ana lyzed qua l i t a t ive ly /
morphologically and quantitatively via stereological evalua-
tion. Stereological quantitative data were analyzed with t test
and are presented as mean ± standard error (SEM). The data
for central and peripheral regions were pooled for the end-
points where significant differences were not observed. For
RT-qPCR data, we calculated the ΔCt values relative to the
geometric mean of the best housekeeping genes (GAPDH,
PPIA and SF3A1) in the 96-gene set. Fold-changes were cal-
culated as 2−ΔCt. Data were analyzed using JMP (Version:
13.0, SAS Institute Inc., Cary, NC, USA). We considered
genes in SPOM group to be up or downregulated in relation
to the control group. Statistical significance was determined
based on a P value ≤ 0.05.

Results

Developmental competence

The in vitro performance (rates of cleavage and blastocyst,
morphology grading, and kinetics) of embryo production
from the two different labs (SPOM vs. UCPH-system: 4 rep-
licates and SPOM vs. AU-system: 8 replicates) is presented in
Table 1. Groups of Con-IVM reached higher blastocyst rates
in both comparisons: SPOM vs. UCPH-system (29 ± 2.6 vs.
38 ± 2.8) and SPOM vs. AU-system (30 ± 9.1 vs. 35 ± 8.7).

Qualitative morphologic observations

The results of the ultrastructural evaluations were identical for
UCPH-IVM and AU-IVM systems. Hence, a common pre-
sentation of the differences noted between the Con-IVM and
SPOM systems is given. A few (three out of 35) SPOM-
oocytes presented a germinal vesicle, but exclusively oocytes
presenting a metaphase II and first polar body in the semithin
sections were processed for further ultrastructural assessment

and quantitative investigations. Stereological results on indi-
vidual comparison, i.e., SPOM vs. UCPH-IVM and SPOM
vs. AU-IVM did not show statistical significance (data not
shown), even though group comparison behaved very similar-
ly. Hence we decided to pool samples in a broader systematic
comparison, which are the SPOM samples (produced in both
UCPH and AU labs) versus Con-IVM samples (compiled
Con-IVM from both labs). By doing so we could illustrate
the differences presented in Fig. 3 and Table 2.

Con-IVM oocytes presented a well-organizedmetaphase-II
plate, a first polar body, a preferentially central accumulation
of vesicles (Fig. 1A), peripheral solitary localization of corti-
cal granules (Fig. 1B), and large smooth endoplasmic reticu-
lum (SER) clusters. Moreover, they displayed a close spatial
association between SER and the typically hooded mitochon-
dria (Fig. 1C), lipid droplets, and vesicles. SPOM oocytes
displayed morphological signs of incomplete cytoplasmic
maturation including a more homogeneous distribution of mi-
tochondria, vesicles, and lipid droplets (Fig. 1D) and presence
of clusters of cortical granules (Fig. 1E). Also, the SER asso-
ciation with mitochondria was less prominent (Fig. 1F).

The Con-IVM and SPOM blastocysts displayed rather sim-
ilar morphology with only minor differences (Fig. 2A, D).
SPOM blastocysts often displayed parallel undulations of
the lateral plasma membranes of adjacent TE cells with appar-
ently less developed tight junctions and less desmosomes
(Fig. 2B, E), the presence of lipid droplets in the TE cells,
and unusual spatial localization of ribosomes and polyribo-
somes to the cortical cytoplasm of cells of the ICM (Fig. 2C,
F).

Quantitative stereological data

Again, the results of the quantitative ultrastructural evaluation
were identical for UCPH-IVM and AU-IVM-systems. Hence,
a common presentation of the differences noted between the
SPOM and the Con-IVM systems is given.

Data from the surface area density (surface area of organ-
elle per unit volume of cytoplasm; μm2/μm3), volume density
(volume of organelle per unit volume of cytoplasm; μm3/
μm3), and numerical density (number of organelle per unit
volume of cytoplasm; number/μm3) of cortical granules,
lipids, vesicles, large smooth endoplasmic reticulum (SER)
clusters and mitochondria are presented for Con-IVM and
SPOM oocytes in Table 2.

Con-IVM oocytes presented significantly more cortical
granules and mitochondria and the volume and surface area
of large SER clusters were also significantly higher. On the
contrary, both the number and volume of vesicles were in-
creased in SPOM oocytes.

Differences between Con-IVM and SPOM oocytes were
also noted with respect to the localization of organelles and
inclusions (Fig. 3). Hence, lipid droplets were evenly
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distributed in Con-IVM oocytes but attained a more peripheral
localization in SPOM oocytes, vesicles were centrally local-
ized in Con-IVM oocytes but attained a more even distribu-
tion in SPOM oocytes and large SER clusters were peripher-
ally localized in Con-IVM oocytes but attained a more even
distribution in SPOM oocytes. No differences were noted with
respect to the localization of mitochondria.

Gene expression

Differentially expressed genes indicated downregulation of
ten genes in SPOM blastocysts as compared with their Con-
IVM UCPH-System counterparts: beta-2-microglobulin
(B2M), regulator of G protein signaling 2 (RGS2), aldo-keto
reductase family 1 member B1 (AKR1B1), glucose-6-
phosphate dehydrogenase (G6PD), heat shock 60 kDa protein
1A (HSPD1), hypoxia inducible factor 1 alpha subunit
(HIF1A), platelet-activating factor (PAF1), thioredoxin
(TXN), superoxide dismutase 1 (SOD1), and interferon-
induced transmembrane protein 3 (IFITM3). Two genes were,
on the other hand, upregulated in SPOM blastocysts: solute
carrier family 2, member 5 (SLC2A5), and actin beta (ACTB)
(Fig. 4).

When analyzing SPOM blastocysts with their Con-IVM
AU-System counterparts, three genes were downregulated:
fatty acid elongase 5 (ELOVL5), stearoyl-CoA desaturase
(SCD), and acyl-CoA synthetase long-chain family member
6 (ACSL6) (Fig. 5) and none was upregulated.

Discussion

Fully mature oocytes from an ovulatory follicle at about 24 h
after the LH peak normally should present the cortical gran-
ules distributed at solitary positions along the oolemma, lipid
droplets, and mitochondria attained in a more central location
in the ooplasm leaving a rather organelle-free peripheral zone
in which the most prominent features are large clusters of SER
[4]. In our work, we compared two different IVM systems for
IVP of bovine embryos. Our analyses revealed ultrastructural
deviations of SER, mitochondria, lipid droplets, vesicles, and
cortical granules in oocytes arising from the SPOM-system

and, moreover, ultrastructural deviations were also observed
in the resulting blastocysts combined with deviant gene ex-
pression profiles.

In our experiments, the in vitro performance of the SPOM-
system was inferior to that of the Con-IVM in two different
comparisons (UCPH-system and AU-system). Previous stud-
ies using the SPOM-system, or similar systems with FSK and
IBMX, have reported successful results of this approach in
several species [18, 26–32]. Conversely, other studies have
shown neutral or compromised results using SPOM-like ap-
proaches [33–35]. Hence, in the light of this inconsistency, we
attempted to evaluate the effect and efficiency of the SPOM-
system by ultrastructural and gene expression analyses; meth-
odologies that have not been applied earlier.

An important ultrastructural feature of competent fully ma-
ture oocytes is the peripheral solitary distribution of the corti-
cal granules in the ooplasm [36]. These organelles are ex-
tremely important for proper zygote formation after fertiliza-
tion, since cortical granules contain ovastacin, a protease that
cleaves zona pellucida protein-2 and induces the hardening of
the zona preventing polyspermy [37, 38]. Our quantitative and
qualitative ultrastructural observations clearly demonstrated
that the number of solitary cortical granules in the cortical
ooplasma was significant lower in SPOM oocytes when com-
pared to Con-IVM. Furthermore, the granules remained clus-
tered to a higher degree in the SPOM oocytes. These features
may be reflected in the lower blastocyst rates obtained in the
SPOM group.

Another feature that may negatively affect oocyte compe-
tence and fertilization is the reduced number of mitochondria
observed in the SPOM oocytes [39]. It is known that high
numbers of mitochondria increase adenosine triphosphate
production during oocyte maturation and are associated with
improved oocyte quality [40, 41]. Our findings of a reduced
mitochondrial numerical density in the SPOM oocytes indi-
cate a compromised energy metabolism possibly reducing
embryonic outcome.

Since we have only selected the best quality blastocysts
resulting from both the SPOM and the Con-IVM-systems,
ultrastructural deviations were less likely to be found, as det-
rimental effects would have manifested themselves earlier

Table 1 In vitro performance
(rates (% ±SD) of cleavage and
blastocyst) of bovine embryos
produced by the simulated-
physiological oocyte maturation
(SPOM) system compared with
two conventional in vitro
maturation systems (Con-IVM:
UCPH-system and AU-system)

Group No. of COC Cleavage % ±SD Blastocyst % ±SD

University of Copenhagen

Con-IVM (UCPH-system) 412 85 ± 1.7 38 ± 2.8a

SPOM 407 81 ± 2.3 29 ± 2.6b

Aarhus University

Con-IVM (AU-system) 685 80 ± 17.9 35 ± 8.7a

SPOM 686 53 ± 13.7 30 ± 9.1b

COC = cumulus-oocyte complex
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during development. Nevertheless, our findings indicate sub-
tle ultrastructure modifications that might have persisted in the
SPOM group all the way to the stereo microscopically excel-
lent blastocyst stage. Hence, blastocysts produced from oo-
cytes submitted to the SPOM-system, often presented undu-
lations in the plasma membrane of neighboring TE cells with
less developed tight junctions and desmosomes. Proper for-
mation and function of such junctions have been reported to
better maintain the structural integrity and regulate the internal
environment of the embryos [42].

Ribosomes and polyribosomes are common in embryonic
cells [43], but we found differences between groups regarding
the spatial ribosomal organization in the inner cell mass (ICM)
of blastocysts. Ribosomes were found spread throughout the
cytoplasm in ICM cells in Con-IVM blastocysts, while SPOM
blastocysts presented ribosomes organized preferably in the
periphery of the ICM cells. Reasons accounting for these find-
ings are speculative, but previous research has suggested that
ribosomes are redistributed such that they accumulate at the
site of protein synthesis [44–46] and also according to the

Con-IVM SPOM Con-IVM SPOM

Con-IVM SPOM Con-IVM SPOM

Fig. 3 Organelle localization
(central versus periphery) in
oocytes after in vitro maturation
with the conventional maturation
system (Con-IVM) or the
simulated-physiological oocyte
maturation (SPOM) system. SER:
smooth endoplasmic reticulum. P
value of comparison between
groups for each structure is
described in parenthesis.
Considering significant
differences as P ≤ 0.05, only
mitochondria localization did not
differ between groups

Table 2 Volume (percent of ooplasm), surface density (Mean ± SEM,
μm2/μm3 of ooplasm) number (Mean ± SEM, per 1000 μm3 of ooplasm)
of lipids, vesicles, large clusters of smooth endoplasmic reticulum (SER),

and mitochondria in matured oocytes from the simulated-physiological
oocyte maturation (SPOM; n = 15) system compared with the conven-
tional in vitro maturation systems (Con-IVM; n = 17)

Organelle Parameter (P value) Con-IVM (Mean ± SEM) SPOM (Mean ± SEM)

Cortical granule Number (/1000 μm3) (P = 0.04) 2.21 ± 0.9a 1.27 ± 0.2b

Lipid Volume density (%) (P = 0.92) 1.52 ± 6.9 1.48 ± 1.0

Surface density (μm2/μm3) (P = 0.98) 0.15 ± 0.06 0.14 ± 0.10

Number (/1000 μm3) (P = 0.64) 13 ± 4.9 14 ± 8.4

Vesicle Volume (%) (P = 0.04) 13.14 ± 6.5a 24.79 ± 12.9b

Surface density (μm2/μm3) (P = 0.88) 1.31 ± 0.65 2.47 ± 1.29

Number (/1000 μm3) (P = 0.007) 140 ± 77.7a 244 ± 111.8b

Large SER cluster Volume (%) (P = 0.03) 3.62 ± 2.2a 1.48 ± 1.6b

Surface density (μm2/μm3) (P = 0.04) 0.36 ± 0.22a 0.14 ± 0.16b

Number (/1000 μm3) (P = 0.06) 5 ± 2.4 3 ± 2.0

Mitochondrion Volume (%) (P = 0.44) 6.91 ± 3.5 5.85 ± 2.1

Surface density (μm2/μm3) (P = 0.52) 0.69 ± 0.35 0.58 ± 0.21

Number (/1000 μm3) (P = 0.03) 170 ± 92.5a 119 ± 66.6b

Values with different superscripts are different (P < 0.05). Analyses were done on proportions, not percentages
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stage of the cell cycle [47], implying that the ribosome popu-
lation undergoes dynamic non-randommovement as required.
The consequences for such ribosome segregation within the
inner cell mass of SPOM blastocysts may reflect further at the
level of protein synthesis.

We assessed blastocysts for the expression of 96 genes
related to embryo quality. Comparing SPOM with Con-IVM
using the UCPH-system, we found 12 genes to be differen-
tially expressed between groups. The same comparison of
SPOM versus Con-IVM with the AU-system showed differ-
ential gene expression of only three genes. None of the genes
expressed differentially in the comparison with SPOM were
common between the UCPH and AU-system indicating that
gene expression in blastocysts may vary greatly between

production systems including a complexity of all aspects in-
volved in IVM, IVF, and IVC. Hence, differential gene ex-
pression data observed in our work indicates that variation in
transcripts may be related to differential culture conditions
during IVM, IVF, and IVC rather than to the SPOM systems
itself.

Specifically, we found the genes B2M, RGS2, AKR1B1,
G6PD, HSPD1, HIF1A, PAF1, TXN, SOD1, and IFITM3 to
be upregulated and SLC2A5 and ACTB to be downregulated in
the UCPH-system blastocysts as compared with SPOM.
G6PD encodes the main rate-limiting enzyme regulating the
use of glucose by the pentose-phosphate pathway (PPP),
which is known to increase significantly from morulae to
blastocyst stage [48]. The main intracellular reductant

SPOM Con-IVM

SPOM

SPOM

SPOM

SPOM

SPOM

SPOM

SPOM

SPOM SPOM

SPOM

SPOMCon-IVM Con-IVM Con-IVM
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Fig. 4 Differential gene expression of blastocysts produced in vitro from
COCs submitted to simulated-physiological oocyte maturation (SPOM)
system or conventional in vitro maturation (Con-IVM) using the UCPH-
System (performed at University of Copenhagen). Data represent the

fold-change of level of expression relative to housekeeping genes.
Results are least-squares means + SEM. The effect of treatment was
P ≤ 0.05 for all genes in the figure
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generated by the PPP reaction is NADPH, which, together
with super oxide (SOD) enzymes, has an important action in
embryo protection from free oxygen radicals [49]. As the
mRNA abundance of both G6PD and SOD1 were increased
in Con-IVM blastocysts (UCPH-system), it may imply a bet-
ter use of the metabolic machinery for these blastocysts. On
the other hand, the expression of SLC2A5, encoding for en-
zymes of the glycolysis pathway, shown to be important for
embryo development [50], was increased for the SPOM blas-
tocysts, potentially indicating the use of a different metabolic
pathway for the embryonic energy consumption.

In an elegant work, Ghanem et al. [51] investigated the
transcript signatures of biopsies from in vivo- and in vitro-
derived embryos with developmental competence to term. In
that work, the downregulation of B2M, RGS2, and TXN, as
observed for SPOMblastocysts in our experiment, was related
to pregnancy loss. On the other hand, the upregulation of
AKR1B1 and HSPD1 and the downregulation of ACTB, as
observed in Con-IVM blastocysts (UCPH-system) were
found in embryos resulting in no pregnancy [51].

Embryos lacking PAF1 complex expression are develop-
mentally disabled [52], therefore crucial for embryonic com-
petence. In our experiments, SPOM blastocysts presented
downregulation of PAF1. Another important marker is
IFITM3, which is present in the ICM of bovine blastocysts
[53]. IFITM3 was also downregulated in SPOM blastocysts,
suggesting compromised embryonic competence as compared
to Con-IVM embryos (UCPH-System).

The gene expression of hypoxia-inducible factors (HIFs) is
known to be affected by different oxygen concentrations [54];
however, this experiment was conducted under low oxygen
tension as a whole. HIF1A also contributes to the expression
of the main enzyme of anaerobic conversion of pyruvate into
lactate, lactate dehydrogenase A [55, 56], that promotes an-
aerobic glycolysis in tumor cells [57, 58] and was previously
found to be downregulated in bovine ICM cells [59]. In our
experiments, HIF1A was downregulated in SPOM blasto-
cysts, suggesting that different metabolic pathways might be
operating in SPOM when compared to Con-IVM blastocysts.

We have shown recently that treating COCs with cAMP
modulators prior to IVM alters the lipid composition of ma-
ture oocytes and embryos [60]. In the present work, when
challenging the SPOM-system with the Con-IVM AU-sys-
tem, we found that three transcripts related to lipid metabolism
within the cell, ELOVL5, SCD, and ACSL6, were downregu-
lated in blastocysts from SPOM group. Triglycerides (TAG)
are stored as lipid droplets in the cytoplasm of mammalian
cells and work as a source of energy for the early embryonic
development [61, 62]. Family members of SCD, ACSLs and
ELOVLs, seem to be involved in the lipid metabolism in
bovine embryos. The ACSL family induces long-chain fatty
acids to generate long-chain acyl-CoA resulting in the synthe-
sis of various lipid species including TAG [63]. The ELOVL

family acts on the generation of very long chains of fatty acids
[64] and SCD catalyzes important pathways of monounsatu-
rated fatty acids [65]. It is possible that the differential regu-
lation in genes related to the lipid metabolism have contribut-
ed to the presence of lipid droplets observed in the TE cells of
blastocysts produced from SPOM oocytes.

Conclusion

In summary, oocytes submitted to simulated-physiological oo-
cyte maturation system present qualitative and quantitative
ultrastructural deviations with respect to abundance (SER, mi-
tochondria, vesicles, and cortical granules) and localization
(lipid droplets, vesicles, and SER) of organelles and inclu-
sions. Moreover, embryos that have developed to excellent
blastocysts presented further subtle deviations in ultrastructure
affecting intercellular junctions and ribosome localization.
Finally, we observed aberrant gene expression profile in
SPOM blastocysts.
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