Skip to main content
. 2019 Mar 29;14(3):e0214587. doi: 10.1371/journal.pone.0214587

Table 7. The accuracies performance of BHCNet-6 for the multi-classification.

References Methods 40× 100× 200× 400×
Chan et al. (2016) [38] SVM 55.6 - - -
Bardou et al. (2018) [4] CNN 86.34 84.00 79.93 79.74
CNN + Augmented 83.79 84.48 80.83 81.03
SVM 82.89 80.94 79.44 77.94
Ensemble CNN model 88.23 84.64 83.31 83.98
BoW/DSIFT 66.72 69.06 62.42 52.75
BoW/SURF 41.80 38.56 49.75 38.67
LLC/DSIFT 60.58 57.44 70.00 46.96
LLC/SURF 80.37 63.84 74.54 54.70
Present Work BHCNet-6 + ERF 94.43 ± 0.28 94.45 ± 0.15 92.27 ± 0.08 91.15 ± 0.43