Skip to main content
. 2019 Mar 29;14(3):e0214587. doi: 10.1371/journal.pone.0214587

Table 2. Experimental results of different SE-ResNet architectures on Cifar.

Method Module Cifar-10 Cifar-100
#params #model size Accuracy #params #model size Accuracy
SE-ResNet-18 basic 11, 272K 90.4Mb 94.85 ± 0.14 11, 312K 90.8Mb 75.86 ± 0.22
SE-ResNet-26 bottleneck 15, 383K 123.4Mb 93.90 ± 0.18 15, 567K 124.8Mb 75.40 ± 0.27
SE-ResNet-34 small 8, 145K 65.6Mb 94.79 ± 0.17 8, 191K 65.9Mb 75.81 ± 0.13
SE-ResNet-50 bottleneck 26, 100K 209.4Mb 94.67 ± 0.09 26, 285K 210.8Mb 78.02 ± 0.25
SE-ResNet-66 small 14, 986K 120.7Mb 95.26 ± 0.18 15, 033K 121.1Mb 77.02 ± 0.20
BHCNet-3 small 198K 2.1Mb 92.30 ± 0.14 204K 2.2Mb 68.36 ± 0.23
BHCNet-6 small 401K 4.2Mb 93.18 ± 0.14 407K 4.2Mb 70.33 ± 0.25