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Can peri-ovulatory putrescine supplementation improve egg quality
in older infertile women?
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Abstract
The aging-related decline in fertility is an increasingly pressing medical and economic issue in modern society where
women are delaying family building. Increasingly sophisticated, costly, and often increasingly invasive, assisted repro-
ductive clinical protocols and laboratory technologies (ART) have helped many older women achieve their reproductive
goals. Current ART procedures have not been able to address the fundamental problem of oocyte aging, the increased rate
of egg aneuploidy, and the decline of developmental potential of the eggs. Oocyte maturation, which is triggered by
luteinizing hormone (LH) in vivo or by injection of human chorionic gonadotropin (hCG) in an in vitro fertilization
(IVF) clinic, is the critical stage at which the majority of egg aneuploidies arise and when much of an egg’s developmental
potential is established. Our proposed strategy focuses on improving egg quality in older women by restoring a robust
oocyte maturation process. We have identified putrescine deficiency as one of the causes of poor egg quality in an aged
mouse model. Putrescine is a biogenic polyamine naturally produced in peri-ovulatory ovaries. Peri-ovulatory putrescine
supplementation has reduced egg aneuploidy, improved embryo quality, and reduced miscarriage rates in aged mice. In
this paper, we review the literature on putrescine, its occurrence and physiology in living organisms, and its unique role in
oocyte maturation. Preliminary human data demonstrates that there is a maternal aging-related deficiency in ovarian
ornithine decarboxylase (ODC), the enzyme responsible for putrescine production. We argue that peri-ovulatory putrescine
supplementation holds great promise as a natural and effective therapy for infertility in women of advanced maternal age,
applicable in natural conception and in combination with current ART therapies.
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Abbreviations
AZ Antizyme
COC Cumulus-oocyte complex
dcSAM Decarboxylased SAM
DFMO D,L-α-Difluoromethylornithine
GABA Gamma-aminobutyric acid
GV Germinal vesicle or oocyte nucleus
hCG Human chorionic gonadotropin
IVM Oocyte in vitro maturation
IVF In vitro fertilization
LH Luteinizing hormone
ODC Ornithine decarboxylase
ROS Reactive oxygen species
PDE3A Phosphodiesterase 3A
SAM S-adenosylmethionine
SAM-DC SAM decarboxylase
SSAT Spermidine/spermine N1 acetyltransferase
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Introduction

Immature mammalian oocytes are maintained in meiotic
prophase I by intricate cell-cell contact and multiple sig-
naling pathways, ultimately leading to sustained and high
levels of cAMP in the oocytes (Fig. 1). The LH surge (or
the injection of an ovulatory dose of hCG) triggers multi-
ple signaling pathways, leading to reduction of cAMP and
oocyte maturation. Oocyte maturation determines egg
quality in two critical ways. First, regardless of maternal
age, aneuploidy is the result of a chromosome mis-
segregation in meiosis, especially premature separation of
sister chromatids in meiosis I during oocyte maturation [2,
52, 58, 63]. Second, oocyte maturation is critical for

determining the cytoplasmic capacity to support embryon-
ic development [37]. This aspect of oocyte maturation is
often referred to as cytoplasmic maturation [14]. The crit-
ical determinants of oocyte maturation ensuring normal
developmental potential of the eggs have been published
in many recent and excellent reviews [10, 35]. However,
no clear candidate therapy has yet emerged.

It has been known for almost five decades that the LH surge
also triggers a brief but robust expression of ornithine decar-
boxylase (ODC) and production of putrescine in the ovaries of
several mammalian and non-mammalian species (Fig. 1).
More recent studies have demonstrated that aging mouse ova-
ries exhibit peri-ovulatory ODC deficiency [58], and putres-
cine supplementation greatly improves egg quality and repro-
ductive efficiency in aged mice [32, 57]. Peri-ovulatory pu-
trescine supplementation could be the Bfountain of youth^ for
aged human eggs.

ODC and putrescine

ODC and cellular polyamines

ODC catalyzes decarboxylation of L-ornithine, producing pu-
trescine (Fig. 2). Putrescine is the precursor for spermidine (a
triamine), which serves as the precursor for spermine (a
tetraamine) [18]. This synthetic pathway, from putrescine to
spermine, is essential in all eukaryotic cells (see below).
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Fig. 1 Mammalian oocyte meiosis arrest and oocyte maturation. A
section of antral follicle including oocyte (yellow), cumulus cells
(brown), and mural granulosa cells (green). Prophase maintenance
signaling pathways are depicted in black and LH/hCG-induced
signaling in red. Oocyte cAMP is produced by constitutively active Gs-
coupled receptors GPR3 and GPR12. Cyclic AMP-specific
phosphodiesterase, PDE3A, is kept inactive by cGMP, produced by a
paracrine signaling involving mural granulosa cell-derived natriuretic
peptide precursor type C (NPPC) and its receptor NPR2 (which is a
guanylyl cyclase) and transported to the enclosed oocyte through gap
junctions. Luteinizing hormone (LH) activates LH receptor in mural
granulosa cells leading to the expression of several EGF-like peptides,
which in turn cause rapid inactivation of NPR2 ending cGMP production.
The lack of cGMP releases PDE3A to hydrolyze cAMP in the oocytes.
LH surge also inhibits NPPC expression, thus shutting down cGMP
production permanently. LH surge also triggers a brief (lasting several
hours in rats and mice) and robust expression of ornithine decarboxylase
(ODC) in all three components of the antral follicles [3, 58], producing
high levels of putrescine in the ovaries
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Fig. 2 Cellular polyamine pathways. ODC catalyzes decarboxylation of
L-ornithine to produce putrescine [NH2(CH2)4NH2]. Two other enzymes
are involved in spermidine (spd) synthesis. First, S-adenosylmethionine
decarboxylase (SAM-DC) converts SAM to decarboxylated SAM
(dcSAM). Spermidine (spm) synthase then transfers an amino propyl
radical (NH2-CH2-CH2-CH2-) from dcSAM to putrescine to produce
spermidine [NH2(CH2)3NH(CH2)4NH2]. Similarly, spermine synthase
transfers an amino propyl radical from dcSAM to spermidine to
produce spermine [NH2(CH2)3NH(CH2)4NH-(CH2)3NH2]. In the
catabolic pathway, spermidine/spermine N1-acetyltransferase (SSAT)
first converts spermine to N1, N12-diacetylspermine, which is then
oxidized to spermidine by polyamine oxidase (PAO). Similarly, SSAT
converts spermidine to N1-acetylspermidine, which is then oxidized to
putrescine by PAO. The two rate-limiting enzymes in (forward)
polyamine synthesis are in bold
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A catabolic pathway also exits to convert spermine to
spermidine, and spermidine to putrescine (Fig. 2) [18]. The
physiological significance of this back-conversion is not clear,
since deletion of SSAT in mice results in no changes in poly-
amine levels, nor any phenotypic abnormalities [41].
Interestingly, putrescine is undetectable in fruit fly but it is
present in high concentration (100 nmol/g; comparable to
therapeutic putrescine concentrations in the ovaries, Fig. 4)
in flies fed with spermidine [12]. This raises the question if
putrescine has a role in promoting longevity.

ODC is the rate-limiting enzyme in polyamine synthesis
(Fig. 2). In most tissues, ODC activity is between 1/10 and
1/100 that of spermidine synthase or spermine synthase [51].
This is correlated with the typically very low-putrescine levels
in most tissues, compared to the much higher (typically > 100-
fold) levels of spermidine and spermine [42, 60]. Another
factor contributing to this disparity is the short half-life of
putrescine (e.g., 2 h in regenerating rat liver), as opposed to
that of spermidine (4 days) [9]. Similarly, ODC is among the
eukaryotic proteins with the shortest in-cell half-life [47].
ODC is degraded by proteasome in a fashion that is indepen-
dent of polyubiquitination [39] but, instead, is facilitated by
the cellular inhibitor of ODC, ODC antizyme (AZ) [64]. AZ
synthesis is stimulated by high concentrations of polyamines,
providing a feedback mechanism to inhibit and degrade ODC.
Adding to this complexity, antizyme inhibitor is a catalytically
inactive ODC homolog which binds AZ tighter than ODC,
hence releasing ODC from AZ inhibition [46].

ODC is an essential gene from yeast [53] to mammals [48],
indicating that polyamines are required for cell proliferation
[18]. Consistent with this role, during mouse embryogenesis
the expression of ODC and SAM-DC increases sharply after
implantation (E6-E8), with corresponding increase of putres-
cine and spermidine but not spermine [16]. Similar increase of
putrescine and spermidine is observed during emergence of
the embryos after oligate diapause in minks [29].
A d m i n i s t e r i n g a n O D C i n h i b i t o r D , L - α -
difluoromethylornithine [DFMO [36]] during E5-E8 prevents
putrescine and spermidine increase and causes immediate de-
velopmental arrest and embryo death [16]. DFMO treatment
of emerging mink embryos after obligate diapause similarly
reduces the two polyamines and causes embryo rearrest [29].

A unique role of putrescine in animal reproduction
and its deficiency in aging ovaries

Putrescine appears to have a unique role in the peri-ovulatory
period of animal reproduction. It was first reported in 1971
that rat ovaries exhibit a transient rise of ODC activity in the
evening of proestrus day, peaking at levels greater than tenfold
of the rest of the 4-day estrus cycle [27]. The ODC activity rise
is dependent on LH or hCG, and requires transcription and
translation [26, 27, 34]. In contrast, ovarian SAM-DC activity

remains low and unchanged [34]. Correspondingly, the peri-
ovulatory ovaries produce high levels of putrescine (250–
500 nmol/g), with no change in spermidine and spermine con-
centrations [17, 57], in contrast to the post-implantation uterus
where both ODC and SAM-DC increase resulting in a modest
putrescine increase (to ~ 100 nmol/g) and a robust increase in
spermidine [16].

Similar hCG-dependent ODC activity increase have been
found in mice [3, 58] and hamster [49]. In mouse ovaries, a
significant increase in putrescine is observed between 2 and
4 h afte hCG injection, peaking 5 h post-hCG, and followed
by a slower decrease such that at time of ovulation (14-h post-
hCG), putrescine levels are still higher than before the hCG
injection [57]. Within the ovaries, ODC activity is found
mainly in antral follicles [23], both in the granulosa cells (mu-
ral granulosa and cumulus cells) and in the oocytes [3, 58].

It has been suggested that the transient rise of ODC and
putrescine in the ovaries is required for luteinization of the
granulosa cells, since mice treated with DFMO contain cor-
pora lutea with fewer blood vessels and produce less proges-
terone [3]. Similar DFMO treatment in rats [17] and in mice
(Y. Tao, unpublished) do not influence the number of implan-
tation sites. Furthermore, oocyte maturation in Xenopus
laevis, a species lacking luteinzation or implantation, is also
accompanied by significant and transient rise in ODC activity
and putrescine in the oocytes [56, 62, 65]. InXenopus oocytes,
ODC activity increase is the result of protein translation fol-
lowing cytoplasmic polyadenylation of ODC mRNA [65].
When the translation is inhibited via ODC-specific antisense
morpholino oligos, the maturing oocytes exhibit elevated
levels of reactive oxygen species (ROS) followed by clear
apoptotic events in mature eggs: release of mitochondrial cy-
tochrome c, elevated caspase activity, and disruption of meta-
phase II spindle [65]. Putrescine supplementation in the oo-
cyte maturation medium or injection of catalase into the oo-
cytes suppresses the excess ROS and prevents apoptosis [65].

In mice, the peri-ovulatory ODC/putrescine rise is concur-
rent with oocyte maturation in vivo [13]. Administration of
DFMO during ovulation diminishes ovarian ODC activity [3,
58], preventing putrescine accumulation without affecting the
levels of spermidine and spermine [57]. DFMO does not af-
fect ovulation [58] in mice, similarly to rats [17]. However,
DFMO increases aneuploidy rates in ovulated eggs from 1.3
to 7.7% [58]. Complete inhibition of ODC results in only
modest (7.7%) aneuploidy rate, with the majority harboring
a single chromosome error [58], suggesting that the effect of
putrescine on chromosome segregation might be indirect (i.e.,
unlike disruption of microtubules or preventing cohesin deg-
radation). No significant difference was observed between
control and DFMO-treated young mice in pregnancy rates or
the number of implantations per pregnancy (Tao et al., unpub-
lished results) consistent with the finding in rats [17]. The lack
of acute reproductive failure in peri-ovulatory ODC
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deficiency in young rats and mice suggest the presence of
compensatory mechanisms in young animals.

Aged mice exhibit significantly reduced levels of peri-
ovulatory ODC [58] and putrescine, but unaltered spermidine
and spermine [57]. A combination of peri-ovulatory putrescine
supplementation in mouse drinking water and in IVM (in vitro
maturation) medium reduces egg aneuploidies of aged oocytes
[58]. The reproductive benefit of peri-ovulatory putrescine sup-
plementation in aged mice is remarkable. Supplementation in-
creases blastocyst cell numbers, reduces embryo resorption
rates, and doubles the number of live pups [57]. Putrescine
shows no toxicity to mothers and fetuses even if the supple-
mentation is extended beyond peri-ovulatory period; mice born
after peri-ovulatory putrescine supplementation grow up nor-
mal and fertile [57]. These studies suggest that putrescine sup-
plementation in aged mice reduces egg aneuploidy and, more
importantly, improves the developmental potential of the eggs.

Since rodent ovaries exhibit elevated ODC activity and pu-
trescine levels at the time of ovulation [17, 57], we sought to
determine if surplus granulosa cells from IVF patients at the
time of egg retrieval (~ 36 h after hCG injection) similarly ex-
hibit ODC activity. Human granulosa cells were donated by
IVF patients at Ottawa Fertility Center with written informed
consent. Controlled ovarian stimulation was performed using
either a long pituitary down-regulation protocol with GnRH
agonist Suprefact (Sanofi, Canada), Lupron or Depo Lupron
(AbbVie, Canada) or a short GnRH antagonist protocol with
Cetrotide (EMDSerono, Canada). The follicles were stimulated
using recFSH (EMD Serono, Canada) or recFSH and recLH
(Luveris, EMD Serono, Canada). Final follicular maturation
was triggered with recHCG Ovidrel (EMD Serono, Canada)
when at least three follicles reached > 17 mm in diameter.
Cumulus oocyte complexes were retrieved transvaginal using
a single lumen ultrasound-guided needle (Cook, Australia) at
36 h post HCG. Following ovum pick-up, granulosa cells (cell
layers and big chunks) were collected from all dishes from the
same patient and transfer to a new dish containing 5 mL of
buffered 0.9% saline solution. The pooled cells were transferred
to an Eppendorf tube containing 1 mL of buffered saline solu-
tion. The cells were collected by low-speed centrifugation
(3000×g for 5min) as a pellet and flash frozen in liquid nitrogen
within 1 hour of follicle aspiration. Cell extracts were prepared
and assayed for ODC activity according to Tao and Liu [58].
These experiments indicated that human granulosa cells exhibit
ODC activity, which is inhibited by DFMO (Fig. 3a, b).
Furthermore, the levels of granulosa cell ODC activity appears
to inversely correlate with donor age (Fig. 3a). These results
support the notion that advanced maternal age is associated
with physiologic ovarian putrescine deficiency in humans.
Similarly, granulosa cells isolated from peri-ovulatory young
and old rhesus monkeys exhibited ODC activity (Fig. 3b).
Further work will be required to determine if aging-related re-
duction of ovarian ODC activity also occurs in monkeys.

A potential role for exogenous putrescine
in assisted reproduction?

Natural sources for putrescine

Putrescine is produced by the decarboxylation of the non-protein
amino acid L-ornithine (Fig. 2). Despite its name, putrescine is
ubiquitous in living organisms. Putrescine is present inmost food
[42] and, more importantly, because many gut bacteria produce a
large amount of putrescine, can be reabsorbed, and distributed to
the rest of the body [46]. The highest concentration of putrescine
is found in fresh green peppermeasuring ~ 2000 nmol per g [42],
compared to 250-500nmol/g in peri-ovulatory ovaries [17,57].
Interestingly, high putrescine concentrations in green pepper and
other fresh food (orange, mango and zucchini) are thought to
be important for keeping food fresh during storage,
likley by enhancing cellular antioxidant mechanisms [Wang Y,
Zhou F, Zuo J, Zheng Q, Gao L, Jiang A. Pre-storage treatment
ofmechanically-injured green pepper (Capsium annuumL.) fruit
wi th pu t resc ine reduces adve rse phys io log ica l
responses. Postharvent Biol Technol 2018;145:239-246; and ref-
erences therein], similarly to the mechanism found in Xenopus
oocytes [65]. Putrescine has very low toxicity, with LD50 in rats
being 2000 mg/kg [59]. By comparison, the estimated therapeu-
tic dose of putrescine is 10 mg/kg by subcutaneous injection,
increasing ovarian putrescine by ~ 130 nmol/g (Fig. 4), similar
to the putrescine increase found in the ovaries of older mice in
our peri-ovulatory putrescine supplementation experiments [57].

In our experiments, significant putrescine supplementation
could not be achieved by consuming a putrescine-rich food
such as green pepper. Putrescine in fresh green pepper appears
to be poorly bioavailable and/or poorly absorbed in the gut (Y.
Tao, unpublished).

Putrescine supplementation in other systems

In addition to our work demonstrating that putrescine supple-
mentation improves egg quality of aged mice [31, 57, 58],
putrescine supplementation has been applied effectively in
many other animal and cell models. Most of these likely re-
lates to the function of ODC and putrescine in promoting cell
proliferation [16, 48]. For example, putrescine supplementa-
tion (1mM) in vitro reactivates mink blastocysts from obligate
embryonic diapause [15]. Similarly, putrescine supplementa-
tion (200 μM) in vitro rescues blastocyst development in
mouse embryos deficient in the pluripotent Mga transcription
factor [61]. Putrescine (25 μM) stimulates protein translation
and cell proliferation in porcine trophectoderm cells in vitro
[28]. Putrescine supplementation (0.1%) in drinking water
promotes neurogenesis in adult insects [8]. Simultaneous pu-
trescine supplementation (100 mM solution delivered through
controlled release Alzet minipumps) improves the outcome of
Schwann cell implantation in spinal cord–injured rats [24].
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Putrescine supplementation of milk-soy diet (25 g per kg of
food) has been used for newborn calves and piglets to help
small intestinal mucosal growth and nutrient uptake [19, 20].

Brain injuries followed by ischemia and epileptic seizures
are accompanied by increase of ODC activity and putrescine
in the brain [38, 45]. This prompted studies which demonstrat-
ed that putrescine supplementation protected animals from
chemically and electrically induced seizures. It remains uncer-
tain if the neuro-protective role of putrescine is due to its
conversion to GABA [4, 22].

Peri-ovulatory putrescine supplementation
in humans

Our animal studies indicate that exogenous-administered pu-
trescine has a half-life of less than 1 h in the blood and less
than 2 h in the ovaries [57]. In mouse experiments, putrescine
was given in mouse drinking water providing continuous sup-
plementation owing to the almost constant water intake by lab
mice, especially during the night (100–200 licks/30 min) [25]
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when the natural putrescine concentration rises in the ovaries
occurs [17, 31].

Given the transient rise of putrescine during ovulation [17,
27, 57], putrescine supplementation needs to take place only
between the start of the LH surge and the end of ovulation.
This period lasts about 14 h in mice and 36 h in humans. In the
fertility clinic, the timing of administration could be conve-
niently accomplished since the start of LH surge is replaced
with injection of a bolus hCG or GnRH agonist. Putrescine
supplementation would be terminated at the time of egg re-
trieval 36 h later. Based on a review of the literature, there
have been no studies of pure putrescine supplementation in
humans and no pharmacokinetic data are available in humans.
Given the short half-life of putrescine in live animals [9, 57], it
is likely that multiple injections will be required over the 36-h
period to maintain elevated human ovarian putrescine levels.
Alternatively, a controlled release formulation could be devel-
oped to deliver constant putrescine in the circulation.

In natural conception, the precise timing of ovulation is more
difficult to pinpoint. Fortunately, prolonged putrescine supple-
mentation for several days is unlikely to have a negative impact.
An earlier mouse study [48] has suggested that the presence of
0.5–1 mM putrescine in the drinking water after placentation is
harmful to pregnancy. They attribute toxicity to the possible
oxidation of putrescine by placenta-resident diamine oxidase
[7] to produce excess ROS [48]. In our laboratory, we did not
find similar toxicity in mouse experiments, even with higher
putrescine concentrations in mouse drinking water over the en-
tire gestational period [57]. In the proposed peri-ovulatory pu-
trescine supplementation therapy, fetal toxicity is unlikely given
the gap of at least 1 week between ovulation and the beginning
of placentation and diamine oxidase expression (in mice) [30]
and the short-half-life of exogenous putrescine [9, 57].

Putrescine supplementation could be used to facilitate in
IVM of oocytes in the fertility clinic [11]. In a proof of principle
studywe tested the ability of putrescine supplementation during
IVM to improve the developmental potential of aged mouse
oocytes. Cumulus-oocyte complexes (COCs) of aged mice
were subjected to IVM with or without the addition of
0.5 mM putrescine. This concentration is based on the physio-
logical concentration we have observed (500 nmol putrescine/g
ovarian tissues) [31, 57]. The mature eggs were fertilized
in vitro followed by in vitro culture to blastocyst stage.
Analyses of the blastocyst embryos indicated that the putrescine
group exhibited significantly better embryo qualities: higher
proportion exhibiting top-grade morphology, greater total cell
number, and higher proportion having octamer-binding tran-
scription factor 4 (OCT4)-positive inner cell mass [31].

IVM is a laboratory technique for ART that has been advo-
cated for patients with a high-ovarian reserve andwho are at high
risk of severe hyperstimulation syndrome [43] following gonad-
otropin stimulation. IVM use is controversial and of variable
clinical efficacy. It has been advocated for patients with

polycystic ovaries or polycystic ovarian syndrome [21, 44]. In
some clinics, including at UVZBrussel, germinal vesicle (GV)
stage oocytes are aspirated from patients not previously injected
with hCG and the entire oocyte maturation, from GV to meta-
phase II, is carried out in vitro. This approach [11] is physiolog-
ically identical to IVMpractice inmice [32] and domestic animal
species [6] and may likely benefit from putrescine
supplementation.

Concluding remarks

There are compelling reasons to believe that peri-ovulatory
putrescine supplementation will prove to be a successful ther-
apy for older infertile women. First, it corrects aging-related
ODC deficiency in peri-ovulatory ovaries. Secondly, it targets
oocyte maturation with a very brief intervention (at most
days), in contrast to other proposed interventions (such as
Co-enzyme Q10, omega-3 fatty acids, calorie-restriction,
and antioxidant) which are mid- to long-term in nature, and
are not necessarily specific to fertility [5, 33, 40, 54]. Thirdly,
it is equally applicable in IVF patients and in natural concep-
tion. Finally, the ubiquitous nature of putrescine in living or-
ganisms, its chemical stability, and its rapid distribution and
clearance are attractive features in its consideration as a ther-
apeutic intervention to improve live birthrates in older wom-
en, especially those over the age of 37 [1].
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