Table 7. The accuracies performance of BHCNet-6 for the multi-classification.
References | Methods | 40× | 100× | 200× | 400× |
---|---|---|---|---|---|
Chan et al. (2016) [38] | SVM | 55.6 | - | - | - |
Bardou et al. (2018) [4] | CNN | 86.34 | 84.00 | 79.93 | 79.74 |
CNN + Augmented | 83.79 | 84.48 | 80.83 | 81.03 | |
SVM | 82.89 | 80.94 | 79.44 | 77.94 | |
Ensemble CNN model | 88.23 | 84.64 | 83.31 | 83.98 | |
BoW/DSIFT | 66.72 | 69.06 | 62.42 | 52.75 | |
BoW/SURF | 41.80 | 38.56 | 49.75 | 38.67 | |
LLC/DSIFT | 60.58 | 57.44 | 70.00 | 46.96 | |
LLC/SURF | 80.37 | 63.84 | 74.54 | 54.70 | |
Present Work | BHCNet-6 + ERF | 94.43 ± 0.28 | 94.45 ± 0.15 | 92.27 ± 0.08 | 91.15 ± 0.43 |