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Abstract

We introduce a number of computationally inexpensive modifications to the MM/PBSA and MM/

GBSA estimators for binding free energies, which are based on average receptor-ligand interaction 

energies in simulations of a noncovalent complex, to improve the treatment of entropy: second- 

and higher-order terms in a cumulant expansion and a confining potential on ligand external 

degrees of freedom. We also consider a filter for snapshots where ligands have drifted from the 

initial binding pose. The variations were tested on six sets of systems for which binding modes 

and free energies have previously been experimentally determined. For some datasets, none of the 

tested estimators led to results significantly correlated with measured free energies. In datasets 

with nontrivial correlation, a ligand RMSD cutoff of 3 Å and a second-order truncation of the 

cumulant expansion was found to be comparable or better than the average interaction energy by 

several statistical metrics.

Graphical Abstract

1 Introduction

Because small molecules frequently interact with biological macromolecules through 

specific noncovalent interactions, fast and accurate methods for predicting binding free 

energies are a holy grail of computational chemistry. The most accurate methods presently 
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available are alchemical pathway methods,1 in which a receptor-ligand complex is simulated 

in a series of thermodynamic states (which may be physically unrealistic) connecting end-

points where the binding partners are completely decoupled or fully interacting. With 

cumulative improvements in force fields, sampling algorithms, and computational power, a 

growing number of publications have shown that alchemical pathway methods are able to 

accurately predict protein-ligand,2–10 and to a lesser extent, protein-protein11,12 binding free 

energies.

Due to the substantial computing resources required for alchemical calculations, however, 

free energy methods based on simulating only the end-points of the pathway — the bound 

and perhaps the unbound state — have been even more widely used to estimate protein-

ligand13,14 and protein-protein15,16 binding free energies (Table 1).

To our knowledge, the earliest foray in this direction was the Linear Response 

Approximation (LRA)17,18, which is based on a thermodynamic cycle that separates polar 

segments (ligand charging and uncharging) from an apolar segment (binding the uncharged 

ligand). As such, LRA incorporates simulations of the ligand with partial charges set to zero. 

More recently, de Ruiter and Oostenbrink 19 built upon LRA by using a third-order 

polynomial to model the electrostatic charging free energy as a function of a coupling 

parameter. Their third-power fitting procedure was much more consistent with alchemical 

calculations than LRA and another popular alternative, the Linear Interaction Energy 

(LIE)20–22. LIE is a simpler method that foregos simulations with the neutral ligand and 

instead scales average interaction energy terms (e.g. van der Waals and electrostatic) by 

empirical coefficients.

The popularity of all these methods has been superseded by the simpler Molecular 

Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/

Generalized Born Surface Area (MM/GBSA) methods, which unlike LIE does not require 

empirical coefficients. In these methods, configurational integrals are approximated using 

the average potential energy in a specific implicit solvent models and an entropy term based 

on normal modes analysis15,23. There are a number of variations of these methods based on 

the same general approach, but different force fields. For the calculations in this paper, the 

polar component of solvation free energies will be based on the generalized Born continuum 

dielectric model. With the understanding that the statistical estimators developed here are 

broadly applicable, we will, for the sake of simplicity, refer to the entire class of related 

methods as MM/GBSA.

Although MM/GBSA is very popular, it is less accurate than an alchemical pathway method. 

Its accuracy is strongly dependent on the system and parameters24, and calculated binding 

free energies have only weak correlation with experiment14. Genheden and Ryde 24 recently 

summarized 15 years of effort (including over 20 self-citations) in calibrating, testing, and 

validating MM/GBSA and its variants using approaches such as quantum mechanics, 

polarizable force fields, and improved solvation models. They concluded, sadly, that none of 

their attempted force field modifications gave consistent improvement. Ultimately, MM/

GBSA suffers from a fatal flaw due to “severe thermodynamic approximations.”
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A major thermodynamic approximation in MM/GBSA is its treatment of entropy, which is 

flawed both in concept and in practice. MM/GBSA entropies are an average over normal 

modes from multiple minima. Conceptually, this procedure will not accurately reproduce the 

configurational integral if the energy landscape is anharmonic or if wells overlap25,26. In 

practice, normal modes analysis is often computationally expensive and numerically 

unstable14,27,28. Hence, it is reasonably common, as in Lindström et al. 29 and Zhang et al. 
30, to ignore entropy altogether. (LIE also assumes that entropy does not change upon 

binding31 or is subsumed into the empirical scaling factors.)

Since binding is associated with the restriction of external degrees of freedom — translation 

and rotation — from bulk solution into a complex, the neglect of entropy in binding 

processes is a severe approximation. Prior to binding, both the receptor and ligand can freely 

translate and rotate in solution. Afterwards, their motions are coupled such that the relative 

translation and rotation of the binding partners is significantly restricted. By arbitrary 

convention, the receptor external degrees of freedom are considered converted into complex 

external degrees of freedom and the ligand external degrees of freedom describe the relative 

positions of the binding partners. Analyses of molecular dynamics simulations suggest that 

complexation induces a loss of ligand external entropy with T∆S on the order of 10 kcal/mol 

for protein-ligand23 and 30 kcal/mol for protein-protein26 complexes. It is feasible to 

estimate the external entropy loss 23, but this term is rarely incorporated into end-point 

binding free energy calculations.

Regarding the entropy of internal degrees of freedom, it has been suggested that internal 

entropy may not change much upon binding23 or there are negligible differences between 

similar complexes32. However, later calculations showed that binding does indeed restrict 

the ligand conformational ensemble33. The latter assumption of negligible differences 

between similar complexes is invalidated by the phenomenon of enthalpy-entropy 

compensation, in which enthalpy decreases are often accompanied by conformational 

restriction that lead to a counterbalancing reduction in entropy. The prevalence of enthalpy-

entropy compensation has led to the conclusion that optimizing enthalpy alone is not a 

useful framework in structure-based drug design34,35.

Duan et al. 36 recently introduced an approach, which they referred to as the “interaction 

entropy” (IE), to account for entropy in end-point binding free energy calculations. By 

factoring the average energy out of an exponential average, they separated energetic and 

entropic contributions to binding. Ultimately, however, their free energy estimates are 

numerically equivalent to exponential averages, which are known to be dominated by rare 

events37 and suffer from systematic finite-sampling error. 38

In this work, we introduce other end-point binding free energy estimators that also improve 

the treatment of entropy. Like IE, the modifications do not require additional simulation or 

expensive postprocessing beyond the standard approach. As an added benefit, they are more 

numerically stable than IE. The modified estimators are tested on a number of protein-ligand 

complexes with publicly available crystal structures and binding affinity data. Five receptors 

were chosen: the first bromodomain of human bromodomain-containing protein 4 

(bromodomains), the farnesoid X receptor (FXR), human phenylethanolamine N-
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methyltransferase (hPNMT), T4 lysozyme L99A (lysozyme), and mitogen-activated protein 

kinase kinase kinase kinase 4 (MAP4K4). Additionally, we tested the estimators on the set 

of systems used in Duan et al. 36 (IE). Molecular dynamics simulations were performed 

starting from the crystallographic pose. A second-order cumulant expansion was found to 

perform equally or better than the standard MM/GBSA protocol for predicting the affinity of 

ligands in all six datasets. To facilitate the further testing, extension, and application of these 

estimators by other research groups, our main analysis script is included in the Supporting 

Information.

2 Theory and Computational Methods

2.1 Binding pose and affinity datasets

Data sources for each selected set of systems are shown in Table S1 of the Supporting 

Information. There were 7 different ligands for hPNMT, 8 for bromodomains, 9 for 

lysozyme, 18 for MAP4K4, 31 for FXR, and 14 for IE.

In the bromodomains and lysozyme datasets, ΔGRL
∘  have been directly determined by 

isothermal titration calorimetry. In the hPNMT, MAP4K4, and FXR datasets, there is 

insufficient available information to obtain an absolute ΔGRL
∘ . However, if x ∈ {ki, IC50} is 

the available binding data, then ΔGRL
∘ = RT ln x + C is a reasonable estimate of ΔGRL

∘ within 

an unknown additive constant C. Therefore, results from this conversion may be used to 

assess relative binding free energies.

2.2 Molecular simulation and potential energy calculations

The crystallographic structure of each complex was prepared for simulation using a 

workflow based on AmberTools 16.39 The protein was prepared with AMBER40 

ff14SB.redq parameters. Using the tleap program in AmberTools, all protein residue 

protonation states were assigned default values. (For the purposes of comparison, we also 

predicted residue protonation states with PROPKA 3.041,42 at pH 7.0, as integrated in 

PDB2PQR 1.9.0,43 after the simulations and analysis were complete. A comparison is 

available in Table S2 of the Supporting Information.) Atomic radii were set with the 

mbondi2 option. Ligands were parametrized based on the Generalized AMBER force field44 

with AM1BCC45,46 partial charges. Ligand protonation states were assigned using pkatyper 

(OpenEye) and partial charges calculated using the QUACPAC 1.7.0.2 toolkit (OpenEye). 

Chemical structures for each ligand, including assigned protonation states, are included in 

Figure S1 of the Supporting Information. All dynamics and energy calculations were 

performed with the OBC2 model47 for GBSA implicit solvent,13 with a solvent dielectric of 

78.5. OpenMM 7.048,49 was used to perform Langevin dynamics simulations at 300 K for 

200 ns using a timestep of 2 fs and no distance cutoff. Energies were saved every 1000 steps 

(2 ps), yielding 100,000 total energies per simulation.

Trajectories were prepared for postprocessing by using VMD 1.9.150 to separate coordinates 

of the receptor, ligand, and complex. Potential energies for the ligand, receptor, and complex 
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were calculated using OpenMM 7.0. 48,49 Normal modes analysis was performed using the 

default settings of the MMPBSA.py script51 from AmberTools 16. 39

For a small subset of systems with available crystallographic structures, there were failures 

are different stages in the calculation: the setup workflow, normal modes analysis with 

default settings, or postprocessing. We did not complete analyses for these systems: 1eujj, 

1hgaf, 1phif, 1sjpr, and 1txca from FXR and 1e66 from the IE data set.

2.3 Binding free energy calculations

Noncovalent binding between a receptor, R, and ligand, L, to form a complex, RL, is 

described by the chemical equation L + R ↔ RL. The designation of a binding partner as 

receptor or ligand is arbitrary, but it is conventional for the ligand to be the smaller partner. 

We will denote the equilibrium concentration of each of these species X by CX and specify 

the standard concentration C° as 1 M. The strength of a noncovalent binding process is 

quantified by the standard binding free energy,

ΔGRL
∘ = − kBT ln

C∘CRL
CRCL

, (1)

in which kB is Boltzmann’s constant and T is the temperature, in Kelvin.

According to the statistical mechanics of noncovalent binding,1 ΔGRL
∘  can be related to 

implicit-solvent configurational integrals ZR, ZL, and ZRL,

ZR = e
−βU rR drR (2)

ZL = e
−βU rL drL (3)

ZRL = I ξ J ξ e
−βU rRL drRdrLdξ, (4)

where β = (kBT )−1. The coordinates rR, rL, and ξ are of the receptor, ligand, and the relative 

translation and orientation of the binding partners, respectively. U (·) is a potential energy 

that includes the gas-phase potential energy and solvation free energy. The indicator function 

I(ξ) is one when the receptor and ligand are complexed and zero otherwise, and J (ξ) is the 

Jacobian for the transformation from Cartesian coordinates into the specified coordinate 
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system. From Equation 38 of Gilson et al. 1, if the symmetry terms are neglected and the 

change in molar volume upon binding is negligible, then the standard binding free energy is,

ΔGRL
∘ = − kBT ln C∘

8π2
ZRL

ZRZL
. (5)

The 8π2 comes from integrating over degrees of freedom describing the relative orientation 

of the binding partners.

To account for the differences between the standard state and the binding site volume52, it is 

helpful to define, similarly to Gallicchio et al. 53 and Minh 54,

Zξ = I ξ J ξ dξ (6)

ΔGξ = − kBT ln
ZξC∘

8π (7)

By adding −kBT ln (Zξ/Zξ) = 0 to Equation 5, an expression in terms of ∆Gξ can be 

obtained,

ΔGRL
∘ = − kBTln

ZRL
ZRZLZξ

+ ΔGξ . (8)

For notational simplicity we will also define GX = −kBT ln ZX for X ∈ {R, L, ξ, RL} and 

also,

ΔGRL
s = GRL − GR − GL − Gξ = ΔGRL

∘ − ΔGξ . (9)

This can be interpreted as the binding free energy given that ξ are restricted to the binding 

site (Figure 1).

2.3.1 in three-trajectory mode—Substituting the Boltzmann distribution pX(rX) = e
−βU(rX )/ZX into the entropy expression SX = − kB pX rX lnpX rX drX leads to the energy-

entropy decomposition55,

GX = U rX X
− TSX . (10)
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Expectations that involve averages over ξ also contain I(ξ) and J (ξ). Substituting Equation 

10 into Equation 8 leads to the theoretical basis of MM/GBSA in three-trajectory mode55,

ΔGRL
s = U rRL RL

− U rR R
− U rL L

− TΔS (11)

where ∆S = SRL − SR − SL − Sξ. U〈 (rξ)〉ξ is not included in Equation 11 because the 

potential energy U (ξ) = 0. Each thermodynamic expectation 〈…〉X is estimated from the 

average potential energy across the entire simulation of species X: RL for the holo ensemble 

of the complexed ligand and receptor; R for the apo ensemble of the receptor by itself; and L 
for the apo ensemble of the ligand by itself. Entropy terms are approximated by performing 

normal modes analysis on a few selected snapshots. Sξ = kB ln Zξ can be evalulated based 

on a numerical or analytical integration of Zξ. However, most MM/GBSA calculations do 

not consider Sξ or ∆Gξ, which may lead to a constant offset in the estimated free energies. 55

To address the conceptual and practical issues with the MM/GBSA entropy mentioned in the 

introduction, let us consider an alternate approach in which ΔGRL
s  is expressed in terms of 

thermodynamic expectations. Using the identity GX = kBT e
βU rRL

X
 from Zwanzig 56 in 

Equation 9, we obtain,

ΔGRL
s = kBTln e

βU rRL

RL
− kBTln e

βU rR

R

−kBTln e
βU rL

L
− Gξ .

(12)

Each exponential average may expressed as a cumulant expansion, a power series in β 56. To 

the third order, this expansion is,

ΔGRL
s = U rRL RL

− U rR R
− U rL L

+ β2

2 δU rRL
2

RL
− δU rR

2
R

− δU rL
2

L

+ β3

3! δU rRL
3

RL
− δU rR

3
R

− δU rL
3

L
− Gξ,

(13)

where δU ≡ U (rX)−〈U (rX)〉X. Following a procedure described by Ben-Amotz et al. 57, this 

same series (up to the third order) may also be derived from thermodynamic integration.

A comparison of Eqs. 11 and 13 makes it clear that the average potential energy is the first 
order term in a cumulant expansion and entropy can be identified as the higher order terms. 

Hence, a straightforward path to rigorous ∆G° estimation is to estimate the cumulants or 

moments of the potential energy distribution.
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It is worth noting that truncating a cumulant expansion involves a trade off between accuracy 

and precision. If the potential energy distribution is precisely Gaussian, then a cumulant 

expansion may be rigorously truncated at the second order. Otherwise, the series is infinite58 

and premature truncation leads to a systematic bias. Nevertheless, a low-order truncation 

may be beneficial due to improved numerical stability.

2.3.2 in single-trajectory mode—To reduce computational expense and to facilitate 

the cancellation of error, MM/GBSA is often performed in single-trajectory mode. This 

paper will focus on this type of calculation. In single-trajectory mode, Equation 11 is 

replaced by,

ΔGRL
s = U rRL − U rR − U rL RL

− TΔS . (14)

Unlike Equation 11, this expression has not hitherto been established on a firm theoretical 

foundation. It can be derived from Equation 11 only under the severe approximation that the 

probability of molecular configurations is equivalent in the apo and holo ensembles.

An alternate route to Equation 14 is a single-step perturbation from the holo to apo ensemble 

using an exponential average53,56,

ΔGRL
s = kBTln e

βΨ rRL

RL
, (15)

where Ψ(rRL) ≡ U (rR, rL) − U (rR) − U (rL). To the third order, the cumulant expansion of 

Equation (15) is,

ΔGRL
s = Ψ RL + β

2! δΨ2
RL + β2

3! δΨ3
RL, (16)

where Ψ ≡ Ψ(rRL) and δΨ ≡ Ψ(rRL) − 〈Ψ(rRL)〉 are used within the brackets for notational 

convenience. The first-order term is the average energy change and higher-order terms 

account for the entropy change. MM/GBSA in single-trajectory mode can be thought of as 

using a version of Equation 16 in which normal modes analysis substitutes for higher-order 

cumulants. If entropic contributions are neglected, MM/GBSA can be thought of as a first-

order truncation of the equation.

To illustrate the effect of the cumulant expansion, consider the distribution of interaction 

energies in Figure 2. In the top panel, a Gaussian distribution is a good fit to the data. With a 

first-order truncation of the expansion, the free energy estimate is at the peak of the 

distribution. With a second-order truncation, the free energy estimate is shifted significantly 

to the right, to a weaker and more physically realistic value. The histogram in bottom panel 

is not as well-described by a Gaussian, but a second-order truncation can nonetheless be 

applied as an approximation.
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In this paper, we will compare the following choices, which we will refer to as expansion 
options:

1. a cumulant expansion, from the first to fourth order (Equation 16);

2. the exponential average (Equation 15); and

3. the sum of the mean energy and normal modes entropy (Equation 14), or MM/

GBSA in single-trajectory mode.

For all the expansion options, the expectation values are estimated via a sample mean. We 

will subsequently use the notation Â to denote the estimator for an expectation value 〈A〉.

Due to the relationship between Equations 14, 15, and 16, all of the expansion options are 

subject to convergence issues common to exponential averages. When computing free 

energy differences between two thermodynamic states using an exponential average, it is 

beneficial for the most highly populated regions of configuration space to overlap. 59 If there 

is no overlap, then configurations common to one state will have high energy in the other 

state and a prohibitive number of samples will be required to obtain accurate free energies. 

The quality of MM/GBSA-based binding free energy estimates will depend on the degree of 

overlap between apo and holo ensembles.

2.3.3 with a confining potential on ξ—For ligand external coordinates, there is a 

clear relationship between the important configuration space of the end-point ensembles: the 

holo ensemble is a subset of the apo ensemble. A single-step perturbation from the apo to 

holo ensemble of ξ would lead to many configurations with steric clashes and therefore 

require many samples to converge. On the other hand, sampling from the holo ensemble (as 

in single-trajectory MM/GBSA) should yield configurations that have reasonable energies in 

the apo ensemble. The holo simulation, however, is unlikely to access all of the important 

configuration space of the apo ensemble.

To some extent, this issue is addressed by defining an apo ensemble with a restricted binding 

site. Because most MM/GBSA calculations do not include a ∆Gξ term, they implicitly 

define a broad binding site that is equivalent to free translation and rotation in bulk solution. 

An apo ensemble with restrictions on ξ is more similar to the holo ensemble than an apo 

ensemble in bulk solution. Defining a binding site that is narrower and uniform across 

different ligands binding to a receptor leads to a constant shift in estimated free energies. 55 

Ideally, the binding site would be defined in a way that is minimally larger than the region of 

ξ accessed by the bound ensemble of each ligand, leading to significant configuration space 

overlap between the holo and site-restricted apo ensemble.

Although it is difficult to define a minimal binding site, Ben-Shalom et al. 60 suggested that 

external entropy losses can be estimated by determining the binding site based on the 

minimum and maximum coordinates observed in different observed binding poses. They 

found that this range of coordinates differed from complex to complex, even among 

congeneric ligands binding to the same receptor (c.f. Figure 4 in their paper). While their 

approach to estimating translational and rotational entropy was useful for developing 

multiple linear regression models with higher correlation to experiment than standard MM/
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GBSA, they conceded that it is likely to overestimate the residual external entropy in the 

complex. To elaborate, they assumed that ξ is distributed uniformly, which is unlikely to be 

the true distribution and maximizes the entropy. Another shortcoming of their approach is 

that the extrema are highly sensitive to outliers.

Here, we consider an approach to treating confinement of ligand external coordinates based 

on a fictitious intermediate thermodynamic state with a biasing potential on ξ (the bottom 

row of Figure 1). The biasing potential, which we will refer to as the confinement potential, 

is based on the Boltzmann inversion of a nonparametric probability density estimate. This 

approach is less sensitive to outliers and more accurately reflects the true residual entropy 

than a uniform distribution between empirically observed extrema. The intermediate 

thermodynamic state is fictitious in a sense that no sampling is performed in the state. 

Instead, free energy differences are calculated by numerical integration (∆Gc,L) or single-

step free energy perturbation with ΔGRL
c  or without (∆Gc,RL) reweighting. Compared to the 

molecular dynamics, the additional computational expense of the estimate is negligible.

External degrees of freedom were defined as three translational and three rotational degrees 

of freedom. To obtain these coordinates, the entire complex was first translated and rotated 

to align the protein α-carbons onto the crystal structure coordinates using cpptraj 17.0061. 

The ligand center of mass was then computed with MDTraj 1.8. 62 Translational degrees of 

freedom were based on the ligand center of mass. Rotational degrees of freedom were based 

on the ligand principal axes of rotation, calculated by:

1. Computing the inertial tensor using MDTraj 1.8;62

2. Calculating the principal axes — X , Y , and Z  — based on eigenvectors of the 

inertial tensor using numpy 1.8.1;63

3. Calculating proper Euler angles from the principal axes as,

α = arctan2 Z 1, Z 2

βE = arccos Z 3

γ = arctan2 X 3, Y 3 ,

where the subscripts n ∈ {1, 2, 3} indicate indices of each vector.

After obtaining the ligand center-of-mass and proper Euler angles, the binding site and 

confinement potential were defined as follows. For the center-of-mass:

• The center-of-mass was rotated onto a new coordinate system by principal 

component analysis: projecting the original coordinates onto the eigenvectors of 
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the covariance matrix. The benefit of using principal components analysis is that 

the new coordinates are linearly uncorrelated.

• For each coordinate, the binding site of length Ld was defined as the area 

between the minimum and maximum with a 10% buffer on each side. d is an 

index for the dimension.

• For each coordinate, the probability density ρ(x) as a function of position x was 

calculated using a Gaussian kernel density estimate (scipy.stats.gaussian kde in 

scipy v0.14.063). The confinement potential was defined as Uc,d(x) = −kBT ln 

ρd(x).

For the proper Euler angles α, βE, and γ, the binding site did not include any restrictions. 

The confinement potential was obtained by,

• Generating a histogram H(x) with 100 bins between −π and π for α and γ and 

between 0 and π for β.

• Obtaining a smooth and periodic density estimate by the convolution of the 

histogram with a Gaussian kernel. To be precise,

ρd x = ℱ−1 ℱ H x ∗ ℱ K x , (17)

where F[·] and F−1[·] are the Fourier transform and inverse Fourier transform, respectively, 

and ∗ denotes the discrete convolution. The Gaussian kernel K(x) had a standard deviation 

of 2fπ/10 for α and γ and fπ/10 for βE, where f = n−1/5 for n data points is Scott’s factor.64 

The Fourier transform (numpy.fft) and inverse Fourier transform (numpy.ifft) were 

performed using numpy 1.8.1.63

• Defining the confinement potential as Uc,d(x) = −kBT ln ρd(x) for the dimension 

indexed by d.

Based on these definitions of the binding site and confinement potential, free energy 

differences in Figure 1 were calculated in a number of different ways. Because the binding 

site has no restrictions on rotation,

ΔGξ = − kBTln d Ld
Vo

, (18)

is purely based on the relative volume of translational degrees of freedom. The free energy 

of confining the ligand is,

ΔGc, L = − kBTln
I ξ J ξ e

−βUc ξ
dξ

I ξ J ξ dξ , (19)
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which is based on an expectation of e
−βUc(ξ)

 in the uniform distribution. Because Uc(ξ) is 

independent for each degree of freedom, Equation 19 can be factored into separate free 

energy differences. These free energy differences were estimated by numerical integration,

ΔGc, L =
d ≠ βE

ΔGc, L, d + ΔGc, L, βE
(20)

ΔGc, L, d = − kBTln 1
ni i

e
−βUc, d xi (21)

ΔGc, L, βE
= − kBTln i

sin xi e
−βUc, βE

xi

isin xi
, (22)

where the sums in Equations 21 and 22 are over ni histogram bin centers xi. The 

confinement free energy for βE differs in form because it includes a Jacobian for 

transformation. On the other hand, the free energy of confining the complex was calculated 

by a single-step perturbation from the complex to the confined complex,

ΔGc, RL = − kBT
d

ln 1
n j j

e
−βUc, d x j , (23)

where the outer sum is over dimensions and the inner sum is over nj observations from the 

holo ensemble. ΔGRL
s  was calculated by using a sample mean estimator for the expectation 

values in Equation 16. ΔGRL
s was computed based on using importance sampling with an 

expression analogous to Equation 15 for a different thermodynamic state,
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ΔGRL
s = kBTln e

βΨ rRL

RL, c

=
e

βΨ rRL e
−β U rRL + Uc ξ

drRL

e
−β U rRL + Uc ξ

drRL

= kBTln
e

β Ψ rRL − Uc ξ

RL

e
−βUc ξ

RL

(24)

and its analogous cumulant expansion. Expectation values are estimated via a sample mean.

2.3.4 with a ligand RMSD filter—To account for the possibility of the ligand drifting 

away from the crystallographic binding pose, we tested an energy filter based on the ligand 

RMSD. The RMSD for all ligand atoms was computed using cpptraj.61 When the filter was 

applied, binding free energy calculations excluded energies where the corresponding ligand 

RMSD exceeded 3 Å, essentially excluding any non-crystallographic binding pose.

2.3.5 Synopsis of ΔGRL
∘  calculations—In summary, ΔGRL

∘  calculations were 

performed:

1. with and without a ligand RMSD filter of 3 Å.

2. with a correction based on the binding site volume (Equation 18), with a 

fictitious confining potential on ligand translation and rotation, or without a 

ligand external entropy correction at all; and

3. based on a cumulant expansion from the first to fourth order, the exponential 

average, or the first order truncation of the cumulant plus normal modes entropy.

To put this in context, the standard MM/GBSA protocol does not include a ligand RMSD 

filter, does not include a ligand external entropy correction, and is based on a first-order 

truncation of the cumulant expansion plus normal modes entropy.

2.4 Correlation and error statistics

The quality of ΔGRL
∘  estimation was assessed by a variety of statistical metrics — the 

Pearson R (R), Spearman ρ (ρ), Kendall τ (τ )65 correlations, as well as the root mean square 

error (RMSE) and adjusted RMSE (aRMSE) — relative to experimental measurements. The 

Spearman ρ is the Pearson R value between the rankings of variables. The Kendall τ differs 

from the Spearman ρ in that it considers data that may have the exact same rank. The RMSE 

between two series of data points {x1, x2, …, xN } and {y1, y2, …, yN } is,
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ϵ = 1
N n = 1

N
xn − yn

2 . (25)

It is not relevant to the hPNMT, and MAP4K4, and FXR datasets because absolute binding 

free energies have not been experimentally measured. The aRMSE is,

ϵ = 1
N n = 1

N
xn − yn − x − y 2, (26)

where the x and y are the sample mean of x and y, respectively. The aRMSE accounts for 

systematic deviation between the series and is useful for assessing whether relative binding 

free energies are accurate. In addition to the aRMSE of various statistical estimators, we also 

considered the aRMSE of a “dummy” estimate in which all binding free energies are 

assumed to have the same value.

Standard errors were calculated using bootstrapping66: for n ligands, the standard deviation 

was calculated for metrics estimated from 10,000 sets of n ligand free energy estimates 

randomly sampled with replacement from the original n estimates.

3 Results and Discussion

3.1 In some datasets, calculations achieved significant correlation with experiment

A complete table of statistical correlation and error statistics for different ΔGRL
∘  estimators is 

available in Table 2. Our actual free energy estimates are reported in Table S3 of the 

Supporting Information.

The performance of our methods in achieving consistency with experimental results was 

uneven. For three datasets — FXR, hPNMT, and the IE dataset from Duan et al. 36 — none 

of the tested estimation protocols were able to achieve significant correlation (R, ρ, or τ 
greater than 0.4) with experiment. For the other three datasets — bromodomains, lysozyme, 

and MAP4K4 — correlation was sensitive to the estimation protocol. The aRMSE was also 

sensitive to the estimation protocol and larger than the corresponding dummy estimate in 

which all binding free energies were assumed equivalent. For the six datasets, the aRMSE of 

dummy estimates are as follows: bromodomains (0.78 kJ/mol); FXR (1.73 kJ/mol); hPNMT 

(0.53 kJ/mol); lysozyme (0.71 kJ/mol); MAP4K4 (1.42 kJ/mol) and IE (3.28 kJ/mol). The 

comparatively high aRMSE of the end-point binding free energy estimates (Table 2) may 

leave an impression that the latter have limited benefit. However, the significant correlation 

in some datasets indicates that the calculations may be useful for rank ordering compounds 

and that high aRMSEs simply reflect that the slope deviates from unity.

There are several possible reasons that, for three datasets, our calculations were unable to 

achieve significant correlation with experiment. The usual suspects in problematic molecular 
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simulations and ΔGJK
∘  calculations are sampling and force field error. Although sampling is a 

common issue, especially in rugged energy landscapes common to biomolecules, is it 

unlikely to be the major issue with our calculations because we started with a 

crystallographic binding pose and run for 200 ns. Indeed, a correct binding pose is no 

guarantee of accurate results; in the Drug Design Data Resource (D3R) Grand Challenge 2, 

the Kendall τ between predicted and experimental binding affinities for FXR complexes 

with known structure ranged from about −0.4 to 0.4.67 Force field error arises because 

molecular mechanics force fields only approximate quantum mechanics, inadequately 

accounting for local environment effects such as polarization and bond rearrangements such 

as protonation and tautomerization. In our simulations, more attention could have been paid 

to residue protonation and disulfide bonds. Analysis with PROPKA (Table S2 in the 

Supporting Information), completed after the initial review of our paper, suggests that one or 

two glutamine residues in the binding site of hPNMT are likely to be protonated and that 

several proteins in the IE dataset have disulfide bonds. There were no differences between 

PROPKA and AmberTools defaults in the bromodomains dataset and more subtle and 

distant differences with the lysozyme and MAP4K4 datasets. Our calculations also made the 

approximation of using a continuum dielectric implicit solvent model instead of an explicit 

solvent. Even with an explicit solvent model, however, Duan et al. 36 also did not achieve 

correlation with experiment any better than ours (See Table S4 in the Supporting 

Information for the Pearson R, Spearman ρ, and Kendall τ that we computed based on their 

reported results), suggesting that other factors are limiting the accuracy of our results.

Another source of error, which is the focus of the present paper, is estimation error. In the 

subsequent sections, we will focus on the three datasets — bromodomains, lysozyme, and 

MAP4K4 — that allow us to compare estimator performance.

3.2 Filtering based on ligand RMSD is beneficial

The behavior of the ligand over a 200 ns simulation is highly variable from system to 

system. The ligand RMSD versus time for every dataset is available in Figure S3 of the 

Supporting Information. Figure 3 focuses on the final RMSD at the end of each simulation. 

In many systems, the ligand remains close to the crystallographic pose. For example, in 

FXR, about 90% of simulations have a ligand RMSD of three Å or less at the end of the 

simulation. In others, the ligand assumes another relatively stable pose or fluctuates between 

a number of poses (the latter is evident in Figure S3 of the Supporting Information). In a few 

simulations (four for lysozyme and one for IE), the ligand completely dissociates and has a 

final RMSD of over 100 Å.

There are several possible reasons for the observed alternative binding poses and ligand 

dissociation. Regarding the alternative binding poses, it is possible that they do exist in 

solution but that only the most stable form is resolved in crystal structures. Previous 

simulations have suggested that T4 lysozyme ligands can bind in multiple sites.68 

Alternative binding poses may also be an artifact of an inaccurate force field. Regarding 

dissociation, it may also result from force field inaccuracy, but may simply be due to binding 

kinetics. Over a sufficient time scale, noncovalent binders are expected to spontaneously 

associate and dissociate. Such events have been observed in short molecular dynamics 
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simulations used to build Markov state models of binding processes69–72. Compared to 

typical MM/GBSA simulations, which are usually shorter than 10 ns, our 200 ns simulations 

are much longer, making the observation of dissociation events more likely.

Regardless of the reason that ligands deviated from crystallographic poses, removing 

snapshots with a ligand RMSD larger than 3 Å resulted in similar of better performance 

compared to binding free energy estimates without an RMSD cutoff. With the bromodomain 

and lysozyme datasets, most correlation metrics are significantly higher and the aRMSE is 

lower with the RMSD-based filter compared to without the RMSD filter (Table 2). In the 

MAP4K4 dataset, the performance with and without the filter was similar. The benefits of 

the filter were evident across all six datasets, as the average ranking of Pearson R, Spearman 

ρ, and Kendall τ were consistently better with than without the filter (Table 3).

Although our results may suggest that including a filter based on ligand RMSD is always 

helpful, it is important to note that all of our simulations started from a crystallographic 

structure of the complex. Stringent filtering is unlikely to be beneficial if the initial binding 

pose is incorrect. If the binding pose is unknown, it may be useful to include a cutoff based 

on a distance from the receptor surface and exclude snapshots in which the ligand and 

receptor are no longer close.

3.3 Ligand external entropy corrections reduce error but fail to improve correlation

The sign and magnitude of the binding site volume correction and fictitious confining 

potential are as expected. In all cases, they are both positive, indicating that the entropic loss 

leads to weaker binding (Table 4 and Figure S4 in the Supporting Information). 

Furthermore, the magnitude of ΔGξ
c is greater than that of ∆Gξ, likely because the latter 

overestimates the residual external entropy in the complex. In most datasets, ΔGξ
c and ∆Gξ 

appear correlated (Figure S4 in the Supporting Information).

Even though the external entropy corrections reduce the error, they do not increase the 

correlation with experiment (Tables 2 and 5). For the bromodomain and lysozyme datasets, 

accounting for the loss in ligand external entropy leads to a lower RMSE with respect to 

experiment. However, of the three options for ligand external entropy corrections, 

completely excluding a correction leads to the best average ranking for all three metrics.

These results were contrary to our expectations. Swanson et al. 23 suggested that external 

entropy changes are much larger and therefore more important than internal entropy 

changes. Indeed, we observed that the magnitude of the correction can be large, but that its 

variance is small. The largest standard deviation is with the IE dataset, which is based on a 

diverse set of receptors. For most datasets with a common receptor, standard deviations were 

on the order of 1 kcal/mol or less (Table 4). It may be the case that, per degree of freedom, 

internal entropy changes are more subtle, but accumulate to a more significant sum with 

larger variation between complexes.

Although our external entropy corrections may not be particularly useful in a purely physics-

based free energy calculation, they may nonetheless be beneficial in a semi-empirical model. 
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In their multiple linear regression model incorporating an external entropy correction, Ben-

Shalom et al. 60 found that coefficients for entropic terms were much greater than those for 

enthalpic terms. Amplification of the external entropy terms makes physical sense if external 

entropy changes are correlated with internal entropy changes. Consideration of ∆Gc in such 

models may be a worthy direction for future work, but is outside the scope of this present 

manuscript.

3.4 The second-order cumulant expansion balances accuracy and precision

The second-order cumulant expansion leads to the most reliable correlations of all expansion 

options.

Across all six datasets, the second-order cumulant expansion has the first or second best 

average ranking for all three correlation metrics considered (Table 6). Among the three 

datasets where calculations are significantly correlated with experiment, the first-order 

expansion and exponential average have comparable correlation with experiment (Table 2). 

However, for the bromodomains, the Pearson R for these two estimators is significantly less 

than for the second-order expansion (around 0.6 opposed to 0.8) and the RMSE is much 

larger. The third- and fourth-order expansions significantly deteriorate correlations with 

experiment in the bromodomains and MAP4K4 datasets. Including the normal modes 

entropy reduces the RMSE but also reduces the correlation metrics.

The second-order cumulant expansion also reliably leads to the lowest error of all expansion 

options (Table 2). For bromodomains and MAP4K4, the second-order cumulant expansion 

has a significantly lower aRMSE than other expansion options. In the former dataset, where 

absolute binding free energies are available to compute the RMSE, this option leads to the 

lowest RMSE. In the lysozyme dataset, the aRMSE for multiple different expansion options 

is comparable.

The IE and MAP4K4 datasets have receptor-ligand systems in which a binding free energy 

estimate based on a high-order cumulant expansion is a significant outlier (2WBG in IE and 

MAP01 in MAP). Removing these outliers does not significantly change the outcome of our 

analysis. Removal of 2WBG from its dataset actually results in a lower Pearson R. Removal 

of MAP01 improves the Pearson R, but not to a level close to the other estimators.

The strong performance of the second-order expansion may be attributed to the fact that the 

majority of interaction energy distributions appear nearly Gaussian (Figure S2 of the 

Supporting Information). There are a few complexes that have skewed or multimodal 

distributions of the interaction energy or in which there are insufficient data (after filtering) 

to clearly define the shape of the distribution. In most datasets, however, these are exceptions 

rather than the rule. Due to the near-Gaussian shape of most interaction energy distributions, 

higher-order terms appear to add minimal benefit to accuracy while introducing significant 

numerical instability.

Our observation that exponential averages are superior to the first-order cumulant expansion 

is consistent with recent results with the IE method.36 Duan et al. 36 factored the average out 

of the exponential average interaction energy, leading to,
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ΔGRL
s = Ψ RL + kBTln e

β δΨ rRL

RL
. (27)

(This operation is equivalent to Equation 12 of prior work in solvation thermodynamics. 57) 

For calculations with the IE dataset, Duan et al. 36 found that protein-ligand binding free 

energy estimates based on IE have a lower mean absolute error relative to experimental 

values than the standard MM/GBSA approach. Although this expression allows for a 

separation of the energetic and entropic contributions to binding, the free energy estimate is 

numerically equivalent to Equation 15, providing evidence that the exponential average is 

superior to the first-order cumulant expansion.

3.5 Convergence requires variable simulation time

As evident from the Pearson R and RMSE from the final value as a function of simulation 

time in all three systems with significant correlation (Figure 4), the amount of simulation 

time for convergence is highly system-dependent. Trends are smoothest for the first-order 

cumulant expansion, for which both metrics change only gradually as simulation time 

increases and level off by about 100 ns. The second-order cumulant expansion is less stable 

but, except in the bromodomains dataset, also levels off by around 100 ns. Surprisingly, the 

instability of the Pearson R and RMSE with the bromodomain dataset is due to a relatively 

small change in the estimated free energy of a single system. The exponential average 

appears to level off sooner, around 50 ns, and is marked by sudden but relatively small 

jumps in the correlation.

In 1994, LIE was initially derived based on a cumulant expansion20–22 truncated at the first 

order. At the time, it was assumed that second- and higher-order terms would converge more 

slowly and the approximation was made that these terms would cancel out. In contrast with 

these expectations, our present results suggest that the second-order term and the 

exponential average do not actually converge much more slowly than the first-order term.

4 Conclusions and Future Directions

We have derived, implemented, and tested a number of modifications to the MM/GBSA 

estimator for binding free energies. The modifications were tested on a number of datasets 

with congeneric as well as diverse ligands. In some datasets, neither the MM/GBSA 

estimator nor any of the modifications were able to achieve significant correlation with 

experiment. In the others, we found that filtering snapshots with a high ligand RMSD was 

beneficial to both error and correlation. Although they reduced error, our proposed external 

entropy corrections did not improve correlation with experiment. Finally, we found that 

compared to a first-order cumulant expansion with or without normal modes entropy, a 

second-order cumulant expansion reduces error and sometimes improves correlation greatly, 

while never significantly reducing correlation. Including this term requires negligible 

additional computational expense and eliminates the necessity of costly normal modes 
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analysis. There appears to be no downside to using the second-order cumulant truncation in 

place of standard MM/GBSA estimation.

The effectiveness of these estimators should still be tested for different types of models, 

including with explicit solvent and polarizable force fields. Comparing end-point and 

alchemical binding free energy calculations instead of experimental results would allow us 

to fully disentangle force field and estimator errors. Furthermore, because internal entropy 

was ignored, continued improvement of entropy terms should be pursued.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

We thank OpenEye scientific software for providing a free academic license to their software. This research was 
supported by the National Institutes of Health (R15GM114781 and then R01GM127712).

References

(1). Gilson MK; Given JA; Bush BL; McCammon JA The Statistical Thermodynamic Basis for 
Computation of Binding Affinities: A Critical Review. Bio-phys. J 1997, 72, 1047–1069.

(2). Michel J; Essex JW Hit Identification and Binding Mode Predictions by Rigorous Free Energy 
Simulations. J. Med. Chem 2008, 51, 6654–6664. [PubMed: 18834104] 

(3). Boyce SE; Mobley DL; Rocklin GJ; Graves AP; Dill KA; Shoichet BK Predicting Ligand Binding 
Affinity with Alchemical Free Energy Methods in a Polar Model Binding Site. J. Mol. Biol 2009, 
394, 747–763. [PubMed: 19782087] 

(4). Ge X; Roux B Absolute Binding Free Energy Calculations of Sparsomycin Analogs to the 
Bacterial Ribosome. J. Phys. Chem. B 2010, 114, 9525–9539. [PubMed: 20608691] 

(5). Wang L; Berne BJ; Friesner RA On Achieving High Accuracy and Reliability in the Calculation of 
Relative Protein-Ligand Binding Affinities. Proc. Natl. Acad. Sci. USA 2012, 109, 1937–42. 
[PubMed: 22308365] 

(6). Zhu S; Travis SM; Elcock AH Accurate Calculation of Mutational Effects on the Thermodynamics 
of Inhibitor Binding to P38α MAP Kinase: A Combined Computational and Experimental Study. 
J. Chem. Theory Comput 2013, 9, 3151–3164. [PubMed: 23914145] 

(7). Wang L; Wu Y; Deng Y; Kim B; Pierce L; Krilov G; Lupyan D; Robinson S; Dahlgren MK; 
Greenwood J; Romero DL; Masse C; Knight JL; Steinbrecher T; Beuming T; Damm W; Harder 
E; Sherman W; Brewer M; Wester R; Murcko M; Frye L; Farid R; Lin T; Mobley DL; Jorgensen 
WL; Berne BJ; Friesner RA; Abel R Accurate and Reliable Prediction of Relative Ligand 
Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation 
Protocol and Force Field. J. Am. Chem. Soc 2015, 137, 2695–2703. [PubMed: 25625324] 

(8). Aldeghi M; Heifetz A; Bodkin MJ; Knapp S; Biggin PC Accurate Calculation of the Absolute 
Free Energy of Binding for Drug Molecules. Chem. Sci 2016, 7, 207–218. [PubMed: 26798447] 

(9). Aldeghi M; Heifetz A; Bodkin MJ; Knapp S; Biggin PC Predictions of Ligand Selectivity from 
Absolute Binding Free Energy Calculations. J. Am. Chem. Soc 2017, 139, 946–957. [PubMed: 
28009512] 

(10). Wan S; Bhati AP; Zasada SJ; Wall I; Green D; Bamborough P; Coveney PV Rapid and Reliable 
Binding Affinity Prediction of Bromodomain Inhibitors: A Computational Study. J. Chem. 
Theory Comput 2017, 13, 784–795. [PubMed: 28005370] 

(11). Gumbart JC; Roux B; Chipot C Efficient Determination of Protein-Protein Standard Binding Free 
Energies from First Principles. J. Chem. Theory Comput 2013, 9, 3789–3798.

Menzer et al. Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(12). Rodriguez RA; Yu L; Chen LY Computing Protein-Protein Association Affinity with Hybrid 
Steered Molecular Dynamics. J. Chem. Theory Comput 2015, 11, 4427–4438. [PubMed: 
26366131] 

(13). Massova I; Kollman PA Combined Molecular Mechanical and Continuum Solvent Approach 
(MM-PBSA/GBSA) to Predict Ligand Binding. Perspect. Drug Discov 2000, 18, 113–135.

(14). Hou T; Wang J; Li Y; Wang W Assessing the Performance of the MM/PBSA and MM/GBSA 
Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics 
Simulations. J. Chem. Inf. Model 2011, 51, 69–82. [PubMed: 21117705] 

(15). Wang W; Kollman PA Free Energy Calculations on Dimer Stability of the HIV Protease Using 
Molecular Dynamics and a Continuum Solvent Model. J. Mol. Biol 2000, 303, 567–582. 
[PubMed: 11054292] 

(16). Gohlke H; Kiel C; Case DA Insights into Protein-Protein Binding by Binding Free Energy 
Calculation and Free Energy Decomposition for the Ras-Raf and Ras-RalGDS Complexes. J. 
Mol. Biol 2003, 330, 891–913. [PubMed: 12850155] 

(17). Lee FS; Chu Z-T; Bolger MB; Warshel A Calculations of Antibody-Antigen Interactions: 
Microscopic and Semi-Microscopic Evaluation of the Free Energies of Binding of 
Phosphorylcholine Analogs to McPC603. Protein Eng. Des. Sel 1992, 5, 215–228.

(18). Sham YY; Chu ZT; Tao H; Warshel A Examining methods for calculations of binding free 
energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV 
protease. Proteins: Struct., Funct., Bioinf 2000, 39, 393–407.

(19). de Ruiter A; Oostenbrink C Efficient and Accurate Free Energy Calculations on Trypsin 
Inhibitors. J. Chem. Theory Comput 2012, 8, 3686–3695. [PubMed: 26593013] 

(20). Åqvist J; Medina C; Samuelsson J-EE; Åqvist J; Medina C; Samuelsson JEE New Method for 
Predicting Binding Affinity in Computer-Aided Drug Design. Protein Eng 1994, 7, 385–391. 
[PubMed: 8177887] 

(21). Hansson T; Marelius J; Åqvist J Ligand Binding Affinity Prediction by Linear Interaction Energy 
Methods. J. Comput.-Aided Mol. Des 1998, 12, 27–35. [PubMed: 9570087] 

(22). Åqvist J; Luzhkov VB; Brandsdal BO Ligand Binding Affinities from MD Simulations. Acc. 
Chem. Res 2002, 35, 358–365. [PubMed: 12069620] 

(23). Swanson JMJ; Henchman RH; McCammon JA Revisiting Free Energy Calculations: A 
Theoretical Connection to MM/PBSA and Direct Calculation of the Association Free Energy. 
Biophys. J 2004, 86, 67–74. [PubMed: 14695250] 

(24). Genheden S; Ryde U The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding 
Affinities. Expert Opin. Drug Discovery 2015, 10, 449–461.

(25). Chang C-E; Chen W; Gilson MK Evaluating the Accuracy of the Quasiharmonic Approximation. 
J. Chem. Theory Comput 2005, 1, 1017–1028. [PubMed: 26641917] 

(26). Minh DDL; Bui JM; Chang C.-e. A.; Jain T; Swanson JMJ; McCammon JA The Entropic Cost of 
Protein-Protein Association: A Case Study on Acetylcholinesterase Binding to Fasciculin-2. 
Biophys. J 2005, 89, L25–7. [PubMed: 16100267] 

(27). Weis A; Katebzadeh K; Soderhjelm P; Nilsson I; Ryde U; Söderhjelm P; Nilsson I; Ryde U; 
Soderhjelm P; Nilsson I et al. Ligand Affinities Predicted with the MM/PBSA Method: 
Dependence on the Simulation Method and the Force Field. J. Med. Chem 2006, 49, 6596–6606. 
[PubMed: 17064078] 

(28). Kongsted J; Ryde U An Improved Method to Predict the Entropy Term with the MM/PBSA 
Approach. J. Comput.-Aided Mol. Des 2009, 23, 63–71. [PubMed: 18781280] 

(29). Lindström A; Edvinsson L; Johansson A; Andersson CD; Andersson IE; Raubacher F; Linusson 
A; Lindstrom A Postprocessing of Docked Protein-Ligand Complexes Using Implicit Solvation 
Models. J. Chem. Inf. Model 2011, 51, 267–282. [PubMed: 21309544] 

(30). Zhang X; Perez-Sanchez H; Lightstone FC A Comprehensive Docking and MM/GBSA 
Rescoring Study of Ligand Recognition upon Binding Antithrombin. Curr. Top. Med. Chem 
2017, 17, 1631–1639. [PubMed: 27852201] 

(31). Åqvist J; Hansson T On the Validity of Electrostatic Linear Response in Polar Solvents. J. Phys. 
Chem 1996, 100, 9512–9521.

Menzer et al. Page 20

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(32). Martins SA; Perez MAS; Moreira IS; Sousa SF; Ramos MJ; Fernandes PA Computational 
Alanine Scanning Mutagenesis: MM-PBSA vs TI. J. Chem. Theory Comput 2013, 9, 1311–1319. 
[PubMed: 26587593] 

(33). Chang C-E; Chen W; Gilson MK Ligand Configurational Entropy and Protein Binding. Proc. 
Natl. Acad. Sci. USA 2007, 104, 1534–1539. [PubMed: 17242351] 

(34). Chodera JD; Mobley DL Entropy-Enthalpy Compensation: Role and Ramifications in 
Biomolecular Ligand Recognition and Design. Annu. Rev. Biophys 2014, 42, 121–142.

(35). Geschwindner S; Ulander J; Johansson P Ligand Binding Thermodynamics in Drug Discovery: 
Still a Hot Tip? J. Med. Chem 2015, 58, 6321–6335. [PubMed: 25915439] 

(36). Duan L; Liu X; Zhang JZH Interaction Entropy: A New Paradigm for Highly Efficient and 
Reliable Computation of Protein-Ligand Binding Free Energy. J. Am. Chem. Soc 2016, 138, 
5722–5728. [PubMed: 27058988] 

(37). Jarzynski C Rare Events and the Convergence of Exponentially Averaged Work Values. Phys. 
Rev. E 2006, 73, 46105.

(38). Zuckerman DM; Woolf TB Systematic Finite-Sampling Inaccuracy in Free Energy Differences 
and Other Nonlinear Quantities. J. Stat. Phys 2004, 114, 1303–1323.

(39). Case D; Cerutti D; T.E. Cheatham I; Darden T; Duke R; Giese T; Gohlke H; Goetz A; Greene D; 
Homeyer N; Izadi S; Kovalenko A; Lee T; LeGrand S; Li P; Lin C; Liu J; Luchko T; Luo R; 
Mermelstein D; Merz K; Monard G; Nguyen H; Omelyan I; Onufriev A; Pan F; Qi R; Roe D; 
Roitberg A; Sagui C; Simmerling C; Botello-Smith W; Swails J; Walker R; Wang J; Wolf R; Wu 
X; Xiao L; York D; Kollman P AMBER 2017 University of California, San Francisco, 2017; 
http://ambermd.org/.

(40). Salomon-Ferrer R; Case DA; Walker RC An Overview of the Amber Biomolecular Simulation 
Package. WIREs Comput. Mol. Sci 2013, 3, 198–210.

(41). Søndergaard CR; Olsson MHM; Rostkowski M; Jensen JH Improved Treatment of Ligands and 
Coupling Effects in Empirical Calculation and Rationalization of pKa Values. J. Chem. Theory 
Comput 2011, 7, 2284–2295. [PubMed: 26606496] 

(42). Olsson MHM; Søndergaard CR; Rostkowski M; Jensen JH PROPKA3: Consistent Treatment of 
Internal and Surface Residues in Empirical pKa Predictions. J. Chem. Theory Comput 2011, 7, 
525–537 [PubMed: 26596171] 

(43). Dolinsky TJ; Nielsen JE; McCammon JA; Baker NA PDB2PQR: An Automated Pipeline for the 
Setup of Poisson-Boltzmann Electrostatics Calculations. Nucleic Acids Res 2004, 32, 665–667.

(44). Wang J; Wolf RM; Caldwell JW; Kollman PA; Case DA Development and Testing of a General 
Amber Force Field. J. Comput. Chem 2004, 25, 1157–74. [PubMed: 15116359] 

(45). Jakalian A; Bush BL; Jack DB; Bayly CI Fast, Efficient Generation of High-Quality Atomic 
Charges. AM1-BCC Model: I. Method. J. Comput. Chem 1999, 21, 132–146.

(46). Jakalian A; Jack DB; Bayly CI Fast, Efficient Generation of High-Quality Atomic Charges. 
AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem 2002, 23, 1623–41. 
[PubMed: 12395429] 

(47). Onufriev A; Bashford D; Case DA Exploring Protein Native States and Large-Scale 
Conformational Changes With a Modified Generalized Born Model. Proteins: Struct., Funct., 
Bioinf 2004, 55, 383–394.

(48). Eastman P; Pande VS OpenMM: A Hardware-Independent Framework for Molecular 
Simulations. Comput. Sci. Eng 2010, 12, 34–39.

(49). Eastman P; Swails J; Chodera JD; Mcgibbon RT; Zhao Y; Beauchamp KA; Wang L.-p.; 
Simmonett AC; Harrigan MP; Stern CD et al. OpenMM 7: Rapid Development of High 
Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol 2017, 13, e1005659. 
[PubMed: 28746339] 

(50). Humphrey W; Dalke A; Schulten K VMD - Visual Molecular Dynamics. J. Mol. Graphics 1996, 
14, 33–38

(51). Miller BR; McGee TD; Swails JM; Homeyer N; Gohlke H; Roitberg AE MMPBSA.Py: An 
Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput 2012, 8, 
3314–3321. [PubMed: 26605738] 

Menzer et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ambermd.org/


(52). General IJ A Note on the Standard State’s Binding Free Energy. J. Chem. Theory Comput 2010, 
6, 2520–2524. [PubMed: 26613503] 

(53). Gallicchio E; Lapelosa M; Levy RM Binding Energy Distribution Analysis Method (BEDAM) 
for Estimation of Protein-Ligand Binding Affinities. J. Chem. Theory Comput 2010, 6, 2961–
2977. [PubMed: 21116484] 

(54). Minh DDL Implicit Ligand Theory: Rigorous Binding Free Energies and Thermodynamic 
Expectations from Molecular Docking. J. Chem. Phys 2012, 137, 104106. [PubMed: 22979849] 

(55). Gilson MK; Zhou H-X Calculation of Protein-Ligand Binding Affinities. Annu. Rev. Biophys. 
Biomol. Struct 2007, 36, 21–42. [PubMed: 17201676] 

(56). Zwanzig R High-Temperature Equation of State by a Perturbation Method. I. Non-polar Gases. J. 
Chem. Phys 1954, 22, 1420.

(57). Ben-Amotz D; Raineri FO; Stell G Solvation Thermodynamics: Theory and Applications. J. 
Phys. Chem. B 2005, 109, 6866–6878. [PubMed: 16851773] 

(58). Marcinkiewicz J Sur Une Propri´et´e de La Loi de Gauß. Math. Z 1939, 44, 612–618.

(59). Wood RH; Muhlbauer WCF; Thompson PT; Mu¨hlbauer WC; Thompson PT Systematic Errors 
in Free Energy Perturbation Calculations Due to a Finite Sample of Configuration Space: 
Sample-Size Hysteresis. J. Phys. Chem 1991, 95, 6670–6675.

(60). Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H Efficient Approximation of Ligand 
Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations. 
J. Chem. Inf. Model 2017, 57, 170–189. [PubMed: 27996253] 

(61). Roe DR; Cheatham TE PTRAJ and CPPTRAJ: Software for Processing and Analysis of 
Molecular Dynamics Trajectory Data. J. Chem. Theory Comput 2013, 9, 3084–3095. [PubMed: 
26583988] 

(62). McGibbon RT; Beauchamp KA; Harrigan MP; Klein C; Swails JM; Herna´ndez CX; Schwantes 
CR; Wang L-P; Lane TJ; Pande VS MD-Traj: A Modern Open Library for the Analysis of 
Molecular Dynamics Trajectories. Biophys. J 2015, 109, 1528–1532 [PubMed: 26488642] 

(63). van der Walt S; Colbert SC; Varoquaux G The NumPy Array: A Structure for Efficient Numerical 
Computation. Comput. Sci. Eng 2011, 13, 22–30.

(64). Scott D Multivariate Density Estimation: Theory, Practice, and Visualization; John Wiley & 
Sons: New York, Chicester, 1992.

(65). Kendall M A New Measure of Rank Correlation. Biometrika 1938, 30, 81–89.

(66). Efron B Bootstrap Methods: Another Look at the Jackknife. Ann. Stat 1979, 7, 1–26.

(67). Gaieb Z; Liu S; Gathiaka S; Chiu M; Yang H; Shao C; Feher VA; Walters WP; Kuhn B; Rudolph 
MG et al. D3R Grand Challenge 2: Blind Prediction of Protein–Ligand Poses, Affinity Rankings, 
and Relative Binding Free Energies. J. Comput.-Aided Mol. Des 2018, 32, 1–20. [PubMed: 
29204945] 

(68). Wang K; Chodera JD; Yang Y; Shirts MR Identifying Ligand Binding Sites and Poses Using 
GPU-Accelerated Hamiltonian Replica Exchange Molecular Dynamics. J. Comput.-Aided Mol. 
Des 2013, 27, 989–1007. [PubMed: 24297454] 

(69). Buch I; Giorgino T; De Fabritiis G Complete Reconstruction of an Enzyme-Inhibitor Binding 
Process by Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. USA 2011, 108, 10184–
10189. [PubMed: 21646537] 

(70). Silva D-A; Bowman GR; Sosa-Peinado A; Huang X A Role for Both Conformational Selection 
and Induced Fit in Ligand Binding by the LAO Protein. PLoS Comput. Biol 2011, 7, e1002054. 
[PubMed: 21637799] 

(71). Doerr S; De Fabritiis G On-the-Fly Learning and Sampling of Ligand Binding by High-
Throughput Molecular Simulations. J. Chem. Theory Comput 2014, 10, 2064–2069. [PubMed: 
26580533] 

(72). Kohlhoff K; Shukla D; Lawrenz M; Bowman GR; Konerding DE; Belov D; Altman RB; Pande 
VS Cloud-Based Simulations on Google Exacycle Reveal Ligand Modulation of GPCR 
Activation Pathways. Nat. Chem 2014, 6, 1–7. [PubMed: 24345928] 

Menzer et al. Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 

Schematic thermodynamic cycle for a calculation of ΔGRL
∘ . The standard binding free 

energy (top row) is based on reference states in which both the receptor and ligand freely 

translate and rotate in bulk solvent. In the site-specific binding free energy ΔGRL
s  (middle 

row), the ligand external degrees of freedom are restricted to the binding site. In the 

confined-ligand binding free energy ΔGRL
c  (bottom row), an empirical confining potential is 

added to the ligand external degrees of freedom. ∆Gξ is the free energy of restricting the 

ligand into the binding site. ∆Gc,L and ∆Gc,RL are the free energies of adding the empirical 

confining potential to the ligand and complex, respectively.
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Figure 2: Comparison of free energy estimates for two interaction energy distributions.
The bars are a normalized histogram of interaction energies observed in a simulation of the 

protein-ligand complex starting from 3mxf (top) or 4ogj (bottom) in the PDB. Top: The 

mean interaction energy, −39.6 kcal/mol and is shown with a dashed blue vertical line. Since 

the standard deviation of the interaction energy is 3.5 kcal/mol, the second-order truncation 

of the cumulant expansion is −29.5 kcal/mol, shown with a solid green line. A Gaussian 

distribution based on the sample mean and standard deviation is shown as a solid black line. 

Bottom: The same lines and symbols are used for 4ogj. The mean interaction and standard 

deviation of the interaction energy is −71.59 and 7.3 kcal/mol, respectively. The second-

order truncation of the cumulant expansion is −27.25 kcal/mol. Comparable figures for all 

systems are available in Figure S2 of the Supporting Information.
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Figure 3: Fraction of systems with a final ligand RMSD below a certain cutoff.
The y axis is restricted to between 0 and 25 Å. The dashed line is at 3 Å, which we used as 

the native pose cutoff. The markers of different datasets are for bromodomains (blue 

squares), FXR (green circles), hPNMT (leftward triangles), lysozyme (rightwards triangles), 

MAPK4K (upwards triangles), and interaction entropy (downwards triangles).
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Figure 4: Pearson’s R and RMSE from the final value of calculated binding free energies as a 
function of time for bromodomains, lysozyme, and MAP4K4 datasets.
Calculations were performed with ligand RMSD cutoff of 3 Å, without the inclusion of 

ligand external entropy terms, and using three expansion options: first- and second-order 

cumulant expansions and an exponential average.
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Table 1:

The number of Web of Science search results for specific topics on September 22, 2018.

Topic Number of Results

“linear response approximation” and “binding” 44

“linear interaction energy” 211

“alchemical” 453

“MM/PBSA” or “MM/GBSA” 1378
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Table 3:
Ligand RMSD filter effects.

The average rank of correlation metrics across all six datasets with a ligancd RMSD filter of 3 Å and without a 

filter (∞) were compared. Rankings were based on the highest value (neglecting error) among all external 

entropy and estimator options. The filter with the highest correlation was given rank 1, and the filter with the 

lower correlation was given rank 2. In the case of a tie, both filters were assigned rank 1.

R Ρ Τ

3 Å 1.33 1.17 1.17

∞ 1.50 1.50 1.17
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Table 4:
The mean and standard deviations of free energy corrections based on ligand external 
entropy:

restricting the ligand to the binding site (∆Gξ) and of imposing a confining potential on translational and 

rotational degrees of freedom (∆Gc). The latter is based on ∆Gc = ∆Gc,L − ∆Gc,RL and does not include 

importance sampling effects through ΔGRL
c .

Set ∆Gξ ∆Gc

Bromodomains 1.98 (0.41) 5.74 (1.05)

FXR 2.20 (0.32) 7.42 (0.92)

hPNMT 2.06 (0.28) 7.43 (1.18)

Lysozyme 1.46 (0.14) 4.94 (0.48)

MAP4K4 1.98 (0.35) 7.33 (0.77)

IE 6.96 (1.38) 11.62 (1.28)
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Table 5:
Assessing the effect of external entropy corrections.

The average rank of correlation metrics across all six datasets without an external entropy correction (No), 

with a binding site volume correction (Site), and with a fictitious potential on ξ (Yes), were compared. 

Rankings were based on the highest value (neglecting error) among those based on a ligand RMSD cutoff was 

3 Å and all estimator options. The correction with the highest correlation was given rank 1, and the corrections 

with the lower correlations were given ranks 2 and 3. In the case of a tie, two correlations were assigned rank 1 

and the third was asigned rank 3.

R ρ τ

No 1.33 1.50 1.33

Site 2.17 1.33 1.50

Yes 2.33 2.00 2.17
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Table 6:
Assessing expansion options.

The average rank of correlation metrics across all six datasets based on different truncations of the cumulant 

expansion (1–4), exponential average (EXP), and the first-order cumulant expansion and normal modes 

entropy (1 + NM), were compared. Estimates were based on a ligand RMSD filter of 3 Å and did not include 

an external entropy correction. Rankings were based on the highest value (neglecting error) among all external 

entropy and expansion options. The estimator with the highest correlation was given rank 1, and the estimators 

with the lower correlations were given ranks 2 through 6. In the case of a tie between two options, both were 

assigned the same rank.

R ρ τ

1 3.17 3.00 3.00

2 1.50 2.33 2.33

3 2.00 2.33 2.33

4 3.67 3.17 2.67

EXP 2.83 2.17 1.83

1 + NM 3.67 3.83 3.50
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