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Abstract
Bacteroides ovatus is a member of the human gut microbiota. The importance of this microbial consortium involves the deg-
radation of complex dietary glycans mainly conferred by glycoside hydrolases. In this study we focus on one such catabolic 
glycoside hydrolase from B. ovatus. The enzyme, termed BoMan26A, is a β-mannanase that takes part in the hydrolytic 
degradation of galactomannans. The crystal structure of BoMan26A has previously been determined to reveal a TIM-barrel 
like fold, but the relation between the protein structure and the mode of substrate processing has not yet been studied. Here 
we report residue-specific assignments for 95% of the 344 backbone amides of BoMan26A. The assignments form the basis 
for future studies of the relationship between substrate interactions and protein dynamics. In particular, the potential role of 
loops adjacent to glycan binding sites is of interest for such studies.
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Biological context

The β-mannanase BoMan26A is a glycoside hydrolase 
(GH) involved in dietary glycan hydrolysis by the com-
mon human gut bacterium Bacteroides ovatus (Bagenholm 
et al. 2017). The human gut microbiota has an important 
influence on our health including being implicated in vari-
ous diseases and drug efficiency, an example being tumor 
immunotherapy (Nicholson et al. 2012; Leung et al. 2016; 
Routy et al. 2018). Bacteroidetes is one of the dominant 
phyla within the gut (Eckburg et al. 2005) with members 
recognized for having the capacity to process and utilize 
complex dietary glycans (Grondin et al. 2017). The initial 

attack and degradation of such glycans generally involves 
GHs. Members of Bacteroidetes often possess gene clusters 
known as polysaccharide utilization loci (PULs) which in 
concert encode the proteins needed for the utilization of a 
certain polymeric glycan (Martens et al. 2009; Grondin et al. 
2017). These PUL-encoded proteins include GHs, glycan-
binding proteins, transporters and regulators. PUL-encoded 
proteins of several Bacteroides species have been studied, 
see recent reviews by Grondin et al. (2017) and Ndeh and 
Gilbert (2018).

Several hemicellulose-related PULs of the common Gram 
negative human gut bacterium Bacteriodes ovatus were pre-
viously discovered (Martens et al. 2011). One of these PULs 
(BoManPUL) was shown to be essential for the utilization of 
galactomannan (Bagenholm et al. 2017) which is a dietary 
β-mannan, recognized to be fermented in the human colon 
(Nyman et al. 1986). It has been shown that the BoManPUL 
encodes GHs needed for the hydrolysis of galactomannan, 
i.e. two β-mannanases from family GH26 (BoMan26A, 
BoMan26B) and a family GH36 α-galactosidase (Reddy 
et al. 2016; Bagenholm et al. 2017). A model for galacto-
mannan degradation and utilization by B. ovatus was sug-
gested: BoMan26B is attached to the outer membrane and 
makes the initial attack on galactomannan and the generated 
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oligosaccharides are processed in the periplasm involving 
the β-mannanase BoMan26A (Bagenholm et al. 2017).

The determination of the crystal structure of the periplas-
mic β-mannanase BoMan26A shed light on structural features 
that may be involved in the governance of mode of attack and 
product formation for this enzyme (Bagenholm et al. 2017). 
As expected for GH26, which is part of the large GHA-clan, 
BoMan26A has a (β/α)8-barrel fold and two conserved catalytic 
glutamates (nucleophile and acid/base) involved in the retaining 
double-displacement mechanism, as investigated in detail for 
other GH26 β-mannanases (Bolam et al. 1996; Ducros et al. 
2002). GH26 β-mannanases usually have an open active site 
cleft into which the β-mannan chain binds and is hydrolyzed 
in an endo-wise fashion (Le Nours et al. 2005; Gilbert et al. 
2008). The substrate binding is conferred by subsites, each 
interacting with one substrate backbone monosaccharide unit. 
For each hydrolytic event, the β-mannosidic bond connecting 
the mono-sugars bound in subsites − 1 and + 1 is hydrolyzed. 
BoMan26A is unusual in that it has two loops (loop 2: G93-
S102 and loop 8: W323-S342) creating a narrow cleft beyond 
subsite − 2 (Bagenholm et al. 2017). The equivalent of loop 2 
is also present in the exo-acting Cellvibrio japonicus manno-
biohydrolase CjMan26C (Cartmell et al. 2008). For CjMan26C 
loop 2 is suggested to confer an exo-mode of attack because it 
excludes saccharide interactions beyond subsite − 2. However, 
for BoMan26A the situation is different, since biochemical 
data suggest that the enzyme is able to attack substrate endo-
wise and for this can bind substrate also involving a − 3 subsite 
(Bagenholm et al. 2017). However, current knowledge on how 
a saccharide would bind or be accommodated in a − 3 sub-
site and beyond is lacking, ligand co-crystallization has so far 
been unsuccessful. Potential flexibility of loop 2 and 8 could 
be a contributing factor to allow saccharide accommodation in 
a − 3 subsite and beyond. Although the B-factor of loop 8 is 
somewhat higher (1.5 times) than the average for crystallized 
BoMan26A (Bagenholm et al. 2017), the potential occurrence 
of such flexibility has not yet been analyzed.

In order to advance the analyses of processes involved in 
saccharide interaction for BoMan26A using NMR spectros-
copy we here present backbone 1H, 13C, and 15N resonance 
assignments of BoMan26A. The residue-specific assign-
ments of BoMan26A form the basis for in-depth studies of 
BoMan26A function, including its specificity in binding 
various carbohydrate substrates, and the relation between 
conformational dynamics, ligand binding, and catalysis.

Methods and experiments

Protein expression and purification

A construct coding for residues 23-366 (numbered 13-356 
in the current work) of BoMan26A (Bagenholm et al. 2017) 

inserted for expression in pET-28b(+) was ordered from 
GenScript (Leiden, Netherlands). The sequence coding for 
the first 22 amino acids was omitted due the presence of a 
predicted site for signal peptidase I (Bagenholm et al. 2017). 
The sequence coding for an N-terminal His-tag and a TEV 
protease cleavage site (12 residues) was included, in total 
resulting in a construct coding for a polypeptide being 356 
residues long with the BoMan26A amino acid sequence 
starting from residue 13. The construct was transformed into 
One Shot™ BL21(DE3) Chemically Competent E. coli (Inv-
itrogen, Thermo Fisher Scientific). The transformed cells 
were inoculated in 10 mL minimal media (1 mM  MgSO4, 
30 µg/mL kanamycin, 0.4 mM  CaCl2, 1 mg/L thiamine, 
1 mg/L  FeCl3, 1 g/L  NH4Cl, 0.5 g/L NaCl, 3 g/L  KH2PO4, 
6 g/L  Na2HPO4 and 4 g/L glucose in  H2O) and grown at 
37 °C, 200 rpm overnight. 0.5 mL overnight culture was 
used to inoculate another 10 mL of minimal media (as 
above, except in 90%  D2O and using  [15N]-NH4Cl), which 
was grown over night in the same conditions. 0.5 mL of this 
culture was used to inoculate 20 mL of minimal media (as 
before, but with 100%  D2O,  [15N]-NH4Cl and  [13C]-glucose) 
and grown over night in the same conditions. The cells from 
this culture were pelleted by centrifugation and resuspended 
in 1 mL supernatant. 0.5 mL of this suspension was added 
to 0.5 L minimal media (with 100%  D2O,  [15N]-NH4Cl 
and  [13C]-glucose) and grown to an  OD600 of about 0.7 
at 37 °C, 150 rpm. When the correct  OD600 was reached, 
protein expression was induced by adding isopropyl β-d-
1-thiogalactopyranoside (IPTG) to a final concentration of 
0.5 mM and the culture incubated for 16 h at 25 °C, 150 rpm. 
The cells were harvested by centrifugation and the resulting 
pellet stored at − 20 °C.

For purification the pellet was thawed on ice and dis-
solved in 35 mL lysis buffer (50 mM  NaH2PO4, 0.3 M NaCl 
and 10 mM imidazole, pH 8) with 4 EDTA-free cOmplete 
protease inhibitor tablets (Roche Applied Science, Basel, 
Switzerland). The cells were lysed by a French pressure cell 
and centrifuged. The resulting supernatant was incubated at 
4 °C for 1 h with 1.5 mL nickel-nitrilotriacetic acid slurry 
(Qiagen, Hilden, Germany) with slow head over tail rotation 
before being poured in to a gravity flow column, still at 4 °C. 
The resulting gel bed was drained and washed three times 
with 4 mL wash buffer (as lysis buffer, but with 20 mM imi-
dazole) before eluting with elution buffer (as lysis buffer, but 
with 250 mM imidazole).

Protein concentration of the eluted fractions was meas-
ured by absorbance at 280 nm with a Nanodrop ND-1000 
spectrophotometer using the theoretical extinction coefficient 
89,890 M−1 cm−1 and the molecular weight 45,741 Da, cal-
culated using the ProtParam ExPASy server (Gasteiger et al. 
2005) and Biomolecular NMR tools from UC San Diego, 
USA: http://sopnm r.ucsd.edu/biomo l-tools .htm, respectively. 
After assessment with SDS-PAGE (Mini-PROTEAN® 

http://sopnmr.ucsd.edu/biomol-tools.htm


215Backbone 1H, 13C, and 15N resonance assignments of BoMan26A, a β-mannanase of the glycoside…

1 3

TGX™ 12% precast gels, Bio-Rad) the relevant fractions 
were pooled, concentrated and the buffer changed to lysis 
buffer using 10 kDa molecular mass cutoff membrane fil-
tration tubes (Vivaspin 20, Sartorius, Little Chalfont, UK). 
8 M urea in lysis buffer was added to a final concentration 
of 6 M urea and incubated at room temperature with slow 
head over tail rotation for 1 h. This was then transferred to a 
3500 Da molecular mass cutoff Spectra/Por® dialysis mem-
brane (Spectrum Labs, Repligen, Waltham, Massachusetts, 
USA) and dialysed against 50 mM MES pH 6.5 at room 
temperature for 2 h. The dialysis solution was changed to 
fresh 50 mM MES pH 6.5 and the dialysis continued over 
night at 4 °C. The resulting protein solution was centrifuged 
to pellet any precipitate and the protein concentration meas-
ured using the Nanodrop instrument as described above. The 
activity of the enzyme was assayed using the 3,5-dinitro-
salicylic acid reducing sugar assay as described previously 
(Stalbrand et al. 1993; Bagenholm et al. 2017) (resulting in 
the expected specific activity) and concentrated as described 
above. A final SDS-PAGE was run as above, resulting in a 
single band. The protein was stored in 50 mM MES pH 6.5 
at 4 °C.

NMR sample preparation

NMR samples were prepared by adding  D2O for the field-
frequency lock and transferring the protein solution to a 
3 mm NMR tube. The final sample contained 0.21 mM 
2H/15N/13C labeled BoMan26A and 10%(v/v)  D2O in 45 mM 
MES pH 6.5.

NMR experiments

Backbone resonance assignments were carried out at 
25 °C on a Bruker Avance HDIII 800 MHz spectrometer, 
equipped with a TCI 800S7 H-C/N-D-03 Z probe. A series 
of TROSY-based three-dimensional 1H detected spectra 
were acquired with deuterium decoupling using targeted 
acquisition (Jaravine and Orekhov 2006) and random non-
uniform sampling varying between 12% and 50% complete-
ness in the different spectra. The spectra comprised HNCO 
(50%), HN(CO)CA (23%), HNCA (24%), HN(CO)CACB 
(13%), HNCACB (22%), and HN(CA)CO (12%), where the 
extent of sampling resulted from the targeted acquisition 

protocol. Data were processed using the compressed sensing 
IRLS algorithm in the mddnmr software (Kazimierczuk and 
Orekhov 2011; Mayzel et al. 2014). Sequential assignment 
was partly achieved using the targeted acquisition approach 
(Jaravine and Orekhov 2006; Jaravine et al. 2008; Isaksson 
et al. 2013), and complemented by manual inspection of 
data. Automated assignment was carried out using the FLYA 
module of CYANA (Schmidt and Guntert 2012). The results 
were verified and completed manually using the CCPNmr 
Analysis software package (Vranken et al. 2005).

Assignments and data deposition

BoMan26A yields high-quality and well-resolved spec-
tra (Fig. 1), as might be expected from its TIM-barrel like 
structure. The assignment procedure yielded chemical shift 
assignments for 95% of the H/N peaks in the TROSY spec-
trum. The assignment statistics are summarized in Table 1. 
Only 10 residues are missing assignments for all backbone 
chemical shifts. Eight of these residues are located close to 
the active site, specifically R314–K319, H322, and Y327, 
while W53 is located at the surface beyond loop 8 and E165 
is remote from the active site (Fig. 2). Notably, the continu-
ous stretch of missing residues, as well as H322 and Y327, 
are located in loop 8, which is located in the vicinity of the 
glycan-binding − 2 subsite (Bagenholm et al. 2017). Most 
likely, these residues are broadened beyond detection by 
exchange between alternative conformations, thereby sup-
porting the indication that loop flexibility might be related 
to the mode of glycan binding and attack and thus catalytic 
function of BoMan26A (Bagenholm et al. 2017). The pre-
sent assignments will serve as a starting point for future 
investigations of loop flexibility, substrate interactions, and 
for potentially extending the assignments by acquiring data 
over a range of temperatures and pH, or with different inhibi-
tors bound.

The assigned backbone 1H, 13C, and 15N chemical shifts 
of BoMan26A have been deposited in the Biological Mag-
netic Resonance Bank (BMRB) under accession code 27691. 
This work establishes a solid basis for solution studies of 
BoMan26A to monitor conformational and dynamical 
changes induced by various natural carbohydrate ligands, 
as well as synthetic analogs.
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Fig. 1  1H–15N TROSY 
spectrum of BoMan26A. The 
spectrum was acquired at a 
temperature of 25 °C and a 
static magnetic field strength 
of 18.8 T. a Overview of the 
full spectrum annotated with 
residue-specific resonance 
assignments. b Close-up view 
of the boxed region from a 
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Table 1  Assignment statistics

a Excluding the His-tag leader sequence (the first 9 residues)

Resonance Fraction assigned  resonancesa

N–H 315/333 Non-proline residues (95%)
C 319/348 (91%)
CA 333/348 (96%)
CB 301/315 (96%)
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