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Abstract

Triple negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes with 

poor prognosis. The purpose of this study is to better understand the molecular basis of TNBC as 

well as develop new therapeutic strategies. Our results demonstrate that HDAC9 is overexpressed 

in TNBC compared to non-TNBC cell lines and tissues. Furthermore, we show that HDAC9 

overexpression is inversely proportional with miR-206 expression levels. Subsequent HDAC9 

siRNA knockdown was then shown to restore miR-206 while also decreasing VEGF and MAPK3 

levels. This study highlights HDAC9 as a mediator of invasion and angiogenesis in TNBC cells 

through VEGF and MAPK3 by modulating miR-206 expression and suggests that selective 

inhibition of HDAC9 may be an efficient route for TNBC therapy.
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1. Introduction

Two classes of enzymes impact the acetylation state of histone proteins — histone 

acetyltransferases (HATs) and histone deacetylases (HDACs) [1, 2]. The HDAC family of 

enzymes is involved in various biological processes including transcriptional control, growth 

arrest, and cell death, particularly in tumor development and proliferation [3–7]. A number 

of HDAC inhibitors have been characterized that inhibit tumor growth in vitro and in vivo at 

amounts that have little to no toxicity [8–15]. The results from these studies and their 

proposed mechanisms indicate that HDACs are excellent targets for cancer treatment. 

However, clinical benefits of selective versus broad HDAC inhibitors are unknown and the 
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appropriateness of inhibitor may depend on tumor HDAC enzyme expression, enzyme 

selectivity of the inhibitor, and the desired effects. Although there are several published 

studies [16, 17] and numerous ongoing clinical trials involving HDAC inhibitors [18], very 

little is known about the roles of individual HDAC enzymes, and a formal assessment of 

HDAC enzyme expression is not routinely done. Emerging data suggests that the currently 

used HDAC inhibitors may differ significantly with regard to target selectivity. In addition, 

the expression of HDAC enzymes may vary considerably between normal and tumor tissues 

and likely between different phenotypes of tumor tissues. HDAC9 is thought to regulate 

gene expression through epigenetic modulation of the chromatin structure by catalyzing the 

deacetylation of histone proteins [19]. HDAC9 is also known to target non-histone proteins, 

such as forkhead box protein 3, ataxia telangiectasia group D-complementing protein 

(ATDC), and glioblastoma 1 protein, which are members of pathways implicated in 

carcinogenesis [20, 21]. More recently, aberrant HDAC9 expression has been observed in 

several types of cancers, including medulloblastoma [21], acute lymphoblastic leukemia 

[22], glioblastoma [23], osteosarcoma [24], and breast cancer [25]. HDAC9 has been shown 

to promote the growth of these tumors.

Triple negative breast cancer (TNBC) is one of the most clinically aggressive subtypes of 

breast cancer and is associated with overall poor prognosis [26–28]. TNBC lacks expression 

of the estrogen receptor (ER), progesterone receptor (PR) or human epidermal growth factor 

receptor 2 (her2/neu) [29, 30]; as a result, conventional therapies targeting each of these 

receptors proves to be unsuccessful in TNBC. Therefore, there is a major unmet need to 

better understand the molecular basis of this type of breast cancer as well as develop new 

therapeutic strategies. Emerging studies have highlighted microRNAs (miRNAs) as critical 

mediators of tumorigenesis, as their involvement have been well-established across several 

types of cancers, including breast, prostate, ovarian, and head and neck cancers [31–34]. 

Previous work from our group identified miR-206 as a critical tumor suppressor in TNBC 

and showed that downregulation of miR-206 lead to an upregulation of VEGF, MAPK3, and 

SOX9, crucial drivers of invasion and angiogenesis [35]. In this study, we demonstrate that 

overexpression of HDAC9 promotes the invasion and angiogenesis in TNBC by directly 

modulating miR-206 and provides a selective basis for TNBC treatment.

2. Materials and methods

2.1. Breast cancer cell lines and culture

The human breast cancer cell lines MDA-MB-231, MDA-MB-1739, HCC1395, MDA-

MB-361, and SKBR3, were grown in RPMI1640 medium containing 10% FBS, 100 U/ml of 

penicillin sodium, and 100 µg/ml of streptomycin sulfate at 37 oC in a humidified 

atmosphere of 5% CO2. MCF-7, an ER-expressing breast cancer cell line, was cultured in 

DMEM medium containing 10% FBS plus 10 μg/ml of insulin. SKBR3 is a Her2/neu-

expressing human breast cancer cell line, and MDA-MB-361 is positive for ER, PR, and 

Her2/neu. MDA-MB-231, MDA-MB-1739, and HCC1395 are all triple negative cell lines.
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2.2. Tissue samples and immunohistochemical staining

A formalin-fixed and paraffin-embedded breast cancer tissue array was obtained from US 

Biomax (Derwood, Maryland, USA). This is a breast cancer and matched metastatic 

carcinoma tissue array, including TNM and pathology grade, with ER, PR and Her-2 (neu) 

IHC results, 50 cases/100 cores. The sources and characteristics of archived breast tumor 

breast samples are summarized in Table 1. HDAC9 antibody (Abcam, Cat No. ab70954) was 

applied on slides at 1:500 and incubated for 1 hour at room temperature after deparaffinized, 

antigen-retrieved (DAKO, Cat No., S1699), and endogenous peroxidase block with 3% 

Hydrogen Peroxide (DAKO, Cat No., S2003,). Visualization and detection were established 

using DAKO EnVision+ Dual (mouse and rabbit) Link System-HRP (Cat No., K4061) with 

an incubation time of 30 minutes. The detailed staining procedure and semi-quantitative 

method of immunohistochemical staining of these tissue sections for HDAC9 are described 

in our previous paper [36] (DAKO, Cat No., K4061).

Quantitative real-time RT-PCR

Regular and quantitative RT-PCR were performed following our previous protocol [37]. 

Primer sequences of miR-206, and U6 snRNA have been described in our previous report 

[35]. Primer sequences of HDAC9 are as follows: (GeneBank accession number BC152405), 

5’- CAGCAACGAAAGACACTCCA-3’ and 5’- CAGAGGCAGTTTTTCGAAGG-3’. 

SYBR Green quantitative PCR reaction was carried out in a 15 μl reaction volume 

containing 2× PCR Master Mix (Applied Biosystems) per our previous reports [38, 39].

2.4. Construction of HDAC9 siRNAs and Transfection.

We designed and purchased the small interfering RNA (siRNA) duplexes against HDAC9 

(Genbank accession no., BC152405) from ThermoFisher Scientific (Grand Island, NY, 

USA). The target sequence of HDAC9 siRNA is 5′-
UAAAAUCUUCCUGCCCACCdTdT-3′. The nonspecific control siRNA duplexes were 

purchased from ThermoFisher Scientific with the same GC content as HDAC9 siRNAs. The 

siRNA or control oligonucleotides were transfected into TNBC MDA-MB-231 cells at a 

final concentration of 100 nM with Lipofectamine 2000 per the instructions.

2.5. Matrigel Invasion Assay

The invasion assay was performed by using a Matrigel invasion chamber from Corning 

Biocoat (Tewksbury, MA) as previously described [40]. 5×104 HDAC9 inhibitor-transfected 

or control oligonucleotide-transfected TNBC MDA-MB-231 cells were added into the top 

chambers. The Matrigel invasion chambers were then incubated for 20 hours in a humidified 

tissue culture incubator. Invading cells at the bottom was determined by counting the H&E-

stained cells.

2.6. Matrigel plug assay and hemoglobin assay

For the in vivo angiogenesis assay (Matrigel plug assay), 2X105 MDA-MB-231 cells were 

mixed with 0.5 ml of growth factor-reduced Matrigel (Corning, Tewksbury, MA) and 

implanted subcutaneously into the flanks of nude mice. The following day, six mice in each 

group were treated with 100 µg/kg HDAC9 siRNAs or control oligonucleotides via daily 
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subcutaneous injections between the two plugs on the back of the mice. For selective HDAC 

IIa inhibitor, TMP269, mice were administered with TMP269 by subcutaneous injections 

every other day at 15 mg/kg mice body weight between the two plugs on the back of the 

mice. The animals were sacrificed and the Matrigel plugs were excised 10 days after 

Matrigel injection. The excised plugs were homogenized and subjected to measure 

hemoglobin content with 100 µL of Drabkin’s solution (Sigma, St. Louis, MO) following 

manufactural instruction and our previous description [41].

2.7. Statistical analysis

Real-time RT-PCR reaction was run in triplicate for each sample and repeated at least 2 

times, and the data were statistically analyzed with a Student T-test.

3. Results

3.1. HDAC9 is overexpressed in TNBC and is inversely correlated with miR-206

Expression levels of HDAC1–11 in three TNBC cell lines, MDA-MB-231, MDA-MB-1739, 

and HCC70 compared to those in three non-TNBC cell lines, MCF-7, MDA-MB-361, and 

SKBR3 were profiled with qRT-PCR analysis. Compared to non-TNBC cells, TNBC cells 

expressed much higher HDAC9 (Fig. 1A). Quantitative RT-PCR results reveal that 

expression levels of miR-206 are notably lower while HDAC9 levels are inversely higher in 

TNBC cell lines than those in non-TNBC cell lines (Fig. 1B). Furthermore, we analyzed the 

expression levels of HDAC9 proteins determined by immunohistochemical staining in breast 

cancer tissue samples. TNBC tissues express higher levels of HDAC9 compared to non-

TNBC tissue samples (Fig. 1C). These results demonstrate that expression levels of HDAC9 

are upregulated in TNBC tissues in comparison to non-TNBC tissue samples and are 

inversely correlated with the levels of miR-206.

3.2. Inhibition of HDAC9 blocks the invasion of TNBC cells in vitro

To investigate whether selective HDAC9 inhibition blocks the invasion of TNBC cells, 

TNBC MDA-MB-231 cells were treated with TMP269, a selective class IIa HDAC inhibitor, 

or HDAC9 siRNA prior to Matrigel invasion assay. The invasive cells from treated groups 

were determined and compared to their controls by Matrigel invasion assay. Fig 2A shows 

representatives of invasive cell photographs from individual groups. Matrigel Invasion assay 

shows that the invasion of TNBC cells treated with selective class IIa HDAC inhibitor 

TMP269 was only 28% of that of the control (Fig. 2B). Similarly, HDAC9 siRNA treatment 

significantly blocked TNBC cell invasion. These results suggest that selective HDAC9 

inhibition efficiently blocks the invasion of TNBC cells.

3.3. Knockout of HDAC9 inhibits the angiogenesis of TNBC tumors

To determine the effect of selective HDAC9 inhibition on angiogenesis in vivo, Matrigel 

plug assay was performed in nude mice. Briefly, a mixture of 2×105 TNBC MDA-MB-231 

cells in 0.5 ml of growth factor reduced Matrigel was implanted at two subcutaneous sites. 

The mice in two groups were treated with 100 µg/kg HDAC9 siRNAs or control 

oligonucleotides via daily subcutaneous injections. For other two groups, mice received 15 

mg/kg TMP269 or vehicle every other day by intraperitoneal injection between the two 
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plugs on the back of the mice. Ten days after the Matrigel implant, the mice were sacrificed. 

The Matrigel plugs were excised, photographed, and processed to measure hemoglobin 

content by using Drabkin’s solution following manufacturer’ instructions. When MDA-

MB-231 cells successfully promote neovasculature formation within the Matrigel plug, these 

neovasculatures allow tumor cells to proliferate much better than those without 

neovasculatures. Therefore, the control group with better angiogenesis in the Matrigel plug 

showed more red cells than the treated group (Fig. 3A). Fig. 3B summarizes the 

quantification of percentage of antiangiogenic efficacy based on hemoglobin content in 12 

Matrigel plugs per group. In comparison to their controls, TMP269 treatment or HDAC9 

siRNA transfection shows an obvious antiangiogenic effect with 76 % and 72% inhibition of 

angiogenesis, respectively. These results suggest that selective inhibition of HDAC9 

effectively blocks TNBC angiogenesis.

3.4. HDAC9 regulates expression of VEGF and MAPK3 through miR-206 miRNA

To determine whether HDAC9 regulates miR-206 expression, HDAC9 was silenced with 

HDAC9 siRNA and then miR-206 expression levels were measured by quantitative RT-PCR 

analysis. The results show that selective HDAC9 inhibition significantly upregulated 

miR-206 expression (Fig. 4A). Furthermore, the results of a search for the predicted targets 

with TargetScan revealed that VEGF and MAPK3 are predicted targets of miR-206 (Fig. 

4B). To confirm these results in vitro, TNBC MDA-MB-231 cells were treated with HDAC9 

siRNA and then protein levels of VEGF and MAPK3 by Western blot analysis. The results 

demonstrated that selective inhibition of HDAC9 decreased the expression levels of VEGF 

and MAPK3 compared to their controls (Fig. 4C). These results demonstrated that selective 

HDAC9 inhibition increased the expression of VEGF and MAPK3 via upregulating 

miR-206 expression.

4. Discussion

It is now widely accepted that aberrant expression or activity of HDAC enzymes may lead to 

carcinogenesis and that specific HDAC enzymes are associated with particular malignancies; 

in turn, the inhibition of HDAC enzymes can result in therapeutic benefits in certain cancer 

types [42]. However, clinical benefits of selective versus broad HDAC inhibitors are 

unknown and the appropriateness of inhibitor may depend on tumor HDAC enzyme 

expression, enzyme selectivity of the inhibitor, and the desired effects. Although there are 

several published studies [16, 17] and numerous ongoing clinical trials involving HDAC 

inhibitors [18], very little is known about the roles of individual HDAC enzymes, and a 

formal assessment of HDAC enzyme expression is not routinely done. Emerging data 

suggests that the currently used HDAC inhibitors may differ significantly with regard to 

target selectivity. In addition, the expression of HDAC enzymes may vary considerably 

between normal and tumor tissues and likely between different phenotypes of tumor tissues. 

HDAC9 is thought to regulate gene expression through epigenetic modulation of the 

chromatin structure by catalyzing the deacetylation of histone proteins [19]. More recently, 

aberrant HDAC9 expression has been observed in several types of cancers, including 

medulloblastoma [21], acute lymphoblastic leukemia [22], glioblastoma [23], osteosarcoma 

[24], and breast cancer [25]. HDAC9 has been shown to promote the growth of these tumors. 
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Our results demonstrate that HDAC9 is overexpressed in TNBC compared to non-TNBC 

cell lines and tissues. Furthermore, our data showed that selective inhibition of HDAC9 

repressed the invasion and angiogenesis of TNBC cells. These findings reveal that HDAC9 

promotes the invasion and angiogenesis of TNBC cells besides proliferation.

Several investigations have demonstrated that decreased miR-206 expression is involved in 

breast cancer proliferation [43, 44]. Our previous studies show that miR-206 is 

antagonistically involved in TNBC invasion and angiogenesis through modulating VEGF 

and MAPK3 [35]. Numerous investigations have demonstrated that VEGF actively promotes 

angiogenesis, metastasis, and chemoresistance [45–47]. MAPK overexpression has been 

shown to be associated with advanced stages and short survival in patients with some 

cancers [48, 49]. However, miR-206 has not been characterized as the targets of HDAC9 

regulation. Our findings demonstrated that the selective inhibition of HDAC9 in siRNA-

transfected TNBC MDA-MB-231 cells not only increased expression of miR-206, but also 

repressed the expression of VEGF and MAPK proteins and further inhibited TNBC cell 

invasion and angiogenesis. Here, we report HDAC9 for the first time as a mediator to 

modulate VEGF-mediated invasion and angiogenesis of TNBC tumor cells via modulating 

miR-206 expression. The results further confirmed that miR-206 actively regulates the 

expression of VEGF and MAPK3 in TNBC cells.

In conclusion, higher expression levels of HDAC9 are inversely correlated with miR-206 

expression in TNBC cells. Furthermore, the selective inhibition of HDAC9 not only 

modulated the expression of miR-206, VEGF and MAPK3, but also particularly inhibited 

TNBC invasion and angiogenesis. Our findings suggested that HDAC9 overexpression in 

TNBC cells promotes the invasion and angiogenesis through VEGF and MAPK3 via 

regulating miR-206. These findings may be beneficial for better understanding TNBC 

regulation and designing personalized therapies for breast cancer patients.
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Fig. 1. 
HDAC9 is overexpressed in TNBC cells and tissues. (A) Expression levels of HDAC1–9 

mRNAs in three TNBC cell lines, MDA-MB-231, MDA-MB-1739, and HCC70 compared 

to those in three non-TNBC cell lines, MCF-7, MDA-MB-361, and SKBR3 determined by 

quantitative RT-PCR analysis. * P<0.001. (B) HDAC9 expression levels in triple negative 

breast cancer cell lines are inversely consistent with those of miR-206. * P<0.001. (C) A box 

and whisker plot diagram showing the comparison of HDAC9 levels in triple negative breast 

cancer tissues (n = 41), and non-TNBC breast cancer tissues (n =59) determined with 

HDAC9 IHC staining. Horizontal lines in the boxes represent the median HDAC9 value of 

each group (P<0.001). Top and bottom edges of the boxes indicate the score values of the 

25th and the 75th percentile, respectively. Whiskers represent the highest and lowest values. 

The range is shown as a vertical line.
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Fig. 2. 
Selective HDAC9 inhibition blocks invasion of human TNBC MDA-MB-231 cells. (A) 

Representative photograph for invasion cells from HDAC9 siRNA-treated or TMP269-

treated and their control groups. (B) Quantitative comparison of invasion cells of selective 

HDAC9 inhibition and their controls by Matrigel Invasion Assay. * P<0.01.
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Fig. 3. 
Efficacies of HDAC9 inhibition on Matrigel plug angiogenesis in vivo. (A) 

Microphotograph of Matrigel plug representatives from the control and the treated groups 

and representative pictures of H&E staining for Matrigel plug sections. (B) The column 

graph shows the comparison of average hemoglobin in plugs from the control and HDAC9-

inhibited groups. * P<0.001.
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Fig. 4. 
HDAC9 inhibition restores the miR-206 levels in TNBC cells and decreases VEGF and 

MAPK3 levels. (A) MiR-206 expression levels in TNBC MDA-MB-231 cells treated by 

HDAC9 siRNA. (B) Targeting sequences of miR-206 on 3’UTRs of VEGF and MAPK3. (C) 

HDAC9 inhibition decreased expression levels of VEGF and MAPK3 determined Western 

blot analysis.
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Table 1

Characteristics and HDAC9 expression of tissue specimens of breast tumors.

Total T stage Sex Age

T1&T2 T3T4 Male Female <50 ≥50

Triple Negative 41 25 16 0 41 22 19

Non-triple negative 59 48 11 0 59 28 31

Total 100 73 27 0 100 50 50
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